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Background: Bovine follicular development is regulated by numerous molecular mechanisms and biological
pathways. In this study, we tried to identify differentially expressed genes between largest (F1) and second-largest
follicles (F2), and classify them by global gene expression profiling using a combination of microarray and
quantitative real-time PCR (QPCR) analysis. The follicular status of F1 and F2 were further evaluated in terms of
healthy and atretic conditions by investigating mRNA localization of identified genes.

Methods: Global gene expression profiles of F1 (10.7 +/- 0.7 mm) and F2 (7.8 +/- 0.2 mm) were analyzed by
hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In
addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ
hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol

Results: Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was
composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B
contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed
AMH, CYP19, FSHR, GPX3, PIGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5,
PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and
CYP19 were detected in granulosa cells (GC) of healthy as well as atretic follicles. PIGF was localized in GC and in
the theca layer (TL) of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and
TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC.

Conclusion: We demonstrated that global gene expression profiling of F1 and F2 clearly reflected a difference in
their follicular status. Expression of stage-specific genes in follicles may be closely associated with their growth or
atresia. Several genes identified in this study will provide intriguing candidates for the determination of follicular

Background

The final stage of bovine follicular development occurs
in a wave-like fashion [1,2]. During a wave, increase of
follicle-stimulating hormone (FSH) induces recruitment
of a cohort of follicles beyond 4 mm in diameter and
usually a single follicle is selected as a dominant follicle
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(DF) [3,4]. Although the DF continues to grow by tran-
sition of gonadotropin dependency from FSH to lutei-
nizing hormone (LH) and secretes large quantities of
estradiol (E,), the remaining subordinate follicles (SFs)
cease to grow, then undergo atresia [5]. It is well docu-
mented that increased expression of LH receptor (LHR)
in granulosa cells (GC) and specific changes of intrafolli-
cular factors such as the insulin-like growth factor (IGF)
and inhibin-activin-follistatin systems play a critical role
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in E, production in the DF [6,7]. Therefore, regulatory
mechanisms of follicular development are closely asso-
ciated with complex interactions between follicular local
paracrine/autocrine factors and endocrine hormones.

Increasing evidence using global gene expression
analysis such as a DNA microarray, suppression sub-
tractive hybridization and serial analysis of gene
expression have identified numerous genes in various
aspects of bovine follicular development [8-18]. Some
studies compared the gene expression profiles between
DF and SF around the time of follicular selection.
They showed that DF up-regulates genes regulating E,
synthesis, anti-apoptosis, cell proliferation and gene
transcription. Conversely, SF enhanced the expression
of genes associated with pro-apoptosis and cell death
compared with the DF [8,9,13,14]. Recent studies
found that 93 mostly novel genes were differently
expressed in the GC of newly selected DF compared
with SF and/or growing cohort follicles whereas most
of these genes were down-regulated in the GC of preo-
vulatory follicles during final maturation before the LH
surge [15,17]. Growth of a DF during 2-5.5 days fol-
lowing follicular wave emergence was associated with a
decrease in genes encoding proliferation and pro-apop-
totic factors and an increase in genes regulating anti-
apoptotic factors [12]. An increase in follicular dia-
meter during follicular growth was accompanied by
alteration of gene expression regulating some growth
factors and cytokines [16,18]. Ndiaye et al. identified a
subset of novel genes down-regulated in preovulatory
follicles after human chorionic gonadotropin (hCG) sti-
mulation compared with DF, which may contribute to
ovulation and luteinization [11].

These previous studies lead us to suggest that gene
expression profiles in individual follicles reflect their
developmental status, thus each follicle can be classified
by differences in gene expression profiles. On the other
hand, details of the genetic processes and biological
pathways regulating bovine follicular development still
remain to be elucidated. We consider that investigating
the global gene expression of follicles after selection can
help to understand the molecular mechanisms responsi-
ble for the regulation and control of follicular develop-
ment and atresia. Therefore, in this study, we tried to
classify the largest (F1) and second-largest (F2) follicles
according to differences in gene expression profiles and
to identify differentially expressed genes between the
groups using a combination of microarray analysis and
quantitative real-time PCR (QPCR) analysis. In addition,
spatial expression profiles of several identified genes
were investigated using in situ hybridization in healthy
and atretic follicles classified based on follicular fluid
(FF) concentration of steroids.
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Methods

Experiment 1: classification of F1 and F2 and
identification of genes by microarray analysis and QPCR
analysis

Sample collection and RNA extraction

Paired ovaries were obtained from four pregnant Japa-
nese Black cows in the institute ranch less than 10 min
after slaughtering. These cows were pregnant and
slaughtered for another study. Both F1 and F2 were dis-
sected from the ovaries. Then, the surrounding stroma
and theca externa were removed from the follicular
walls. We collected three F1 and three F2 from four
cows because two cows had both F1 and F2 collected
whereas one cow had only a F1 collected and another
cow had only a F2 collected. The follicles were snap-fro-
zen and stored at -80°C until RNA extraction. Total
RNA from the follicular wall (i.e., granulosa plus theca
interna) was extracted from each follicle using ISOGEN
(NipponGene, Tokyo, Japan) according to the manufac-
turer’s instructions. All procedures for animal experi-
ments were carried out in accordance with guidelines
approved by the Animal Ethics Committee of the
National Institute of Agrobiological Sciences for the use
of animals.

Microarray analysis

A custom-made bovine oligonucleotide microarray fabri-
cated by Agilent Technologies (Santa Clara, CA, USA)
was used in this study. Sixty-mer nucleotide probes for
customized microarray were synthesized on a glass slide.
The annotated bovine oligonucleotide array represented
10263 sequences 4466 of which were known bovine
genes, 5697 were unknown sequences and possible can-
didates for novel bovine genes, and 100 internal
references.

We performed one-color microarray using five follicles
(three F1 and two F2). Fluorescence-labeled (Cy3) cRNA
probes were prepared from 150-300 ng of total RNA of
each follicle using a Low RNA Input Linear Amplifica-
tion Kit (Agilent Technologies). Labeled cRNA probes
(750 ng each) were hybridized to the customized micro-
array in hybridization buffer (Gene Expression Hybridi-
zation Kit, Agilent Technologies) at 60°C for 17 h. After
hybridization, the arrays were washed with 6 x SSC,
0.005% Triton X-102 at room temperature for 10 min,
followed by 5-min washes in 0.1 x SSC, 0.005% Triton
X-102 at 4°C. Hybridized arrays were blow dried with
N, gas and scanned using an Agilent Microarray Scan-
ner (Agilent Technologies), and Feature Extraction ver.
9.1 (Agilent Technologies) was used for image analysis
and data extraction. Gene expression datasets were nor-
malized using the median of the signal intensity for 100
GAPDH genes on a microarray platform as internal
control.
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After normalization, 3308 genes were left to use for
further analysis. The relative abundance of individual
genes between follicles was calculated by dividing the
normalized value of the genes between each follicle. We
used the normalized microarray data of genes that
showed an expression level of more than 20-fold
between at least two follicles for subsequent hierarchical
cluster analysis. The data were transformed log, values
and hierarchical cluster analysis was performed using
the TIGR MultiExperiment Viewer 4.0 (MeV 4.0) soft-
ware program [19]. Two parameters (average linkage
and cosine correlation) were selected for constructing
the hierarchical tree. Compliance with Minimum Infor-
mation About a Microarray Experiment (MIAME) [20]
was assured by depositing all the data in the Gene
Expression Omnibus (GEO) repository [21]. The GEO
accession numbers are as follows. Platform: GPL9136;
Samples: GSM453634, GSM453635, GSM453636,
GSM453637 and GSM453638; Series: GSE18145.
Quantitative real-time RT-PCR analysis
To validate the results of microarray analysis, we con-
firmed mRNA expression of 16 representative genes
using QPCR analysis. All six follicles were used in
QPCR analysis. The procedures for QPCR were pre-
viously described [22]. Briefly, single-strand cDNA was
reverse-transcribed from 50 ng of total RNA using Mul-
tiScribe™ reverse transcriptase with a random primer,
dNTP mixture, MgCl, and RNase inhibitor (Applied
Biosystems, Foster City, CA, USA). The reverse tran-
scription cycle consisted of 10 min annealing at 25°C,
30 min cDNA synthesis at 48°C and 5 min inactivation
at 95°C. The primers were designed using the Primer
Express computer software program (Applied Biosys-
tems) based on the bovine sequences. The primer
sequences for each gene are given in Table 1. Each
QPCR reaction (25 pl) contained 1 pl cDNA template,
0.5 pl forward primer (20 uM), 0.5 pl reverse primer (20
uM), 12.5 pl Power SYBR® Green PCR Master Mix
(Applied Biosystems) and 10.5 pl nuclease-free water.
The thermal cycling conditions included one cycle at
50°C for 2 min, one cycle at 95°C for 10 min, and 40
cycles at 95°C for 15 s and 60°C for 1 min. Each cDNA
template was analyzed for quantitation in duplicate.
QPCR and the resulting relative increase in reporter
fluorescent dye emission were monitored in real time
using an Mx3000P QPCR system (Stratagene, La Jolla,
CA, USA). The relative difference in the initial amount
of each mRNA species (or cDNA) was determined by
comparing the cycle threshold values. To quantify the
mRNA concentrations, standard curves for each gene
were generated by serial dilution of the plasmid contain-
ing its cDNA. The melting curve for detecting the SYBR
Green-based objective amplicon were confirmed because
SYBR Green also detects double-stranded DNA
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including primer dimers, contaminating DNA and PCR
products from misannealed primers. Contaminating
DNA or primer dimers appear as a peak separate from
the desired amplicon peak.

Experiment 2: localization of characteristic genes
identified in experiment 1 in healthy and atretic follicles
using in situ hybridization
Sample collection and storage
Ovaries containing follicles more than 8 mm in dia-
meter were obtained from Japanese Black cows at local
slaughterhouse. We used only follicles which have a
transparent follicular wall and fluid and did not show
any aspect of cystic follicles. Eleven follicles were col-
lected and 200 pl of FF was aspirated from each follicle
by a syringe fitted with a 27G needle. The FF was snap-
frozen and stored at -30°C until hormone determina-
tions. The follicles were dissected from the ovaries and
fixed in 10% formalin, embedded in paraffin wax, and
stored at 4°C until in situ hybridization.
Steroid hormone determinations
Concentrations of E; and P, in the FF samples were deter-
mined directly in duplicate using a time-resolved fluor-
oimmunoasssay (TR-FIA). The TR-FIA for E, and P, was
performed as previously described by our laboratory
[23,24]. The FF samples were diluted to 100-, 2000- and
5000-fold for E, determination and 25-fold for P, determi-
nation using charcoal-treated plasma (collected from adult
Japanese-Black cows). Ranges of the standard curves were
5-200 pg/ml for E, and 0.33-36 ng/ml for P,. The intra-
and interassay coefficients of variation were 8.2 and 11.4%
for E,, and 8.5 and 10.5% for Py, respectively.
In situ hybridization
We classified follicles into two groups based on relative
levels of FF concentrations of E; and P, (E,/P4 > 1:
healthy; E,/P, < 1: atretic). Six representative genes dif-
ferently expressed between F1 and F2 in experiment 1
were selected for in situ hybridyzation: anti-Mullerian
hormone (AMH), cytochrome P450, family XIX
(CYP19), growth arrest and DNA-damage-inducible,
alpha (GADD45A), IGF binding protein 5 (IGFBP5), pla-
cental growth factor (P/GF) and thrombospondin 2
(TSP2). In these genes, CYPI9 and IGFBP5 were
selected as markers of healthy or atretic follicles since
mRNA expression of CYPI9 and IGFBP5 were up-regu-
lated in the bovine DF and SF, respectively [25,26].
Digoxigenin (DIG)-labeled antisense and sense cRNA
probes were prepared as previously described [27,28].
For hybridization, follicles were sectioned into 7 pm-
thick sections. We performed in situ hybridization using
an automated Ventana HX System Discovery with a
RiboMapKit and a BlueMapKit (Roche Diagnostics,
Basel, Switzerland) as previously described by our
laboratory [27,28]. Briefly, the sections were hybridized
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Table 1 Details of the primers used for quantitative real-time RT-PCR analysis
Gene name GeneBank accession number Primer Sequences Position
AMH NM_173890 Forward 5-ACACCGGCAAGCTCCTCAT-3' 1647-1665
Reverse 5-CACCATGTTTGGGACGTGG-3' 1714-1696
ccL2 NM_174006 Forward 5'-CGCTCAGCCAGATGCAATTA-3 110-129
Reverse 5-GCCTCTGCATGGAGATCTTCTT-3' 186-165
CYP19 NM_174305 Forward 5-TCCATGGGATTTTCCAGGC-3' 2050-2068
Reverse 5-TGGTGGCTTGTCTTTTCCAAC-3' 2123-2103
FSHR NM_174061 Forward 5-AATCTACCTGCTGCTCATAGCCTC-3' 1300-1323
Reverse 5-TTTGCCAGTCGATGGCATAG-3' 1376-1357
GADDA45A NM_001034247 Forward 5-CCGCATTCATCACAGTGGAA-3' 592-611
Reverse 5-CATCACCGTTCAGGGAGATTAATC-3' 704-681
GPX3 NM_174077 Forward 5-GCTTCCCCTGCAACCAATT-3' 357-375
Reverse 5-TCGAACATACTTGAGGGTGGCT-3' 433-412
IGFBPS NM_001105327 Forward 5-ACTGTGACCGCAAAGGGTTCT-3' 682-702
Reverse 5-TTCATCCCGTACTTGTCCACG-3' 778-758
PIGF NM_173950 Forward 5-TGAATGACTCACTCCCTCCATG-3" 877-898
Reverse 5-GGTCTGTCTTCTTTCTCTCACGTTC-3 957-933
PLAUR NM_174423 Forward 5-CGCGGCCCTATGAATCAAT-3' 730-748
Reverse 5-CTGATGGTGTAGCTTGGGTTCC-3' 800-779
PLA2G1B NM_174646 Forward 5-GGCCTTCATCTGCAACTGTGA-3' 358-378
Reverse 5-TGTGCTCCTTGTTGTATGGCA-3' 428-408
SCD NM_173959 Forward 5-ATTCCCGACGTGGCTTTTTC-3' 659-678
Reverse S-TTCTTTGACAGCTGGGTGTTTG-3' 729-708
SELP NM_174183 Forward 5-GTCAAGCAGGGCCACTGACTAT-3' 1700-1720
Reverse 5-TCACTAAGCCTGTTGTACCAGCTG-3' 203-2182
SPP1 NM_174187 Forward 5'-AGCCCTGAGCAAACAGACGAT-3" 304-324
Reverse 5-GCGTCGTCGGAGTCATTAGAGT-3' 380-359
TIMP1 NM_174471 Forward 5-CTATGCTGCTGGTTGTGAGGAAT-3' 508-530
Reverse 5-TGAGTGTCGCTCTGCAGTTTG-3' 582-562
TRB2 NM_178317 Forward 5-GACCTCAAGCTTCGGAAATTCA-3' 525-546
Reverse 5-CGTCATCTCCCCGCAGAATAT-3 621-601
TSP2 NM_176872 Forward 5-GGAAAACAAGTCATGGCGGA-3' 3845-3864
Reverse 5-TTGAGAGAAGACAAACAGACCCAG-3' 3928-3902
GAPDH U85042 Forward 5-ACCCAGAAGACTGTGGATGG-3' 444-463
Reverse 5-CAACAGACACGTTGGGAGTG-3' 621-602

with DIG-labeled probes in RiboHybe (Roche Diagnos-
tics) hybridization solution at 65°C (PIGF) or 61°C
(AMH, CYP19, GADD45A, IGFBP5 and TSP2) for 6
hours, then washed for 3 x 6 min in RiboWash (Roche
Diagnostics) at 65°C and fixed in RiboFix (Roche Diag-
nostics) at 37°C, 10 min. The hybridization signals were
detected with a rabbit polyclonal anti-digoxin antibody
HRP conjugate (Dako Cytomation, Carpinteria, CA,
USA) using an AmpMapKit (Roche Diagnostics). The
hybridized slides were observed with a Leica DMRE HC
microscope (Leica Microsystems, Wetzlar, Germany)
and a Nikon Digital Sight DS-Fil-L2 (Nikon, Tokyo,
Japan).

Statistical analysis

In experiment 1, the expression ratio of each gene to
GAPDH mRNA was calculated to adjust for variations

in the QPCR reaction. The follicular diameter and the
QPCR data in experiment 1 and concentrations of E,
and P, and E,/P, ratio in FF in experiment 2 were ana-
lyzed by Mann-Whitney’s U test. Results were presented
as the mean + SEM. Statistical significance was consid-
ered to be at P < 0.05.

Results

Experiment 1: classification of F1 and F2 and
identification of genes by microarray analysis and QPCR
analysis

Mean diameter of F1 and F2 were 10.7 £ 0.7 and 7.8 +
0.2 mm, respectively (P < 0.05).

Hierarchical cluster analysis of microarray data

The expression level of 76 genes was enhanced between
at least two follicles by more than 20-fold. Using the
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microarray data of these 76 genes, we performed a hier-
archical cluster analysis and constructed a cluster heat
map (Figure 1). As can be seen from the dendrogram of
the sample axis, clustering analysis distinctly separated
the five follicles into two clusters (A and B) based on
their microarray expression profiles. Cluster A included
two follicles that were both F2, whereas cluster B con-
tained the remaining three follicles that were all F1.
Cluster analysis also identified two major clusters in the
gene axis. One cluster contained 31 genes that were
relatively highly expressed in cluster A, while the other
contained 45 genes that were relatively highly expressed
in cluster B. The details of highly expressed genes in
clusters A and B are listed in Table 2 and 3,
respectively.

Quantitative PCR analysis of representative highly
expressed genes in F1 and F2

Figure 2 shows the results of QPCR analysis of the eight
representative genes that were highly expressed in F2
(cluster A) compared with F1 (cluster B) in microarray
analysis. Messenger RNA expression for chemokine
ligand 2 (CCL2), GADD45A, IGFBP5, plasminogen acti-
vator urokinase receptor (PLAUR), secreted phospho-
protein 1 (SPP1), selectin P (SELP), tissue inhibitor of
matrix metalloprotease-1 (TIMPI) and TSP2 was greater
in the F2 than in the F1 (P < 0.05). The results of
QPCR analysis of the eight representative genes that
were highly expressed in the F1 as compared with the
F2 in microarray analysis are shown in Figure 3. The
expression of AMH, CYPI19, FSHR, glutathione peroxi-
dase 3 (GPX3), PIGF, phospholipase A2 group 1B
(PLA2G1B), stearoyl-CoA desaturase (SCD) and tribbles
homolog 2 (TRB2) mRNA was greater in the F1 than in
the F2 (P < 0.05).

Experiment 2: localization of characteristic genes
identified in experiment 1 in healthy and atretic follicles
using in situ hybridization

Follicular fluid concentrations of E, and P, in follicles

We classified follicles into healthy or atretic based on
the relative concentrations of E, and P, in FF (healthy:
E,/P, ratio =1, atretic: E,/P, ratio <1). From a total of
11 follicles, eight were categorized into healthy while
the other three were atretic. Table 4 shows the charac-
teristics of the follicles used in experiment 2. Healthy
follicles had higher E, and lower P, concentrations in
FF than atretic follicles. The E,/P, ratio in FF was sig-
nificantly higher in healthy follicles than in atretic
follicles.

In situ hybridization of representative genes identified in
experiment 1

Figure 4 shows mRNA localization for GADD45A,
IGFBP5 and TSP2 in healthy and atretic follicles by in
situ hybridization. These genes were highly expressed in
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Cluster A Cluster B

Second largest 1
Second largest 2

Largest 2
Largest 1
Largest 3

SLCI9A14
accn

PTHLH
TLL2

-3.0 0.0 3.0
Min Max

Figure 1 Hierarchical cluster analysis of 76 differentially
expressed genes in largest (F1) and second-largest follicles
(F2). These genes were enhanced between at least two follicles by
more than 20-fold. Red scale indicates relative higher expression
level and green scale indicates relative lower expression level. The
expression levels were transformed to log, values. Dendrograms of
sample axis (above matrix) and gene axis (to the left of matrix)
represent overall similarities in gene expression profiles. Five follicles
were classified into two major clusters (A and B). The follicles
divided into cluster A were all F2 and the follicles divided into
cluster B were all F1. The cluster A was characterized by highly
expression of 31 genes, whereas the cluster B was predominately
expressed 45 genes.
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Table 2 List of differentially expressed genes in cluster A as compared with cluster B.

Accession No. Gene symbol Gene name

Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1

Solute carrier family 1 (neutral amino acid transporter), member 5

Similar to ATP-binding cassette sub-family G member 1 (ABCG1), mRNA.

NM_001101080 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1
NM_206843 AGOUTI AGOUTI protein

NM_001098982 CCDC80 Coiled-coil domain containing 80
NM_174006 CcCL2 Chemokine (C-C motif) ligand 2
NM_001008670 CRABP2 Cellular retinoic acid binding protein 2
NM_174290 CRYAB Crystallin, alpha B

NM_001034247 GADD45A Growth arrest and DNA-damage-inducible, alpha
NM_001077112 GSTA3 Glutathione S-transferase, alpha 3
NM_001105327 IGFBP5 Insulin-like growth factor binding protein 5
NM_174357 ILTRN Interleukin 1 receptor antagonist
NM_001033610 KRT8 Keratin 8

NM_001001138 LOC407171 Fc gamma 2 receptor

NM_174384 LOXL4 Lysyl oxidase-like 4

NM_174132 OLR1 Oxidized low density lipoprotein (lectin-like) receptor 1
NM_176855 OXT Oxytocin

NM_001101883 PDK4 Pyruvate dehydrogenase kinase, isozyme 4
NM_174141 PENK Proenkephalin

NM_174423 PLAUR Plasminogen activator, urokinase receptor
NM_001034681 RTKN Rhotekin

NM_174183 SELP Selectin P

NM_174137 SERPINE1

NM_001075764 SFRP4 Secreted frizzled-related protein 4
NM_174601 SLCTAS

NM_174187 SPP1 Secreted phosphoprotein 1

NM_003254 TIMP1 TIMP metallopeptidase inhibitor 1
NM_176872 TSP2 Thrombospondin 2

AW430112 Transcription factor B1, mitochondrial
BE721140 Transcribed locus

BP101259 Caldesmon, smooth muscle

XM_587930

XM_869699

Similar to tumor necrosis factor receptor superfamily, member 12A

F2 than in F1 in microarray and QPCR analysis of
experiment 1. IGFBP5 mRNA was localized in the GC
and theca layer (TL) of atretic follicles but not in
healthy follicles (Figure 4E, F, G and 4H). GADD45A
(Figure 4A, B, C and 4D) and TSP2 (Figure 41, ], K and
4L) mRNA were found in both GC and TL of atretic
follicles but they were expressed in only GC of healthy
follicles. No significant signals were detected with any
sense probes (Figure 4B, D, F, H, ] and 4L).

Localization of AMH, CYP19 and PIGF mRNA in
healthy and atretic follicles are shown in Figure 5. These
genes were expressed more in the F1 than in the F2 in
experiment 1. AMH (Figure. 5A, B, C and 5D) and
CYPI19 (Figure. 5E, F, G and 5H) mRNA was localized
in GC of healthy as well as atretic follicles. PIGF mRNA
was found in GC and TL of only healthy follicles but
not atretic follicles (Figure. 5, J, K and 5L). No signifi-
cant signals were detected with any sense probes (Fig-
ure. 5B, D, F, H, ] and 5L).

Discussion

In this study, as expected, hierarchical cluster analysis of
the microarray data classified F1 and F2 according to dif-
ferences in gene expression profiles. In each follicular
group, characteristic genes determining their develop-
mental status were expressed. The F1 showed greater
expression of genes responsible for enhancement of folli-
cular E, production than the F2. These genes were gona-
dotropin receptor (FSHR), steroidogenic enzymes
(CYP17, CYP19 and HSD17B1) and inhibin-activin-follis-
tatin system (INHA, INHBA and FST). It is well demon-
strated that mRNA expression for FSHR, CYP17, CYPI9,
INHA and INHBA increases with the progress of bovine
follicular development and is greater in DF than SF
[8,12,29]. On the other hand, the F2 had greater expres-
sion of IGFBP5 mRNA than the F1. IGFBP5 mRNA
expression dramatically increased in bovine atretic folli-
cles compared with the DF [26]. Intrafollicular levels of
IGEBP proteolytic activity and IGFBPs gene expression
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Table 3 List of differentially expressed genes in cluster B as compared with cluster A.

Accession No. Gene symbol Gene name

NM_173890 AMH Anti-Mullerian hormone

NM_174518 CITED1 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 1
NM_174304 CYP17 Cytochrome P450, subfamily XVII

NM_174305 CYP19 Cytochrome P450, family XIX, aromatase

NM_001034410 CXCL14 Chemokine (C-X-C motif) ligand 14

NM_182786 FOS V-fos FBJ murine osteosarcoma viral oncogene homolog

NM_174061 FSHR Follicle stimulating hormone receptor

NM_175801 FST Follistatin

NM_001083674 GCLC Glutamate-cysteine ligase, catalytic subunit

NM_174077 GPX3 Glutathione peroxidase 3

NM_174546 GUCA1TA guanylate cyclase activator 1A (retina)

NM_001102365 HSD17B1 Hydroxysteroid (17-beta) dehydrogenase 1

NM_174555 IGFBP2 Insulin-like growth factor binding protein 2, 36 kDa

NM_174094 INHA Inhibin, alpha

NM_174363 INHBA Inhibin, beta A (activin A, activin AB alpha polypeptide)

NM_173950 PIGF Placental growth factor

NM_174646 PLA2G1B Phospholipase A2, group IB (pancreas)

NM_174753 PTHLH Parathyroid hormone-like hormone

NM_173957 RGN Regucalcin (senescence marker protein-30)

NM_173959 SCD Stearoyl-CoA desaturase (delta-9-desaturase)

NM_174670 SERPINF2 Serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 2
NM_001098036 SLC39A14 Solute carrier family 39 (zinc transporter), member 14

NM_001025326 SRGN Serglycin

NM_001076470 TMEM20 Transmembrane protein 20

NM_001007813 TNFAIP6 Tumor necrosis factor, alpha-induced protein 6

NM_178317 TRB2 TRB-2 protein

AW315959 13940 MARC 4BOV Bos taurus cDNA 5, mRNA sequence.

AW325368 16365 MARC 4BOV Bos taurus cDNA 5, mRNA sequence.

BE684800 186519 MARC 4BOV Bos taurus cDNA 5, mRNA sequence.

BI536463 393463 MARC 4BOV Bos taurus cDNA 5, mRNA sequence

BI536468 393469 MARC 4BOV Bos taurus cDNA 5, mRNA sequence.

BI537443 397313 MARC 4BOV Bos taurus cDNA 5, mRNA sequence.

BP102158 Transcribed locus

BP103904 BP103904 ORCS bovine liver cDNA Bos taurus cDNA clone ORCS25139 3, mRNA sequence.
BP104736 BP104736 ORCS bovine liver cDNA Bos taurus cDNA clone ORCS26135 3, mRNA sequence.
BP105513 BP105513 ORCS bovine liver cDNA Bos taurus cDNA clone ORCS27141 3, mRNA sequence.
BP107839 BP107839 ORCS bovine utero-placenta cDNA Bos taurus cDNA clone ORCS11248 3, mRNA sequence.
BP108716 Isolate UoG-BovSAGE-UK2 unknown mRNA

BP110155 Testis derived transcript (3 LIM domains)

BP110180 Transcribed locus

BP110819 BP110819 ORCS bovine utero-placenta cDNA Bos taurus cDNA clone ORCS11012 5, mRNA sequence.
BP111150 BP111150 ORCS bovine utero-placenta cDNA Bos taurus cDNA clone ORCS11443 5, mRNA sequence.
XM_614289 Similar to glucocorticoid induced transcript 1 (GLCCIT), mRNA.

XM_864694 Similar to tolloid-like 2, transcript variant 2 (TLL2), mRNA.

are important for bioavailability of free IGF within the
follicle and play a crucial role for determining follicular
dominance and fate [7,30]. Therefore, we evaluated the
F1 were selected DF and the F2 were unselected SF.

Our evaluation of follicular status was confirmed to
investigate CYP19 and IGFBP5 mRNA localization in
healthy and atretic follicles in experiment 2 using in situ

hybridization. CYP19 mRNA was abundantly expressed
in healthy follicles but it was also expressed in atretic
follicles while /IGFBP5 mRNA was detected only in atre-
tic follicles. Both CYP19 and IGFBP5 mRNA is hormon-
ally regulated in bovine follicular cells [31-34], in
addition, in situ hybridization is not quantitative and
not be as sensitive as QPCR. Thus, small amounts of
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Figure 2 QPCR analysis of representative eight genes (CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2) in F1 and F2.
These genes were highly expressed in F2 (cluster A) compared with F1 (cluster B) in microarray analysis. The expression of mRNA was
normalized to the expression of GAPDH measured in the same RNA preparation. The black bar and the white bar indicate the F1 and the F2,
respectively. Data are shown as the mean + SEM. Different letters denote significant differences (P < 0.05).

CYPI19 and IGFBP5 mRNA may be detected or regu-
lated in atretic and healthy follicles, respectively. Since
we did not perform sample collection at a specific phase
of follicular wave in experiment 1, detailed growth pro-
files of the follicles we used were unclear. However, our
results demonstrate that randomly collected follicles can
be divided into several groups by similarities of gene
expression profiles among the follicles and suggest that
gene expression profiles of examined follicles are closely
associated with their development status.

Confirmation of microarray data by QPCR analysis
successfully identified a set of genes differentially
expressed between the F1 and F2. In addition, possible
involvement of these genes in follicular development
and/or atresia was further demonstrated to investigate
mRNA localization in healthy and atretic follicles. The
F1 showed greater expression of genes involved in folli-
cular growth and survivability (AMH, PLA2GI1B, SCD2
and TRB2) than the F2. High expression of these genes
may be closely associated with the establishment and
maintenance of follicular dominance. Although the
functional role of AMH in antral follicle development is
poorly understood, recent studies showed that both
intrafollicular AMH concentration and AMH mRNA
expression were highest in small antral follicles and then

decreased with follicular growth, suggesting the involve-
ment of AMH in bovine follicular recruitment and/or
selection [16,35,36]. A recent study showed a significant
decrease of AMH mRNA expression in late atretic folli-
cles compared with healthy follicles [36], which is con-
sistent with our present result. Furthermore, in
agreement with previous studies [16,37], our in situ
hybridization study showed that AMH mRNA was loca-
lized in only GC. High expression and clear localization
of AMH mRNA in the GC of healthy large follicles
implies that this growth factor has a plausible effect on
the development of DF after follicular selection as well
as recruitment.

PLA2 enzymes including PLA2G1B hydrolyze fatty
acids from the sn-2 position of phospholipids with con-
comitant formation of lysophospholipids, which serve as
precursor for lipid mediators such as lysophosphatidic
acid (LPA) [38,39]. Released LPA has diverse biological
activities including cell proliferation and differentiation,
suppression of apoptosis and cytoskeleton modulation in
reproductive tissues [39]. Because Diouf et al. reported
that PLA2G1B mRNA expression in the GC of bovine
preovulatory follicle decreased after hCG injection [40],
PLA2G1B may mainly contribute to generation of LPA
during DF growth before the LH surge.
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Figure 3 QPCR analysis of representative eight genes (AMH, CYP19, FSHR, GPX3, PIGF, PLA2G1B, SCD and TRB2) in F1 and F2. These
genes were highly expressed in F1 (cluster B) compared with F2 (cluster A) in microarray analysis. The expression of mRNA was normalized to
the expression of GAPDH measured in the same RNA preparation. The black bar and the white bar indicate the F1 and the F2, respectively. Data
are shown as the mean + SEM. Different letters denote significant differences (P < 0.05).
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SCD is a rate-limiting enzyme that catalyzes the
synthesis of monounsaturated fatty acids, mainly palmi-
tic and oleic acid [41]. Consistent with our result, SCD
mRNA expression in bovine follicles was found to be
highest in GC of DF than in cohort follicles before
selection or SF [11,17]. Expression of SCD2 is hormon-
ally regulated during follicular development because
both SCD2 mRNA and protein expression in rat large
follicles were stimulated by gonadotropin and IGF-I
treatment [42]. Increase of monounsaturated acids
synthesize by SCD2 activation during DF growth may be
required to maintain membrane fluidity [43] and a
major lipid reserve of oocytes [44].

Members of the TRB family including TRB2 interact
and modulate the activity of mitogen-activated protein
kinase (MAPK) which regulates cell proliferation,

Table 4 Follicular fluid concentrations of estradiol (E,)
and progesterone (P;) in examined follicles used in
experiment 2.

Follicle E, (ng/ml) P4 (ng/ml) E,/P4 ratio
Healthy 180.0 + 449 159 + 153 43 +08
Atretic 414 + 53* 387.7 = 121.7% 0.1 £0.1%

Values are mean + SEM
* P < 0.05 vs. healthy follicle

differentiation, apoptosis and survival [45]. These MAPK
cascade protein levels were greater in DF than in SF
[46]. In addition, it has been reported that TRB2 mRNA
was constantly expressed between bovine small follicles
and DF [11]. These studies and our present result sug-
gest the potential role of TRB2 in the regulation of
MAPK cascades in the growing DF.

The F2 are characterized by high expression of the
genes involved in immune reaction (CCL2, SELP and
SPPI). In bovine follicles, expression of CCL2 and SPP1
mRNAs and SELP protein was up-regulated in associa-
tion with follicular development and ovulation
[16,18,47]. Our results raise the possibility that these
immune-related genes may be involved in bovine follicu-
lar atresia as well as follicular development and ovula-
tion. Both CCL2 and SELP mediate induction of
leukocyte emigration into extravascular inflammatory
sites [48]. Although SPP1, also known as osteopontin,
has diverse physiological functions, one of its potent
actions is recruitment and retention of macrophages
and T cells to inflamed sites [49]. Since number of leu-
kocytes, lymphocytes and activated macrophages are
increased in atretic follicles [50], CCL2, SELP and SPP1
participate in the regulation of inflammatory processes
during follicular atresia to attract white blood cells.
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Figure 4 Localization of GADD45A, IGFBP5 and TSP2 mRNA in healthy and atretic follicles. These genes were expressed more in F2 than
in F1 in QPCR analysis. (A, C, E, G, | and K) DIG-labeled anti-sense cRNA probes were used. (B, D, F, H, J and L) DIG-labeled sense cRNA probes
were used. Seven-micrometer sections of bovine follicles were hybridized with each probe. GADD45A (A, B, C and D) and TSP2 (, J, K'and L)
mRNA were found in both granulosa cells (GC) and theca layer (TL) of atretic follicle, whereas it was localized in only GC of healthy follicle.
IGFBP5 mRNA (E, F, G and H) was localized in GC and TL of atretic follicle but not found in healthy follicle. Scale bar = 20 pym.
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The F2 are also characterized by high expression of
genes regulating tissue remodeling (TIMPI and
PLAUR). Both plasminogen activator (PA)-plasmin and
matrix metalloproteinase (MMP) systems play a crucial
role in the degradation and remodeling of extracellular
matrix associated with follicular development, ovulation
and atresia [51]. Urokinase PA (uPA) receptor is a speci-
fic cell surface receptor for uPA and its principal role is
to localize pericellular plasmin activity to induce extra-
cellular matrix degradation [52]. A previous study
showed that there was no difference in mRNA expres-
sion levels of uPA between non-atretic and atretic
bovine follicles, whereas atretic follicles had lower FF
protein level and mRNA expression of a PA inhibitor
and higher FF plasmin activity than non-atretic follicles
[53]. Therefore, the follicular PA-plasmin system may be
primarily regulated by changes in their receptors and
inhibitors’ expressions. TIMP-1 is an intrinsic inhibitor
of MMPs and preferentially binds to MMP-9 [54]. A
previous study demonstrated that MMP-9 proenzyme
(proMMP-9) protein in FF was detected only in atretic
follicles but not in healthy follicles in cattle [55]. Atretic

follicles may balance MMPs and TIMP-1 in response to
an increase in proMMP-9 to control extracellular matrix
degradation by MMP-9.

In the present study, we identified differential expres-
sion of two anti-apoptosis factors (GADD45A and
GPX3) between the groups. Expression of GADD45A
mRNA was greater in the F2 than in the F1. GADD45A
controls cell cycle arrest, apoptosis induction and DNA
damage repair in response to DNA damaging agents
and growth arrest signals of genotoxic stress [56]. Our
result implies that the atretic follicles suffered more
severe DNA damage than healthy follicles. Indeed, we
found in experiment 2 that the atretic follicles expressed
GADD45A mRNA in both GC and TL whereas the
healthy follicles expressed it only in GC. This result sup-
ports our microarray result and suggests an increase in
the requirement of GADD45A activity for progression
of apoptotic cell death in GC and TC during follicular
atresia. On the other hand, GPX3 mRNA was found to
be more greatly expressed in the F1 than in the F2. Glu-
tathione peroxidase protects cells against oxidative
damage to catalyze the reduction of free hydrogen
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Figure 5 Localization of AMH, CYP19 and PIGF mRNA in healthy and atretic follicles. These genes were expressed more in F1 than in F2 in
QPCR analysis. (A, C, E, G, I and K) DIG-labeled anti-sense cRNA probes were used. (B, D, F, H, J and L) DIG-labeled sense cRNA probes were used.
Seven-micrometer sections of bovine follicles were hybridized with each probe. AMH (A, B, C and D) and CYP19 (E, F, G and H) mRNA was

localized in granulosa cells (GC) of healthy as well as atretic follicles. PIGF mRNA (|, J, K and L) was found in GC and theca layer of healthy follicle

but not atretic follicle. Scale bar = 20 um.

peroxide and other hydroperoxides [57]. High oxidative
stress can trigger apoptosis of follicular cells and induce
atresia [58]. In cultured swine GC, GPX3 mRNA expres-
sion was upregulated by FSH treatment [59]. Thus
GPX3 could prevent cell apoptosis from oxidative stress
during growth of the healthy follicles. It is likely that fol-
licular oxidative stress-response enzymes are expressed
in a stage-dependent manner since mRNA expression of
other anti-oxidative stress enzymes in bovine GC was
increased in atretic DF than in healthy DF [60].
Providing a sufficient blood supply is essential for fol-
licular growth [61,62]. A morphological study has
demonstrated that bovine healthy DF has a high density
and well developed capillaries in TL whereas atretic fol-
licles has sparse and poorly developed capillaries [63]. In
the present study, two genes regulating angiogenesis,
PIGF and TSP2, were differentially expressed between
the groups. PIGF was expressed most in F1 than in F2
and localized in both GC and TL of healthy follicles but
not detected in atretic follicles. PIGF is a member of the

vascular endothelial growth factor family and stimulates
the proliferation of endothelial cells and supports angio-
genesis [64,65]. Therefore, PIGF may contribute to folli-
cular thecal angiogenesis via paracrine/autocrine action
in healthy follicles as well as other angiogenic factors. In
contrast to PIGF, TSP-2, a member of the TSP family,
acts as a potent inhibitor of angiogenesis and induces
endothelial cell apoptosis [66]. In experiment 1, TSP2
mRNA expression was greater in the F2 than in the F1.
TSP2 mRNA level in the bovine follicles decreased in
accordance with an increase in follicular diameter [67].
The same authors also showed that TSP protein was
localized in both GC and TC of small follicles but in
only in the GC of large follicles [67]. We demonstrated
in experiment 2 that TSP2 mRNA was localized in both
GC and TL of atretic follicles while it was expressed in
only GC of healthy follicles. Recent studies have demon-
strated that mRNA and protein expression of TSP-1,
another antiangiogenic TSP, is upregulated in primate
GC during progression of follicular atresia [68] and
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TSPI mRNA abundance is decreased by IGF-I treatment
in cultured porcine GC [69]. Thus, we speculate that
TSP2 mRNA expression is maintained at high levels in
follicular cells of atretic follicles whereas it decreases in
healthy follicles. Highly expressed TSP2 mRNA in the
follicles could negatively influence their angiogenesis. It
may cause an insufficient supply of substrates essential
for follicular growth, thereby affecting follicular hor-
mone production and cell proliferation, and, as a result,
inducing atresia.

Conclusion

Microarray and QPCR analysis enabled us to classify
uncharacterized bovine follicles and to evaluate their
representative follicular status according to differences
in global gene expression profiles. Our present study
demonstrates that the expression of stage-specific genes
in F1 and F2 may be closely associated with follicular
growth and atresia. Several genes identified in this study
will provide information on the genomic actions of intri-
guing candidates for the determinant of bovine follicular
development.
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