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Abstract: Alkaline soda lignin (AL) was sequentially fractionated into six fractions of different molec-
ular size by means of solvent extraction and their phenolic hydroxyl groups were chemoselectively
methylated to determine their effect on nanoparticle formation of lignin polymers. The effect of the
lignin structure on the physical properties of nanoparticles was also clarified in this study. Nanopar-
ticles were obtained from neat alkaline soda lignin (ALNP), solvent-extracted fractions (FALNPs,
i.d. 414–1214 nm), and methylated lignins (MALNPs, i.d. 516–721 nm) via the nanoprecipitation
method. Specifically, the size properties of MALNPs showed a high negative correlation (R2 = 0.95)
with the phenolic hydroxyl group amount. This indicates that the phenolic hydroxyl groups in
lignin could be influenced on the nucleation or condensation during the nanoprecipitation process.
Lignin nanoparticles exhibited high colloidal stability, and most of them also showed good in vitro
cell viability. This study presents a possible way to control nanoparticle size by blocking specific
functional groups and decreasing the interaction between hydroxyl groups of lignin.

Keywords: lignin; nanoparticle; fractionation; methylation; nanoprecipitation

1. Introduction

Lignin is a natural and three-dimensional phenolic polymer that accounts for 10–30%
of the mass in lignocellulosic biomass. In recent decades, interest in the utilization of
technical lignin as a high-value source has increased since around 70 million tons of lignin
byproduct are generated annually worldwide in the pulping/paper industry (kraft, sulfite,
etc.) and 10 million tons per year are generated in biorefineries [1,2]. However, 98% of the
extracted lignin solution is just combusted for heat in pulp plants, and less than 2% of the
lignin byproduct is converted into commercial products.

Formation of nanoparticles using lignin material is one of the promising applications
to provide high value to it. Several studies have been carried out on lignin nanoparticle
synthesis in a wide range of industrial fields. For example, lignin particles can be used as
a reducing and capping agent to synthesize metallic nanoparticles [3]. Additionally, the
synthesis of lignin/sodium dodecyl sulfate composite nanoparticles with high antiphotoly-
sis and antioxidant properties was reported [4]. In addition, using lignin nanoparticles as
materials for a novel drug delivery system may increase lignin value [5–9].

In previous studies, we evaluated the high potential of kraft lignin as a source of
biocompatible nano-sized material and focused on the effect of the lignin structure on
the sizes of the nanoparticles [10]. Six lignin fractions with significant differences in
molecular size, weight, number of functional groups, internal linkages, and polydispersity
were applied in the nanoprecipitation process. Correlations between particle sizes and
several features of the lignin were determined. However, it was hard to clarify these
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correlations because of the considerable structural differences between each fraction and
the polydispersity of the sizes of the nanoparticles. Therefore, further investigation of the
effect of specific lignin structure is required.

The objective of this study was to examine and discuss the effect of hydroxyl group
content in lignin on the physical properties of lignin nanoparticles, especially in terms of the
particle size. The role of the phenolic hydroxyl group in determining the physicochemical
properties of nanoparticles was investigated using functionalized lignin with different
amounts of phenolic hydroxyl groups. First, an alkaline soda lignin (AL) from soda pulping
was fractionated via sequential solvent extraction to obtain six different fractions with
structural differences. At the same time, the phenolic hydroxyl group in AL was selectively
blocked via methylation to eliminate the effect of the phenolic hydroxyl group on the
lignin nanoprecipitation process. These phenolic groups were suspected of controlling the
lignin nanoparticle growth via condensation. The formation of the AL-based nanoparticles
was carried out using the nanoprecipitation method. The physicochemical properties
(particle size, distribution, polydispersity, zeta potential, and colloidal stability) of the
particles were determined using dynamic light scattering (DLS) and transmission electron
microscopy (TEM). The differences in nanoparticle properties between phenolic hydroxyl
group-blocked AL via methylation were carefully determined. The possible cytotoxicity
was also assessed using the Cell Counting Kit-8 (CCK-8) test.

2. Materials and Methods
2.1. Materials

AL extracted from wheat straw was provided by Asian Lignin Manufacturing Pvt.
Ltd., Chandigarh, India. Elemental analysis was performed with a 628 Series elemental an-
alyzer sulfur add-on module (LECO Co., St. Joseph, MI, USA). Determination of structural
carbohydrates, lignin, and ash was conducted, referred to the National Renewable Energy
Laboratory (NREL) standard procedures [11,12]. The oxygen and carbohydrate contents
were determined by difference (Table S1).

Acetone, 2-butanone, 1,4-dioxane, ethyl acetate, methanol, tetrahydrofuran (THF),
dimethyl sulfate (DMS), dimethyl sulfoxide (DMSO), and dialysis tubing cellulose membranes
(with Mw cut-off 14,000 Da) were purchased from Sigma-Aldrich Korea (Yongin, Korea).

2.2. Functionalization of Lignin

Fractionation of AL via sequential solvent extraction was performed according to our
previous work [13]. AL was first dissolved in ethyl acetate for 2 h and vacuum filtered
to separate dissolved liquid fractions and undissolved solid fractions. This fractionation
process was repeated with 2-butanone, methanol, acetone, and a dioxane–water mixture
(95:5 v/v). The recovered fractions were denoted FAL1, FAL2, FAL3, FAL4, FAL5, and
FAL6 (1,4-dioxane-insoluble). The yield of each fraction was determined gravimetrically.

Chemoselective methylation of AL was conducted to block the phenolic hydroxyl
group [14]. First, 1.6 g of AL was dissolved in 80 mL of aqueous 0.7 M sodium hydroxide at
25 ◦C. Dimethyl sulfate (0, 1, 2, and 6 mL) was then introduced to each AL and the mixture
was heated to 70 ◦C for 2 h under vigorous stirring. The resulting products were then
acidified with hydrochloric acid (pH < 2) to recover solid precipitates, followed by washing
with deionized water three times and lyophilization. Those methylated lignins were
denoted MAL0, MAL1, MAL2, and MAL6 depending on the amount of added dimethyl
sulfate. The list of lignin samples used in this study are shown in Table 1.
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Table 1. List of functionalized alkaline lignin samples.

Samples Abbreviation Conditions Abbreviation

Alkaline soda lignin AL

Fractionated alkaline
soda lignins FAL

Ethyl acetate-fractionated FAL1
2-Butanone-fractionated FAL2
Methanol-fractionated FAL3
Acetone-fractionated FAL4

Dioxane–water mixture-fractionated FAL5
Dioxane–water mixture-insoluble FAL6

Methylated alkaline
soda lignins MAL

Added 0 mg of dimethyl sulfate
(DMS) MAL0

Added 1 mg of DMS MAL1
Added 2 mg of DMS MAL2
Added 6 mg of DMS MAL6

2.3. Characterization of Lignin

Quantification of lignin hydroxyl group content in lignin was performed using
31P nuclear magnetic resonance (NMR) spectra [15]. Each lignin fraction dissolved in
pyridine/CDCl3 mixture (1.6:1, v/v) and cyclohexanol as an internal standard was phos-
phitylated with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP). These phos-
phitylated lignin samples were analyzed by an NMR instrument (AVANCE 600 MHz,
Bruker, Billerica, MA, USA).

Lignin structures and lignin–carbohydrate complex linkages were quantified via 2D-
1H-13C heteronuclear single quantum coherence (HSQC) NMR analysis (AVANCE 600
MHz, Bruker, Billerica, MA, USA) applying a pulse sequence “hsqcedetgpsp.3”, 32 scans,
and acquisition of 1024 data points for 1H over 512 increments for 13C [16]. As a reference
peak, central DMSO peak (δC = 40.1; δH = 2.5) was used. The MestReNova® v12.0 software
was employed to analyze HSQC spectra (Mestrelab Research, Santiago de Compostela,
Spain) [17].

Methoxyl group content in lignin was determined using Baker’s method [18]. Lignin
was reacted with hydroiodic acid at 130 ◦C for 30 min to release methyl iodide from
the methoxyl groups, followed by the introduction of pentane and ethyl iodide (internal
standard) under vigorous shaking. Finally, the pentane phase was analyzed using gas
chromatography-mass spectrometry systems (5975C Series GC/MSD System, Agilent
Technologies Inc., Santa Clara, CA, USA) to quantify the amount of methyl iodide formed
by cleavage of the methoxyl group.

The number (Mn) and weight average molecular weights (Mw) of fractions were
determined by a 1260 Infinity II LC System (Agilent Technologies Inc., Santa Clara, CA,
USA) with a PLgel 5 µm MIXED-C column (300 mm × 7.5 mm, Agilent Technologies Inc.,
Santa Clara, CA, USA) for gel permeation chromatography (GPC). To obtain a molecular
weight calibration curve, low molecular polystyrene standards (Mp 266–66,000 Da, PSS
Polymer Standards Service GmbH, Mainz, Germany) were used.

2.4. Lignin Nanoparticle Formation

AL nanoparticle (ALNP) formation was conducted using a modified version of Lievo-
nen’s method [19]. AL (1, 2, 4, and 6 mg) dissolved in THF (1.0 mL) was filtered with a 0.50
µm syringe filter and then introduced into dialysis tubing that was presoaked and washed.
The tubing was immersed in 2 L of deionized water, which was exchanged at intervals
of 3 h for over 12 h under 300 rpm stirring. The synthesized nanoparticles were denoted
ALNP-C1, ALNP-C2, ALNP-C4, and ALNP-C6, respectively. Each experimental variable
was run in triplicate.

Nanoparticles from AL fractions and methylated AL were then synthesized at a fixed
concentration of 4 mg mL−1 THF based on the results in Section 3.2. Products from the
fractions were denoted FALNP1, FALNP2, FALNP3, FALNP4, and FALNP5, respectively.
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Methylated lignin-derived particles were also denoted MALNP0, MALNP1, MALNP2, and
MALNP6, respectively. Each variable was also run in triplicate.

2.5. Characterization of Lignin Nanoparticle

A transmission electron microscopy (TEM) image was obtained with the use of a
LIBRA® 120 (Carl Zeiss, Oberkochen, Germany). The samples were deposited on a thin
carbon-coated copper 300 mesh TEM grid (Ted Pella, Inc., Redding, CA, USA).

Mean diameter, polydispersity (PDI, the square of standard deviation/the square
of mean diameter), and the electrokinetic potential of ALNPs in a colloidal dispersion
via DLS were calculated using a Zetasizer Nano ZS instrument (Malvern Panalytical
Ltd., Worcestershire, UK) along with a polystyrene cuvette (peak and z-average size,
DTS0012, Malvern Panalytical Ltd., Worcestershire, UK) and a folded capillary zeta cell
(zeta potential, DTS1070, Malvern Panalytical Ltd., Worcestershire, UK). Each sample was
diluted in deionized water and measured at 25 ◦C. The measured electrokinetic potential
was converted into zeta potential using Smoluchowski’s formula [20]. Each sample was
run in triplicate.

2.6. Cytotoxicity Test

In vitro cytotoxicity tests of ALNPs (C4, FALNP1, 2, and 3) on A549 cells (ATCC®,
CCL-185™, Manassas, VA, USA) and Lewis lung carcinoma cells (LLC, ATCC®, CRL-
1642™) were conducted using CCK-8 assays. Cell lines were grown in Dulbecco’s modified
Eagle medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA) containing 10%
fetal bovine serum (FBS, Atlas Biologicals, Fort Collins, CO, USA) and 1% antibiotic–
antimycotic solution (ABAM, GeneDireX, Las Vegas City, NV, USA). Grown cells were
seeded and attached to 96-well plates (3 × 103 cells per well) overnight. After the medium
was removed, serum-free DMEM with 1% ABAM and ALNPs with various concentrations
(25, 50, 100, and 250 µg mL−1) were added and cultured for multiple time durations (24,
48, and 72 h for A549 and 8, 16, and 24 h for LLC). To examine cell viability, 10 µL of
CCK-8 (Dojindo Molecular Technologies Inc., Kumamoto, Japan) was added into each
well, followed by incubation for 3 h at 37 ◦C. Subsequently, the absorbance at 450 nm
was measured using a microplate reader (Sunrise™, TECAN Group Ltd., Männedorf,
Switzerland). Cells incubated with DMEM supplemented with 10% FBS and 10% Triton
X-100 (TX, LPS solution, Daejeon, Republic of Korea) were used as positive and negative
controls, respectively. Three replicates were used for each assay. All results were reported
as the mean ± standard deviation (n = 3). Statistical differences among groups were
analyzed using analysis of variance (ANOVA), and multiple t-tests were performed to
compare differences between two groups. A p-value of <0.05 was considered significant.

3. Results and Discussion
3.1. Characteristics of Functionalized Lignin
3.1.1. Lignin Fraction

AL was fractionated via sequential extraction with five different organic solvents,
which were chosen based on several solvent properties such as the Hildebrand solubility
parameter and Hansen solubility parameter. The solvency of selected solvents is given by a
numerical value, the Hildebrand solubility parameter, which is an accurate representation
of the square root of the cohesive energy density of the solvent. On the other hand, the
Hansen solubility parameter utilizes the values of dispersion, polar, and hydrogen-bonding
components of the Hildebrand parameter to quantify solvent–polymer compatibility. The
parameters and properties of each solvent used in this study are presented in Table S2.

The yields of the six fractions (FAL1, 2, 3, 4, 5, and 6) were 8.9, 19.6, 32.5, 4.5, 15.4, and
19.1 wt%, respectively (Table 2 and Figure S1). The number average molecular weights (Mn)
and weight average molecular weights (Mw) of the fractions were determined via GPC. AL
had relatively small sizes and a uniform molecular structure with a Mw of 2880 Da and
a dispersity (Mw/Mn) of 2.6 compared to the LignoBoost kraft lignin with 4580 Da and
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a dispersity of 3.1 [10]. After fractionation, each fraction had a lower Mw/Mn compared
to raw AL. The Mw values of the fractions increased from 1060 Da for FAL1 to 7790 Da
for FAL5 as the fractionation progressed. However, GPC data from FAL6 could not be
obtained because it did not dissolve in THF.

Table 2. The yields of alkaline soda lignin fractions and their GPC information.

Samples Yield (%) Mw Mn Mw/Mn

AL 2880 1130 2.6
FAL1 8.9 1060 610 1.7
FAL2 19.6 1780 1050 1.7
FAL3 32.5 2920 1480 2.0
FAL4 4.5 4990 2420 2.0
FAL5 15.4 7790 1950 4.0
FAL6 19.1 ND * ND ND

* Not dissolved in THF.

Quantitative analysis of functional group contents of the fractionated AL was per-
formed (Table 3), and hydroxyl group regions of 31P NMR spectra are shown in Figure S2.
As the sequential fractionation step progressed, total hydroxyl groups in the fractions de-
creased. Specifically, the amount of phenolic hydroxyl groups decreased from 2.84 mmol g−1

for FAL1 to 0.98 mmol g−1 for FAL5. In addition, the hydroxyl group from the diphenyl
ether structure in FAL4 and 5 disappeared. Only phenolic hydroxyl group content in the
syringyl unit did not show a clear decreasing trend (FAL2 > 1 > 4 > 3 > 5). Aliphatic
hydroxyl group content increased during the fractionation process. However, the lowest
aliphatic hydroxyl content was observed in FAL2, followed by 4 and 3, rather than in
FAL1. No fractions showed aliphatic hydroxyl group content over raw AL. Thus, FAL6,
the insoluble fraction, had a relatively higher free aliphatic hydroxyl group content.

Table 3. Content in hydroxyl groups of fractionated AL quantified by 31P NMR and methoxy group.

Samples

Hydroxyl (mmol g−1)
Methoxy

(mmol g−1)Phenolic
Carboxylic Acids Aliphatic

H a G b S c 4-O-5

AL 0.29 0.91 0.81 0.14 1.31 2.38 3.59
FAL1 0.41 1.12 0.76 0.55 2.05 1.57 3.92
FAL2 0.38 1.11 0.91 0.09 1.41 1.10 3.97
FAL3 0.22 0.75 0.58 0.03 1.12 1.53 3.55
FAL4 0.14 0.60 0.69 ND d 0.67 1.52 3.40
FAL5 0.10 0.46 0.42 ND 0.60 2.01 3.07

a p-hydroxyphenyl unit; b guaiacyl unit; c syringyl unit; d not detected.

1H-13C HSQC spectra were analyzed to determine the structure related to phenyl-
propanoid units and interunit linkages in the fractions. Quantitative measurement of main
interunit linkages in AL, β-aryl ether (β-O-4), resinol (β-β), and phenylcoumaran (β-5), was
performed using total aromatic unit spectra as internal standards [17]. Relative amounts of
main interunit linkages in AL and derived fractions are listed in Table 4; the main signals
in the sidechain and aromatic regions of NMR spectra are shown in Figures S3 and S4,
respectively. In the raw AL spectra, signals of major linkages and aromatic groups were
very weak, implying its very low abundance of cleavable β-O-4, and a highly condensed
molecular structure. There was a strong signal (δC/δH 75.4/3.5) that belonged to the
phenylglycerol structure, which was likely generated from the cleaved nonphenolic β-O-4
ether bonds by NaOH [21]. The amounts of β-O-4, β-β, and β-5 in AL per 100 aromatic
units were 5.8, 5.4, and 2.7, respectively. In the FAL1 and 2 spectra, strong cross signals
of C–H from aromatic moieties were determined, but the signals of C–H from internal
linkages were much weaker than the raw one. Therefore, it could be concluded that these
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light lignin fractions have higher phenolic hydroxyl group content and a highly condensed
oligomer structure. FAL4 and 5 showed the highest amount of β-β and β-O-4 linkages,
respectively, among the lignin fractions. Note that the cross signals of proton and carbon
from FAL4 and 5 were, unfortunately, too weak to predict their molecular structure.

Table 4. Relative amounts of main interunit linkages in AL and its fractions.

Samples

Linkage Amount (per 100 Aromatic Units)
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spectra. The number and weight average molecular weights of a series of methylated
lignins were also determined via GPC.

Quantitative determination of the phenolic hydroxyl group showed that AL was well
methylated (Table S3). After methylation, total phenolic hydroxyl groups significantly
decreased with an increased amount of reacted DMS, from 2.15 mmol g−1 for AL to
0.17 mmol g−1 for MAL6, while carboxylic acid also decreased from 1.31 mmol g−1 for AL
to 0.15 mmol g−1 for MAL6. However, the amount of aliphatic hydroxyl groups slightly
decreased from 2.38 mmol g−1 for AL to 2.35 mmol g−1 for MAL2 and 1.73 mmol g−1 for
MAL6. This indicates that specific methylation of AL was successfully performed.

The Mn and Mw determined via GPC shows that the difference between the Mw value
of AL and MAL0 (heated but non-methylated) was not significant (Table S3 and Figure S5).
The Mw of methylated lignins increased from 3291 Da for MAL1 to 4243 Da for MAL6 as
the degree of methylation increased. In addition, Mw/Mn of methylated lignin ranged
from 2.4 to 3.2, which was not remarkably different from neat AL (2.6).

3.2. Effect of Lignin Characteristics on Nanoparticle Size

The initial lignin concentration before the precipitation process guided the nanopar-
ticle size distribution. The smallest Z-average size (harmonic intensity averaged size)
of 671.9 nm and also the narrowest PDI among ALNP-Cs were obtained at 4 mg mL−1

(Table 5). By contrast, the smallest peak size of 414 nm was obtained at 1 mg mL−1

(Figure 1). However, ALNP-C1 presented the largest Z-average size among all samples
(1903 nm) and a PDI value of 1.0, which is theoretically the highest value. Despite iden-
tifying a clear single peak in the graph, it is hard to dismiss the exceptional result of the
Z-average cumulant analysis of the measured correlation curve of ALNP-C1 because this
could happen when the largest peak is larger than the large cut-off of DLS (e.g., very large
aggregates or dust). Therefore, ALNP-C4, which showed the smallest Z-average size, PDI,
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and the second-smallest peak size, were chosen to be representative nanoparticles in this
study. On the other hand, the peak sizes and their standard deviation both increased as
the lignin concentration increased (R2 = 0.66). But the Z-average sizes and PDI showed a
weak decreasing trend as the predialysis concentration increased due to the outlier peak
size from ALNP-C1 (R2 = 0.29).

Table 5. Size properties of fractionated AL-derived nanoparticles.

Peak Size (nm)
Z-Average
Size (nm) PDI

Peak 1 Intensity
(%) Peak 2 Intensity

(%) Peak 3 Intensity
(%)

AL
nanoparticles
(ALNPs) with
different initial
concentrations

C1 414 100 - - - - 1903 1.000
C2 741 100 - - - - 729.6 0.346
C4 721 100 - - - - 671.9 0.118
C6 840 100 - - - - 959.9 0.381

Fractionated
AL

nanoparticles

FALNP1 953 100 - - - - 1103 0.276
FALNP2 732 100 - - - - 704.6 0.002
FALNP3 733 100 - - - - 796.8 0.253
FALNP4 701 97.0 5313 3.0 - - 740.9 0.244
FALNP5 128 50.5 1241 34.9 4942 14.5 286.9 0.731
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(C) ALNP-C4, and (D) ALNP-C6.

The nanoparticle size distribution was affected by the sequential solvent extraction.
As shown in Table 4, particles derived from low-molecular-weight fractions had larger sizes
than the control group (ALNP-C4) or high-molecular-weight groups. The largest nanopar-
ticles consisted of FAL1 with lower Mw and higher hydroxyl group content. However,
nanoparticles with similar sizes compared to the control were produced from fractions that
had higher Mw and fewer hydroxyl groups (Figure 2). Since THF is exchanged to water
during dialysis, the hydroxyl group and/or carboxylic group in the polymer could interact
with water molecules. Thus, interfacial tension increases [22], nucleation rate decreases [23],
and fewer initial nuclei form [24]. Because of the relatively small number of nuclei, each
nucleus could grow larger until a solute concentration reaches below the equilibrium
saturation concentration. In addition, the high tendency for self-association due to the
strongly interacting surface hydroxyl groups in the fractions is considerable. Meanwhile,
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FALNP4 and 5 had multipeak size distributions. Three particular peaks of FALNP5 had
very low intensity, which hints at varied size and unstable colloidal properties.
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There were no strong correlations between particle size and molecular characteristics
of AL fractions. Specifically, fractions with higher Mw tended to form smaller nanoparticles
(R2 = 0.77). On the other hand, the amounts of carboxylic, phenolic hydroxyl, and total
hydroxyl groups were positively correlated with Z-average size of FALNPs (R2 = 0.67,
0.63, and 0.61, respectively). A negative correlation between the relative amount of β-
O-4 and particle size was also significant (R2 = 0.68). Therefore, it could be assumed
that the hydrogen bond formation between hydroxyl groups encourages nucleation or
condensation during the nanoprecipitation process. However, the aliphatic hydroxyl group
had a low correlation with particle size (R2 = 0.25). The morphologies of ALNPs were
determined using TEM images. The particles had a spherical shape while FALNP5 showed
relatively irregular spherical structures.

The methylation process affected the size distribution of lignin nanoparticles. Both
peak sizes and Z-average sizes decreased by decreasing the content of the phenolic hydroxyl
group and/or molecular weight (Table 6). Although there was no identified remarkable
difference between neat AL and MAL0 structures, the Z-average size difference was
significant (672 and 915 nm, respectively). However, the difference in a single peak of
size between ALNP-C4 and MALNP0 was not meaningful. As shown in Figure 3, larger
nanoparticles consisted of less-methylated lignin with a lower Mw and less-decreased
phenolic hydroxyl group (MALNP0 and 1) content. Simultaneously, particles with a
smaller but multipeak size distribution were obtained from highly methylated lignin
with a higher Mw and largely decreased phenolic hydroxyl group content (MALNP2



Nanomaterials 2021, 11, 1790 9 of 13

and especially 6). This result is in agreement with previous works on the formation of
nanoparticles from lignin fractions that have low hydroxyl group content. It is assumed
that the higher phenolic hydroxyl group content is related to the synthesis of even-sized
lignin nanoparticles.

Table 6. Size properties of methylated AL-derived nanoparticles.

Peak Size (nm) Z-Average Size (nm) PDI
Peak 1 Intensity (%) Peak 2 Intensity (%) Peak 3 Intensity (%)

MALNP0 754 100 - - - - 915.2 1.000
MALNP1 629 100 - - - - 825.5 0.506
MALNP2 519 92.8 138 6.0 1480 1.1 553.5 0.390
MALNP6 586 74.6 87 22.2 1931 3.1 462.6 0.406
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There was a very high correlation between particle size and phenolic hydroxyl group
content of methylated lignins (R2 = 0.95). Total hydroxyl group and carboxylic acid content
also showed a very high or significant correlation with the particle size (R2 = 0.93 and 0.71,
respectively). However, the effect of total hydroxyl group content does not seem meaning-
ful due to the small change in aliphatic hydroxyl group content during the methylation.
Consequently, it could be concluded that the phenolic hydroxyl group content in lignin is
an important factor in nucleation or condensation during the nanoprecipitation process.

3.3. Particle Surface Charge

The zeta potential can be applied to determine electrokinetic potential in colloidal
systems [25]. Zeta potential values are typically in the range of 100 to −100 mV, but
nanoparticles with values >30 or <−30 could be considered to have a high degree of
stability [26]. Lower dispersion zeta potential values promote van der Waals interparticle
attraction and lead to aggregation, coagulation, or flocculation of nanoparticles [26,27].

Zeta potential values for all the ALNPs in this study exceeded −30 mV, which indicates
relatively high-water stability. Predialysis concentration of lignin negatively affected the
zeta potential (R2 = 0.96). The zeta potential value decreased from −42.3 mV for ALNP-C1
to −37.2 mV for ALNP-C6 (Figure 4). The methylation level of lignin hydroxyl groups also
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negatively affected zeta potential from −42.3 mV for MALNP0 to −33.0 mV for MALNP6,
but the correlation (R2 = 0.69) was lower than that of the predialysis concentration.
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In contrast, no significant relationships between zeta potential value and the solvent
extraction process or the size of FALNP were observed. Moreover, FALNP1 showed the
lowest colloidal dispersion stability among the samples, although FAL1 has the highest
content of hydroxyl groups and carboxylic acids, which can give a negatively charged
surface. Since each lignin fraction had a totally different molecular weight and other
characteristics, we assume that the fractions showed different condensation characteristics
with their functional groups during the nanoprecipitation process.

3.4. In Vitro Cell Viability

To determine the biocompatible potential of ALNPs, a CCK-8 assay was carried out on
A549 and LLC cell lines. First, ALNPs exhibited a relatively high cell viability to A549 cell
lines at 25 and 50 µg mL−1 (Figure 5). Specifically, ALNP-C4 showed no significant
cytotoxicity in all concentrations that were tested. However, KLNP-F1 represented a
decreasing trend of cell viability as a function of concentration. At 250 µg mL−1, a severe
decrease of cell viability within 24 h and was observed, and the cell line was nearly
completely dead within 72 h. On the other hand, the antiproliferation effect of FALNP2
and 3 was insignificant. Besides, the A549 cell line culture flourished more in the presence
of FALNP2 and 3 compared to ALNP-C4.

Similar trends of cell cytotoxicity in the case of LLC were observed. ALNPs, except for
FALNP1 at higher concentrations (100 and 250 µg mL−1), showed extremely low cytotoxic-
ity to LLC cell lines at all concentrations tested (Figure 6). FALNP2 and 3 had no cytotoxic
effect even at high concentrations. The cell proliferation effect of FALNP2 and 3 was lower
but comparable to the positive control (data not shown). Therefore, we showed the high
cell viability of ALNPs and the potential of AL as a source for drug delivery systems. Still,
in vivo assays are needed to define the biocompatibility of lignin nanoparticles.
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*** p < 0.001.
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4. Conclusions

Sequential solvent extraction and chemoselective methylation of AL were carried
out to block its phenolic hydroxyl groups and obtain fractions with different chemical
properties or decrease the amount of specific functional groups. These modified lignin
samples were then used to synthesize nano-sized spherical particles. A light weighted
lignin fraction contained higher amounts of total functional groups and condensed struc-
tures. Additionally, FALNPs from the low-molecular-weight AL fractions had larger sizes.
Methylation of lignin phenolic hydroxyl groups followed by synthesis of MALNPs clarified
a high correlation between the phenolic hydroxyl group and average size of the nanoparti-
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cles. Every particle showed comparable and good colloidal stability, while there was a large
size difference between each ALNP. In vitro cell viability tests showed that ALNPs had
very low cytotoxicity (except FALNP1) at high colloidal concentrations, which encourages
the potential use of ALNPs as a drug delivery system.

Since it was determined that lignin nanoparticle size could be controlled by block-
ing specific functional groups and decreasing the interaction between hydroxyl groups,
further applications of lignin-based nanoparticles with ideal sizes is expected. Particle
size-reduction for drug-encapsulated nanoparticles and increasing the size would be ap-
propriate for other industrial uses such as UV blockers, anode materials, absorbents, or
biocidal materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11071790/s1. Figure S1. GPC curves of AL and its fractions by solvent extraction. Figure
S2. 31P NMR spectra of (A) AL, (B) FAL1, (C) FAL2, (D) FAL3, (E) FAL4, and (F) FAL5. Figure S3.
Sidechain regions in the 2D-HSQC NMR spectra of (A) AL, (B) FAL1, (C) FAL2, (D) FAL3, (E) FAL4,
and (F) FAL5; Aα, Cα-Hα in β-O-4; Bα, Cα-Hα in β-β; Cα, Cα-Hα in phenylcoumaran; OMe, C-H
in methoxyls; X, C-H in phenylglycerol. Figure S4. Sidechain regions in the 2D-HSQC NMR spectra
of (A) AL, (B) FAL1, (C) FAL2, (D) FAL3, (E) FAL4, and (F) FAL5; Sn, Cn–Hn in syringyl units; Gn,
Cn–Hn in guaiacyl units; Hn, Cn–Hn in hydroxyphenyl units. Figure S5. GPC curves of raw and
methylated Als. Table S1. Chemical and thermal properties of wheat straw soda lignin (AL). Table S2.
Solubility parameters and related properties of five different solvents used in this study. Table S3.
Changing the content of phenolic hydroxyl groups in methylated AL quantified by 31P NMR and
their GPC information.
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