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A B S T R A C T   

Previous brain structural magnetic resonance imaging studies reported that patients with schizophrenia have 
brain structural abnormalities, which have been used to discriminate schizophrenia patients from normal con-
trols. However, most existing studies identified schizophrenia patients at a single site, and the genetic features 
closely associated with highly heritable schizophrenia were not considered. In this study, we performed stan-
dardized feature extraction on brain structural magnetic resonance images and on genetic data to separate 
schizophrenia patients from normal controls. A total of 1010 participants, 508 schizophrenia patients and 502 
normal controls, were recruited from 8 independent sites across China. Classification experiments were carried 
out using different machine learning methods and input features. We tested a support vector machine, logistic 
regression, and an ensemble learning strategy using 3 feature sets of interest: (1) imaging features: gray matter 
volume, (2) genetic features: polygenic risk scores, and (3) a fusion of imaging features and genetic features. The 
performance was assessed by leave-one-site-out cross-validation. Finally, some important brain and genetic 
features were identified. We found that the models with both imaging and genetic features as input performed 
better than models with either alone. The average accuracy of the classification models with the best perfor-
mance in the cross-validation was 71.6%. The genetic feature that measured the cumulative risk of the genetic 
variants most associated with schizophrenia contributed the most to the classification. Our work took the first 
step toward considering both structural brain alterations and genome-wide genetic factors in a large-scale 
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multisite schizophrenia classification. Our findings may provide insight into the underlying pathophysiology and 
risk mechanisms of schizophrenia.   

1. Introduction 

Schizophrenia (SZ) is a chronic, persistent, and extremely harmful 
mental illness, with some combination of major symptoms, including 
hallucinations, delusions, and disordered thinking, which begin in late 
adolescent or young adulthood. Since the current diagnosis of schizo-
phrenia is mainly based on a patient’s clinical symptoms and observed 
behaviors, objective quantitative biomarkers for the diagnosis of 
schizophrenia are urgently needed. 

The development of in vivo neuroimaging technology provides 
promise for the objective diagnosis of schizophrenia. High-resolution 
structural magnetic resonance imaging (sMRI) is particularly prom-
ising because sMRI images are relatively stable across different scanners 
and different status. Convergent evidence based on sMRI studies has 
shown that in patients with schizophrenia comprehensive brain struc-
tural abnormalities exist; in particular, gray matter volume has been 
shown to decrease in the prefrontal cortex (Dickey et al., 2004; Zhou 
et al., 2005), temporal cortex (Sun et al., 2009; Yamasue et al., 2004), 
anterior cingulate cortex (Ellison-Wright and Bullmore, 2010; Ellison- 
Wright et al., 2008), and thalamus (Ellison-Wright and Bullmore, 
2010; Ellison-Wright et al., 2008). Group-level statistical analyses of 
brain structural abnormalities in SZ patients have provided important 
insights into schizophrenia pathology and indicated that these brain 
structural features could potentially be used to classify schizophrenia 
patients (Zarogianni et al., 2013). Pattern recognition approaches in the 
area of artificial intelligence can automatically discriminate SZ patients 
from normal controls (NCs) at the individual level by learning mean-
ingful patterns from the data (Kambeitz et al., 2015), and several ma-
chine learning (ML) studies have yielded promising results (Rozycki 
et al., 2018; Vieira et al., 2020; Xiao et al., 2019). However, most of the 
existing models were built on relatively small samples or data from a 
single site, which limited the ability to apply them in clinical situations. 
Models trained with small samples tend to overfit and yield unstable and 
inconsistent results (Nieuwenhuis et al., 2012; Schnack and Kahn, 
2016), and models that only use data from a single site have poor 
generalizability (Pinaya et al., 2016; Schnack et al., 2014; Vieira et al., 
2020). For example, Pinaya et al. reported that the same ML model that 
was able to distinguish between patients with SZ and NCs with an ac-
curacy of 74% showed poor generalizability (56%) when applied to an 
additional independent cohort of individuals (Pinaya et al., 2016). A 
review (Schnack and Kahn, 2016) based on the observations from 
published sMRI-ML studies on SZ showed that when the classification 
models were applied to independent validation samples, accuracy can 
drop as much as 10–15%. While studies with small sample size (n) can 
reach 90% and higher accuracy, above n/2 = 50 the maximum accuracy 
achieved steadily drops to below 70% for n/2 > 150. Therefore, large- 
sample multisite structural neuroimaging studies for schizophrenia 
using a ML-based diagnostic model and leave-site-out validation are 
needed. 

Previous evidence has shown that schizophrenia is highly heritable 
(Cardno and Gottesman, 2000; Kety et al., 1994), and it is generally 
recognized that multiple susceptibility genes interact with environ-
mental factors to comprise the major etiology of schizophrenia (Haller 
et al., 2014). A large-scale genome-wide association study (GWAS) of 
schizophrenia (Consortium, 2014) analyzed the association of tens of 
millions of genome-wide genetic loci with schizophrenia and further 
confirmed that schizophrenia is a polygenic disease that is subject to the 
cumulative effects of common variations with very small effects. Poly-
genic risk scores (PGRSs), by integrating all common genetic variant 
effects into a single risk metric, can capture the polygenic nature of 
complex disorders and could be useful features for schizophrenia 

identification by measuring the intrinsic genetic effects for each indi-
vidual (Anderson et al., 2019). However, to the best of our knowledge, 
most existing studies on SZ classification and identification only focused 
on various brain imaging features, and genetics-related features were 
not considered. Although two previous studies combined brain imaging 
features and genetics-related features in SZ classification (Pettersson- 
Yeo et al., 2013; Yang et al., 2010), they both used small samples from a 
single site (n = 19 and n = 40, respectively), which could not guarantee 
the reliability and generalization of the model. In addition, they used a 
small number of SNPs (n = 26 and n = 367, respectively), and fewer 
genetic variations were considered. The development of GWAS has 
enabled research on psychiatric genomics to move toward statistical 
methods to integrate additive effects from across the entire genome into 
a single metric (Anderson et al., 2019). Therefore, our goal was to take 
the first step toward considering both structural brain alterations and 
genome-wide genetic factors in a large-scale multisite schizophrenia 
classification. We hypothesize that integrating neuroimaging data with 
genetic features may improve the performance of schizophrenia classi-
fication. To test this hypothesis, a large-sample schizophrenia classifi-
cation study that utilized multisite sMRI data and PGRS features was 
needed. 

In this study, we classified schizophrenia by combining sMRI and 
genetic data from 1010 participants from eight independent sites across 
China. The overall workflow is shown in Fig. 1. The raw sMRI and GWAS 
data were collected using the same protocol for each participant. A 
recent study (Vieira et al., 2020) showed that GM volumes (GMV) fea-
tures tended to yield higher accuracies than surface-based features in 
traditional machine learning and that, compared with voxel-based 
cortical thickness features, the accuracies of GMV features showed 
smaller differences between logistic regression (LR) and support vector 
machine (SVM) models. Therefore, we chose the more stable GMV fea-
tures as the primary brain imaging metric in our study. For simplicity 
and biological interpretability, the region of interest (ROI)-based GMV 
of 246 brain regions were extracted for each individual based on the 
Brainnetome atlas (http://atlas.brainnetome.org/) after sMRI pre-
processing. Meanwhile, step-wise PGRSs were calculated for each indi-
vidual after performing quality control and preprocessing of the GWAS 
data. To better test the comparability and reproducibility of our study, 
we used three common traditional machine learning methods and easily 
acquired features. SVM, LR, and ensemble learning methods were 
evaluated in this classification task. Leave-one-site-out CV was used to 
test the performance of the models. Finally, some important brain and 
genetic features were identified. 

2. Methods 

All the code used in this study is publicly available at https://github. 
com/BingLiu-Lab/SZ-classification. To protect participant privacy, 
which the genetic data used in our study may involve, the data is 
currently not available for public download. For specific research needs, 
the corresponding author can be contacted to discuss data sharing. 

2.1. Subjects 

The participants were recruited using the same protocol at each of 
eight sites: Peking University Sixth Hospital (PKUH6), Beijing Hui-
longguan Hospital (HLG), Henan Mental Hospital GE scanning site 
(HMG), Henan Mental Hospital Siemens scanning site (HMS), Xijing 
Hospital (XJ), Guangzhou Brain Hospital (GB), Renmin Hospital of 
Wuhan University (RWU), and Zhumadian Psychiatric Hospital (ZMD). 
MRI data acquired from Henan Mental Hospital were separated into two 
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sites because two different MR scanners were used. 
All SZ patients had a consistent diagnosis of schizophrenia confirmed 

by experienced psychiatrists according to the Diagnosis and Statistic 
Manual of Mental Disorders, fourth edition (DSM-IV) criteria for 
schizophrenia or schizophreniform disorder using the Structured Clin-
ical Interview for DSM-IV-TR Axis I Disorders, Patient Edition (SCID-I/ 
P). The exclusion criteria for the patients included a history of somatic or 
neurologic disorders, serious medical illness, substance dependence, 
pregnancy, electroconvulsive therapy within the last six months, or a 
diagnosis of any other axis I disorder. The Positive and Negative Syn-
drome Scale (PANSS) total test scores for all the patients with SZ were 
higher than or equal to 60, and the scores for at least 3 positive items 
were higher than 4. The NCs, who had no current or previous axis I 
psychiatric disorders, were recruited by advertisement from the local 
community near each site and were carefully screened using the SCID-I, 
non-patient edition. None of the NCs had any personal history of psy-
chotic illness nor any family history of psychosis in their first-, second-, 
or third-degree relatives. The study at each site was approved by the 
local ethical review board. After a complete description of the study was 
provided to the participants, written informed consent was obtained for 
each patient. The patients’ legal guardians supervised the consent pro-
cess. For patients with insight deficits, written informed consent from 
their legal guardians was also obtained. All the participants were right- 
handed and had no contraindications to MRI scanning. 

The recruited sample contained 690 SZ patients and 619 healthy 
subjects, for a total of 1,309 subjects, for all of whom we had brain scan 
images. Out of these subjects, 1231 also had genetic data. All the images 
were carefully reviewed by four examiners to exclude those with arti-
facts such as motion, ghosting, low signal-to-noise ratio, or insufficient 
gray/white matter contrast. After extensive quality checking of the brain 
imaging data, 34 subjects were excluded. After conducting a genotype 
quality control of the genetic data, 67 subjects were excluded, and the 
exclusion process is described in the following content. In the end, only 

508 SZ patients and 502 NCs, for a total of 1010 subjects with both 
qualified brain images and genetic data were used in our study. 

2.2. Data acquisition 

2.2.1. sMRI data acquisition 
All sMRI data were obtained from 3.0 T magnetic resonance (MR) 

scanners, including Siemens Trio Trim 3.0 T scanners at four sites (HLG, 
PKUH6, HMS, and XJ), GE Signa 3.0 T scanners at three sites (RWU, 
HMG, and ZMD), and a Philips Achieva 3.0 T scanner at one site (GB). 
Uniform scanning protocols for all eight sites were set up by an expe-
rienced expert to ensure equivalent and high-quality data acquisition. A 
T1-weighted brain volume (BRAVO) MRI sequence was performed using 
a protocol with a matrix size of 256 × 256, resolution of 1 × 1 mm2, 
inversion time of 1100 ms, and slice thickness of 1 mm. A total of 192 
sagittal slices were acquired on the Siemens scanners and 188 sagittal 
slices on the GE scanners and Philips scanner. 

2.2.2. Genetic data acquisition and preprocessing 
The detailed genetic data acquisition and preprocessing methods 

were described in our prior work (Liu et al., 2020), and in the current 
paper, a similar description was re-used to maintain the clarity and 
scientific integrity of the present study. 

Anticoagulant venous blood samples were acquired from all partic-
ipants in this study. We used the EZgene Blood gDNA Miniprep Kit to 
extract genomic DNA from the whole blood of each subject and obtained 
whole-genome genotype data based on Illumina Human 
OmniZhongHua-8 BeadChips. Then we performed the genotype quality 
control using PLINK version 1.0.7 on a Linux system (Purcell et al., 
2007). First, we removed two individuals whose missing genotype rates 
were greater than 0.05. Then, we removed 19 individuals with gender 
discrepancies. We also used the pairwise identity by descent estimate to 
identify individuals who could possibly be related. For pairs of 

Fig. 1. Multisite schizophrenia classification with brain imaging and genetic data. a. Data preprocessing and feature extraction. As shown, different features were 
extracted and integrated: 1) Genetic features: PGRSs, 2) sMRI features: GM volume of 246 brain regions, 3) Fusion of PGRSs and GM volume features. b. The SVM, LR, 
and ensemble learning models predicting individual diagnostic status. c. The leave-one-site-out CV for assessing the accuracy of the models. Parameter optimization 
was performed on the training set and performance was evaluated on the test set. d. Model evaluation. The average classification performance of the eight models in 
the leave-one-site-out CV was used as the final result. e. Important features that contributed significantly to the classification were identified and ranked in order of 
importance. Abbreviations: CV: cross-validation; GM: gray matter; LR: logistic regression; PGRS: polygenic risk score; SVM: support vector machine; sMRI: structural 
magnetic resonance imaging. 
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individuals who had more similar genotypes than expected by chance in 
a random sample (based on pairwise identity by state value, PI_HAT in 
PLINK ≥ 0.25), we removed the one with the greater missing rate, and a 
total of 46 subjects were excluded. Next, we used single nucleotide 
polymorphism (SNP)-level filtering to remove SNPs with missing ge-
notype rates greater than 0.05, a minor allele frequency<0.01, or a 
significant departure from Hardy–Weinberg equilibrium (P < .001). To 
avoid the confounding effects of population stratification (Walton et al., 
2014), we performed a principal component analysis using EIGEN-
STRAT 5.0.2 on the Linux system (Patterson et al., 2006; Price et al., 
2006) on a linkage disequilibrium pruned set of autosomal SNPs. This 
set was obtained by carrying out linkage disequilibrium pruning with 
PLINK (r2 < 0.05) and removing five long-range linkage disequilibrium 
regions with the HapMap phase 3 reference data-set (Thorisson et al., 
2005). After obtaining 10 principal components, we excluded the out-
liers, that is, the samples greater than 6 s.d. Ungenotyped SNPs were 
imputed using SHAPEIT version 2 (r790) (Delaneau et al., 2012) and 
IMPUTE2 (Howie et al., 2009) on the Linux system with the 1000 Ge-
nomes Phase 1 reference data-set. Further analyses focused on auto-
somal SNPs with imputation quality scores greater than 0.8. 

2.3. Feature extraction 

2.3.1. Brain imaging features 
T1-weighted images were processed using statistical parametric 

mapping (SPM8, https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) 
and voxel-based morphometry toolbox version 8 (VBM8, http://dbm. 
neuro.uni-jena.de/vbm/). The sMRI images were segmented into gray 
matter (GM), white matter, and cerebrospinal fluid images. Next, the 
preprocessed GM images were smoothed with a 6 mm full width at half 
maximum isotropic Gaussian kernel. Finally, the GM images were 
mapped to 246 brain regions of the fine-grained Brainnetome atlas (Fan 
et al., 2016). The choice of brain parcellation was based on a recent 
study (Lee et al., 2021) that demonstrated the advantage of the Brain-
netome atlas for this type of study. Then we calculated the average gray 
matter volume of each brain region for each subject. Thus, each subject 
had corresponding brain imaging features with 246-dimensional gray 
matter volumes. 

2.3.2. PGRS features 
The genetic features for each subject were obtained by calculating 

the PGRS for SZ in PLINK. The PGRS computation method was devel-
oped by the International Schizophrenia Consortium (Consortium, 
2009), as described in full detail in Walton’s paper (Walton et al., 2013). 
In brief, the PGRS was calculated by summing the number of risk alleles 
weighted by the strength of the association of each SNP with schizo-
phrenia, which was measured by the risk allele effect size (natural log of 
the odds ratio) of each SNP reported by a meta-analysis of a GWAS 
comprising a large number of Chinese individuals (Li et al., 2017). The 
subjects included in this study were independent of the participants from 
the meta-analysis. To obtain multiple independent PGRSs as genetic 
features for each individual, we calculated step-wise PGRSs using the 
SNP inclusion threshold from the meta-analysis GWAS statistical sum-
mary. The step length of the [0,0.05] interval was 0.001, and the step 
length of the [0.05,1] interval was 0.01. In this way, 145 PGRSs for each 
participant were obtained with the following different SNP inclusion 
thresholds: 0 ≤ PT < 0.001, 0.001 ≤ PT < 0.002, ……, 0.048 ≤ PT <

0.049, 0.049 ≤ PT < 0.05, 0.05 ≤ PT < 0.06, 0.06 ≤ PT < 0.07, ……, 
0.98 ≤ PT < 0.99, 0.99 ≤ PT < 1. Therefore, each subject’s data had 
corresponding genetic features for the 145-dimensional PGRSs. 

2.4. Model construction and evaluation 

After feature extraction, we constructed the classification models by 
using several traditional ML methods and different input features to 
differentiate the SZ patients from the NCs at an individual level. To 

ensure the generalization and reliability of the proposed models and to 
avoid the possibility of overfitting the models, we evaluated the per-
formance of our models using leave-one-site-out CV, with one of eight 
sites used as independent test data and the remaining seven as training 
data. In the end, the average performance of the models validated at 
eight different independent sites was used as the final classification 
result of the model. 

2.4.1. Experimental setup 
Three machine learning methods, support vector machine (SVM), 

logistic regression (LR), and ensemble learning, which have frequently 
been used in previous neuroimaging research, were used to form the 
classification models. In addition, to investigate the ability of different 
features to differentiate SZ patients from NCs, we set up three sets of 
experiments for each classification model and utilized different input 
features. The input features were: (1) the brain imaging features of the 
average GMV of the 246 brain regions, (2) the genetic features of the 145 
step-wise PGRSs, (3) a fusion of brain imaging and genetic features. The 
model training and test procedures of the three sets of experiments were 
the same so that the classification results could be compared fairly. 

2.4.2. Model training and testing 
During model training and testing, we used a nested CV framework 

to ensure that the data used for the hyper-parameter tuning and the data 
used to test the model were strictly independent. The inner 10-fold CV 
was used to select the optimal parameters, and an outer leave-one-site- 
out CV was used to test the performance of the models with the optimal 
parameters on a completely independent dataset. 

We used common grid search strategies and 10-fold CV in the 
training set to find the optimal parameters. The parameter search range 
for each model was as follows. For the SVM, we used a linear kernel and 
optimized its C parameter value (a constant determining the tradeoff 
between training error and model flatness) by CV in the range of {10-6, 
10-5, …, 10}. For the LR, we chose “liblinear” as the solver parameter 
and optimized its C parameter by cross-validating its value in the range 
of {0.001, 0.01, 0.1, 1, 10, 100} with a penalty parameter in {‘l1’, ‘l2’}. 
In addition, when defining classifiers, we took class imbalance into ac-
count by adding the parameter class_weight = ‘balanced’ that weighted 
the penalty parameter (C) based on the samples in each class. As a result, 
the more samples a certain class had, the smaller its penalty parameter, 
‘C’. In this way, the learning bias problem caused by the imbalance of 
input samples could be well balanced. The other parameters were set to 
their default values. 

After applying SVM and LR for the classification analysis, we used an 
ensemble learning method to improve the effect of the classification 
model. Ensemble learning is a strategy for improving existing classifi-
cation models. It learns by training multiple homogeneous weakly su-
pervised models on the basis of existing classification models. 
Integrating the learning results of each classification model according to 
appropriate rules can give full play to the advantages of each classifi-
cation model to obtain a unified integrated learning model, thereby 
achieving the effect of improving the classification ability of the model 
and making the results more stable and stronger. In this study, after 
using SVM and LR to estimate the probability of each subject’s having 
SZ, we took the weighted average of the probabilities given by these two 
models as the final probability. The specific training details were as 
follows: We assumed that the SVM and LR classifiers predicted that the 
probability of subject x having SZ was, respectively, h1(x), h2(x) and that 
each classifier had a weight w1 or w2, where wi is the weight of the ith 
classifier hi. First, under the condition thatwi ≥ 0 and w1+w2 = 1, we set 
the following 101 wt combinations (w1, w2): (0, 1), (0.01, 0.99), (0.02, 
0.98), …, (0.98, 0.02), (0.99, 0.01), (1, 0). Second, we used these 101 wt 
combinations to obtain a weighted average of the probabilities given by 
the SVM and LR models so we could get 101 different models. The final 
prediction probability was: 
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H(x) = w1h1(x) + w2h2(x) (1) 

Third, we used H(x) to predict the labels of the subjects and assessed 
the accuracy of 100 models. We finally selected the model with the 
highest accuracy as the best model. 

2.4.3. Model evaluation 
The performance of the classification models was evaluated by 

assessing accuracy, f1 score, and area under the receiver operating 
characteristic curve (AUC). Since eight different models were obtained 
by using leave-one-site-out CV, we averaged the performance of the 
eight models as the final result. The statistical significance of the accu-
racy was determined by permutation testing with 1000 permutations, in 
which the subjects were randomly assigned to one of the classes (SZ 
patients/NCs), so that the labels no longer matched the data in any 
meaningful way and repeated the process 1000 times. This resulted in a 
distribution of accuracies reflecting the null hypothesis that the classi-
fier did not exceed chance. The number of times the classifier’s perfor-
mance was greater than or equal to the true accuracy was divided by 
1000 to determine a p-value. A p-value lower than 0.05 was considered 
statistically significant. 

2.4.4. Model comparison 
First, we selected the optimal algorithm from the three ML algo-

rithms (SVM, LR, and ensemble learning) for subsequent analysis. Since 
different evaluation metrics reflected different aspects of the models, in 
order to combine the results from the three metrics (accuracy, f1 score, 
and AUC) and evaluate the performance of models more comprehen-
sively, we used a percentile-based scoring method (range from 0 to 100 
for each criterion) proposed by Lee et al. (2021). The method can be 
expressed using the following equation: 

Pi,j =
(Si,j − minVi,j)

maxVj − minVj
× 100,whereVj =

{
Si,j|i = 1, 2,⋯, n

}
(2) 

Where Si,j is the raw performance scores of the ith model for the jth 

metric, Vj is the vectorized performance scores Si,j across models; and Pi,j 

is the percentile-based normalized score of the ith model for the jth 

metric. Since there were three feature sets, three algorithms, and eight 
sites for independent validation, the total number of models n was 72. 
The equation assigned 100 to the model with the highest performance 
score and 0 to the model with the lowest performance score for each 
criterion. Then, the normalized percentile scores of the three criteria 
were summed to one composite score (possible range: 0–300). We 
selected the algorithm that had the highest composite score for further 
model comparison. 

Then, additional experiments and analyses were performed to 
compare the performance of models with different input features. Dur-
ing performing the leave-one-site-out CV, we randomly selected 50% of 
the pre-divided training set for training models and 50% of the pre- 
divided test set for validation. In other words, half of the data from 
one site was randomly selected as the test set, and half of the data from 
the remaining seven sites were randomly selected as the training set. In 
this process, stratified random sampling was used to ensure that the 
proportion of classes in the data did not change. The details of the 
experiment were the same as in section 2.4.2 except for stratified 
random sampling. Considering variations in the data, this random se-
lection of samples was repeated 20 times for each model to get a more 
accurate estimate of model performance, resulting in 160 models for 
each type of input feature. Finally, we used a nonparametric Wilcoxon 
signed ranks test (Demšar, 2006) to compare the performance of models 
with different input features. 

2.4.5. Identifying important brain imaging and genetic features 
After training the ensemble learning model using brain imaging 

features and genetic data as predictors in section 2.4.2, we identified the 
brain and genetic features that were important in the model. In the 

trained SVM or LR models, the importance of a feature was estimated by 
its coefficient. For each of the eight models in the leave-one-site-out CV 
method, we used the best weight combination learned above to weight 
the coefficients of the features in the SVM and LR models. The Friedman 
test was performed to investigate whether the feature weights have 
significant differences between the eight models. In addition, we 
examined the test–retest reliability of the feature weights between these 
eight models by calculating the intraclass correlation coefficient (ICC). 
When the ICC was calculated using SPSS software (version 18.0, SPSS), 
we chose the following parameters: “two-way random/mixed model”, 
“absolute agreement”, and “average measure”. Finally, we used the 
mean value of the coefficients of the 8 models to represent the impor-
tance of each feature and rank the weights. 

3. Results 

Classification performance of different models 
Structural brain imaging data from 508 SZ patients and 502 healthy 

controls were obtained using 8 independent MRI scanners (Table 1). For 
each individual, we extracted the gray matter volume of 246 brain re-
gions and calculated 145 step-wise PGRSs. Based on these features, we 
constructed 9 different classification models by using 3 different features 
(only imaging features, only genetic features, and both features com-
bined) and 3 different machine learning methods (SVM, LR, and 
ensemble learning). Then we systematically evaluated the classification 
performance of the different models by a leave-one-site-out CV strategy. 

The detailed classification performance for each model can be found 
in Table 2. Our analyses showed that the ensemble learning was the 
optimal algorithm among the three ML algorithms (Supplementary 
figure 1) and was used for subsequent analysis. When both the PGRS and 
brain sMRI features were included as predictors, the ensemble learning 
model had an average accuracy of 71.6% in discriminating SZ from NC. 
When only PGRS or brain sMRI features were included as predictors, the 
ensemble learning model had an average accuracy of 59.8% and 69.9%, 
respectively. The results of model comparison showed that the perfor-
mance of the models with both PGRS and brain sMRI features as inputs 
were significantly better than those of the models with only PGRS fea-
tures (one-tailed Wilcoxon signed ranks test, P < .0001) or only brain 
sMRI features as inputs (one-tailed Wilcoxon signed ranks test, 
P < .0001) (Supplementary figure 2). 

3.1. Important genetic and brain features for classification 

There was no statistically significant difference in the distribution of 
feature weights among the eight ensemble learning models with GMV 
and PGRSs as inputs (Friedman test, P = .9745). Since the ICC = 0.928, 
the test–retest reliability of the feature weights was excellent (Koo and 
Li, 2016). Thus, it was reasonable to select important features based on 
their average weights. Then, we listed the top ten features that 
contributed the most to the classification performance in the ensemble 
learning model in which both the PGRSs and the brain sMRI features 
were used. In total, three PGRSs and seven sMRI features were included 
(Table 3). For the top 10 features listed in Table 3, we listed the ranking 
of their importance scores across all left-out sites (see Supplementary 
Table 2). In general, the importance of the top features was relatively 
stable across the models. Interestingly, we found that the PGRS with a 
threshold 0 ≤ PT < 0.001 was identified as the most important feature 
contributing to schizophrenia classification. This validated our hy-
pothesis that genetic features may also be very important for the iden-
tification of schizophrenia. We also found that the most important brain 
gray matter volume features mainly focused on the brain regions located 
at the superior and middle temporal gyrus, orbital gyrus, precentral 
gyrus, basal ganglia, and thalamus. The ranking of all the features in the 
ensemble learning model can be found in Supplementary Table 1. 
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4. Discussion 

By including large multisite samples (N = 1010) and using the novel 
strategy of integrating structural imaging data with polygenic risk 
scores, we provided potential biomarkers for the identification of 
schizophrenia. We constructed and evaluated nine classification models 
by combining different features or ML methods. The results obtained by 
using leave-one-site-out CV showed that the ensemble learning model 
with both the sMRI and genetic features had the best classification 
performance, indicating the necessity of integrating brain imaging with 
genetic information in schizophrenia classification. 

Identifying schizophrenia patients based on quantitative biomarkers 
is important for translational neuroscience (Woo et al., 2017). Based 
only on our current classification results, the diagnostic utility of bio-
logical classifiers will not outperform that of psychiatrists using pre-
scribed ICD/DSM criteria, but the search for biological classifiers and 
biomarkers may provide insight into the pathophysiology, etiology, 
genetic risk, and neural mechanisms of disease. Predicting diagnostic 
status and identifying diagnostic biomarkers based on reliable biological 
classifiers may be useful first steps toward the goal of developing bio-
markers for predicting illness outcomes and treatment responses. 

Based on neuroimaging data, a number of existing studies have 
attempted to use machine learning methods to distinguish patients with 
schizophrenia from healthy individuals (Kambeitz et al., 2015; Orru 
et al., 2012; Wolfers et al., 2015; Zarogianni et al., 2013). However, 
most of the current studies may have published overestimated accu-
racies due to the use of small and homogeneous samples (Schnack and 
Kahn, 2016), and many models may have low generalizability and 
limited clinical applicability because of not being validated using data 
from independent sites (Vieira et al., 2020). Therefore, to improve the 
clinical utility of the proposed machine learning model, our current 
study aimed to identify reliable and reproducible biomarkers. Several 
considerations and considerable effort have been made to improve this 
situation in our current research. First, the number of subjects in our 

Table 1 
Demographic characteristics of the participants from each site.  

Site Normal controls Schizophrenia All 
Number Male/Female Age (y) Number Male/Female Age (y) PANSS Number Male/Female Age (y) 

1 98 52/46 25.77 ± 5.39 77 49/28 26.78 ± 6.32 78.23 ± 9.52 175 101/74 26.21 ± 5.82 
2 45 16/29 26.78 ± 5.25 56 22/34 27.82 ± 6.61 78.04 ± 6.20 101 38/63 27.36 ± 6.04 
3 66 34/32 30.69 ± 6.87 52 30/22 29.22 ± 7.45 88.15 ± 11.52 118 64/54 30.14 ± 7.20 
4 79 40/39 28.66 ± 5.92 62 28/34 27.38 ± 5.47 82.18 ± 8.47 141 68/73 28.10 ± 5.74 
5 34 18/16 29.14 ± 4.51 45 23/22 26.16 ± 4.70 89.69 ± 15.69 79 41/38 27.45 ± 4.82 
6 72 43/29 26.09 ± 4.81 85 59/26 27.66 ± 5.88 85.92 ± 15.54 157 102/55 26.94 ± 5.46 
7 56 31/25 24.46 ± 4.46 46 14/32 26.76 ± 6.28 87.60 ± 11.39 102 45/57 25.50 ± 5.45 
8 52 21/31 31.53 ± 5.51 85 49/36 29.41 ± 7.54 85.48 ± 13.21 137 70/67 30.22 ± 6.90 
Summary 502 255/247 27.69 ± 5.91 508 274/234 27.78 ± 6.48 84.07 ± 12.56 1010 529/481 27.73 ± 6.20  

Table 2 
Accuracies (f1 score/AUC) for each feature set and algorithm across all sites 
using leave-one-site-out cross-validation. * P < .05; **P < .001 (permutation 
test).    

PGRS sMRI sMRI & PGRS 

Site 1 SVM 0.549 (0.533/ 
0.593) 

0.714** (0.688/ 
0.790) 

0.709** (0.683/ 
0.711) 

LR 0.549 (0.515/ 
0.597) 

0.714** (0.702/ 
0.804) 

0.737** (0.723/ 
0.776) 

Ensemble 0.560 (0.539/ 
0.595) 

0.731** (0.715/ 
0.802) 

0.743** (0.727/ 
0.778) 

Site 2 SVM 0.634* (0.667/ 
0.674) 

0.762** (0.782/ 
0.843) 

0.733** (0.727/ 
0.870) 

LR 0.614* (0.642/ 
0.676) 

0.772** (0.785/ 
0.830) 

0.723** (0.726/ 
0.862) 

Ensemble 0.614* (0.642/ 
0.676) 

0.792** (0.807/ 
0.837) 

0.743** (0.740/ 
0.870) 

Site 3 SVM 0.661* (0.636/ 
0.687) 

0.653** (0.696/ 
0.794) 

0.737** (0.756/ 
0.826) 

LR 0.644* (0.604/ 
0.715) 

0.653** (0.701/ 
0.773) 

0.737** (0.760/ 
0.809) 

Ensemble 0.670* (0.661/ 
0.687) 

0.661* (0.706/ 
0.794) 

0.763** (0.781/ 
0.824) 

Site 4 SVM 0.603* (0.576/ 
0.663) 

0.596* (0.537/ 
0.630) 

0.681** (0.622/ 
0.715) 

LR 0.617* (0.585/ 
0.672) 

0.596* (0.551/ 
0.640) 

0.667** (0.612/ 
0.710) 

Ensemble 0.631* (0.623/ 
0.663) 

0.617* (0.578/ 
0.637) 

0.688** (0.639/ 
0.715) 

Site 5 SVM 0.570 (0.622/ 
0.560) 

0.608* (0.587/ 
0.703) 

0.570 (0.564/ 
0.697) 

LR 0.506 (0.562/ 
0.536) 

0.633* (0.613/ 
0.731) 

0.595 (0.610/ 
0.658) 

Ensemble 0.582 (0.629/ 
0.560) 

0.633* (0.613/ 
0.718) 

0.608* (0.617/ 
0.661) 

Site 6 SVM 0.605* (0.613/ 
0.601) 

0.745** (0.740/ 
0.851) 

0.739** (0.729/ 
0.838) 

LR 0.592* (0.632/ 
0.622) 

0.758** (0.747/ 
0.865) 

0.739** (0.729/ 
0.852) 

Ensemble 0.612* (0.630/ 
0.618) 

0.764** (0.758/ 
0.865) 

0.758** (0.753/ 
0.851) 

Site 7 SVM 0.520 (0.495/ 
0.530) 

0.677* (0.593/ 
0.755) 

0.686* (0.680/ 
0.760) 

LR 0.520 (0.495/ 
0.525) 

0.686* (0.628/ 
0.757) 

0.696** (0.659/ 
0.741) 

Ensemble 0.549 (0.549/ 
0.530) 

0.706** (0.643/ 
0.755) 

0.726** (0.708/ 
0.758) 

Site 8 SVM 0.569 (0.634/ 
0.638) 

0.679** (0.732/ 
0.711) 

0.693** (0.741/ 
0.752) 

LR 0.555 (0.616/ 
0.595) 

0.664** (0.697/ 
0.734) 

0.672** (0.724/ 
0.766) 

Ensemble 0.569 (0.609/ 
0.638) 

0.686** (0.736/ 
0.711) 

0.701** (0.745/ 
0.753) 

Average SVM 0.589 (0.597/ 
0.618) 

0.679 (0.669/ 
0.759) 

0.693 (0.688/ 
0.771) 

LR 0.575 (0.581/ 
0.617) 

0.685 (0.678/ 
0.767) 

0.696 (0.693/ 
0.772) 

Ensemble 0.598 (0.610/ 
0.621) 

0.699 (0.695/ 
0.765) 

0.716 (0.714/ 
0.776) 

Abbreviations: LR: logistic regression; PGRS: polygenic risk score; SVM: support 
vector machine; sMRI: structural magnetic resonance imaging. 

Table 3 
The weights and ranking of the top ten most important features.  

Ranking Features Descriptions Weight 

1 PGRS 0 ≤ PT < 0.001  0.233 
2 GMV STG_R_6_3  0.231 
3 GMV Tha_L_8_2  0.165 
4 GMV MTG_R_4_1  0.114 
5 GMV BG_L_6_6  0.111 
6 GMV Tha_R_8_4  0.097 
7 GMV OrG_R_6_1  0.089 
8 PGRS 0.37 ≤ PT < 0.38  0.089 
9 PGRS 0.65 ≤ PT < 0.66  0.086 
10 GMV PrG_L_6_6  0.083 

Abbreviations: BG: basal ganglia; GMV: gray matter volume; L: left hemisphere; 
MTG: middle temporal gyrus; OrG: orbital gyrus; PGRS: polygenic risk score; 
PrG: precentral gyrus; R: right hemisphere; STG: superior temporal gyrus; Tha: 
thalamus. 
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investigation was relatively large, which can help to guarantee the 
effectiveness of the classification and the heterogeneity of the data, to a 
certain extent. Second, we used the data from eight different sites and 
adopted a leave-one-site-out CV strategy, which is an excellent way to 
improve the robustness and generalizability of the model. This may also 
explain why the performance of our models did not seem to be as good as 
the performance reported in previous studies, in which the performance 
was not evaluated in independent samples. Third, the high dimension-
ality issue is one of the challenges in fusing information from neuro-
imaging data with genetic data (Zhou et al., 2019). One sMRI image 
usually contains millions of voxels, while the genetic data of one subject 
has thousands of SZ-related SNPs. To address the high dimensionality 
issue, we applied the ROI-based approach to extract a higher level of 
information by using brain anatomical priors and calculated the PGRS to 
integrate all the common genetic variant effects into a single risk metric. 
However, since the processing pipelines for the two modalities of fea-
tures were not similar, future work should explore more matched feature 
reduction methods to alleviate the possible feature mismatch problem. 
Fourth, to the best of our knowledge, our study was the first attempt to 
integrate sMRI data and polygenic risk scores as features in a large-scale 
multisite schizophrenia classification, allowing us to achieve better re-
sults than using either type of feature alone. 

Our classification results indicated that including both brain and 
PGRS features as model predictors improved the model’s performance 
compared with only including either brain or PGRS features in the 
models. Genetic features were important for distinguishing SZ from NC. 
A random prediction usually yields an accuracy of about 50%, but using 
PGRS features as inputs increased the average accuracy of the ensemble 
learning models to 59.8% and even to 67.0% at site 3 (Table 2). In 
comparison, the ensemble learning models with brain features alone as 
inputs had a better performance in predicting SZ, with an average ac-
curacy of 69.9%. Integrating brain and PGRS features as inputs in the 
models further increased the models’ prediction performance by a 
moderate amount: The average accuracy of the ensemble learning 
models was 71.6%. In terms of model training, ensemble learning has 
the advantage of using a weighted combination rule to combine 
different classifiers, leading to a stacked generalization model (Polikar, 
2012), thereby achieving slightly better classification performance. In 
addition, when identifying the important features by integrating the 
imaging with the genetic information, we found that the weight of the 
PGRS with a threshold 0 ≤ PT < 0.001 was the largest. In fact, the PGRS 
with threshold 0 ≤ PT < 0.001 measured the cumulative risk of the 
genetic variants most associated with schizophrenia based on previous 
GWAS evidence (Walton et al., 2013). Although no prior information 
was used in the classification model, this PGRS feature still obtained the 
greatest weight, further indicating that genetic features can indeed 
provide important information for classification. 

By ranking all the features according to their weights, we found that 
the important brain regions that contributed to the differentiation be-
tween SZ patients and NC included the superior temporal gyrus (STG), 
middle temporal gyrus (MTG), orbital gyrus and precentral gyrus in the 
frontal lobe, basal ganglia, and thalamus. These alterations in gray 
matter volume are consistent with previous studies and may reflect the 
loss of neurons, neuropil areas, or interconnections between regions, 
leading to functional deficits in schizophrenia. For example, the reduc-
tion in STG volume has been widely observed in schizophrenia (Ellison- 
Wright and Bullmore, 2010; Ellison-Wright et al., 2008; Haijma et al., 
2013; Vita et al., 2012). In particular, a significantly more pronounced 
decrease in GM volume was detected in the STG and STG subregions (the 
Heschl’s gyrus (HG) and planum temporale (PT)) in patients with SZ 
(Vita et al., 2012). However, several other cortical subregions did not 
exhibit such a large reduction in volume over time. This seems to be 
consistent with our findings that the STG is the brain region that con-
tributes the most to classification. Anatomically, the superior part of the 
STG includes the primary and secondary auditory sensory cortex (HG 
and PT), and the STG has been found to be involved in early auditory 

processing common to speech and nonspeech stimuli (Binder et al., 
2000). Changes in STG volume have been related to positive symptom 
severity, especially thought disorder (posterior STG) (Hirayasu et al., 
1998; Shenton et al., 1992; Vita et al., 1995) and hallucinations (anterior 
and middle STG) (Barta et al., 1990; Flaum et al., 1995; Levitan et al., 
1999; Menon et al., 1995); HG volume abnormalities have been corre-
lated with the severity of formal thought disorder (Rajarethinam et al., 
2000; Yamasaki et al., 2007), and PT alterations have been correlated 
with the language and thought disorder of schizophrenia (Shenton et al., 
1992; Yamasaki et al., 2007). In contrast, the MTG has received less 
attention, but there are still some studies that have reported a reduction 
in the MTG volume in schizophrenia (Ellison-Wright et al., 2008; Honea 
et al., 2005; Kuroki et al., 2006). The MTG is known to play an important 
role in both dorsal and visual pathways (Sewards and Sewards, 2002) as 
well as in multimodal and higher sensory processing (Doniger et al., 
2002). Since functional deficits in language, memory (Nestor et al., 
1998), and visual spatial perception have all been reported in schizo-
phrenia, the gray matter abnormality in the MTG may be an important 
anatomical substrate. In addition, the basal ganglia structures (caudate, 
putamen, and globus pallidus) and thalamus are also the focus of 
research in schizophrenia, and their volume abnormalities have been 
reported in many previous studies (Ellison-Wright and Bullmore, 2010; 
Ellison-Wright et al., 2008; Glahn et al., 2008; Haijma et al., 2013; Van 
Erp et al., 2014; Van Erp et al., 2016). Functionally, the basal ganglia 
structures play an important role in cognitive, sensory, and motor pro-
cessing (Keshavan et al., 1998), and the thalamus is involved in atten-
tion and information processing and serves as a ‘filter’ for gating the 
input of sensory signals (Fuster, 2015). Other studies suggest that ex-
ecutive functioning deficits in schizophrenia may be mediated by basal 
ganglia-thalamocortical circuitry disruptions (Camchong et al., 2006). 
Accordingly, these important brain features that we identified as 
discriminating between the patients with SZ and the NCs may contribute 
to the symptoms of schizophrenia and provide insight into the under-
lying neural mechanisms of schizophrenia. 

There are several improvements that can be considered for future 
work. First, since the brain features only included the gray matter vol-
ume in the present study, a better classification ability may be achiev-
able by including additional types of imaging data such as brain 
dynamics, structural connectome data, etc. We will evaluate the incre-
mental gain of other modalities of features in the future using a similar 
design. Second, the models used in this study were traditional “shallow” 
machine learning techniques, but their performance has been surpassed 
by advanced deep learning in many applications. Future studies could 
try to use deep learning models to extract complex latent features from 
the original data through consecutive nonlinear transformations and 
may be able to capture the interactions and joint effect of the brain 
imaging and genetic features. Third, all the data used in this study were 
from the Han Chinese population, and the models and results of the 
current study need to be independently validated on other multi-site 
schizophrenia data from other ethnicities. Fourth, there may be redun-
dancy between features in this study. When we calculated the step-wise 
PGRSs, there was no overlap between the SNP inclusion thresholds, 
which we think can reduce the correlation between PGRSs to a certain 
extent. However, we have to admit that even though we have tried to do 
so, there was still some correlation between the PGRSs. A possible 
reason may be that the SNPs in different inclusion thresholds are not 
completely independent. In addition, with the development of imaging 
genetics, most aspects of brain structure and function have shown some 
level of heritability (Thompson et al., 2001, 2013; Arnatkeviciute et al., 
2021). In particular, a recent GWAS of 19,692 individuals identified 
genetic variants influencing regional brain volumes (Zhao et al., 2019), 
46 of which were associated with mental health disorders, including 
schizophrenia. In a post hoc analysis, we performed a Pearson’s corre-
lation analysis and found no significant association between PGRSs and 
brain structure features used in the study ( − 0.1371 < r < 0.1267, 
P > 1.40e − 6 (0.05/246/145), not reaching significance after 
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Bonferroni correction for multiple testing). Thus, we consider that the 
redundancy between genetics and brain structure features may be 
relatively low. However, given the complexity of the relationship be-
tween genetics and brain features, future studies still need to decompose 
the genetic and phenotype variances and further explore the interactions 
between genetics and brain imaging data. 

5. Conclusion 

In summary, we trained ML models on a large number of multisite 
subjects to classify SZ patients and NCs. By using the a previously unused 
strategy of integrating sMRI data with PGRS, our models performed well 
on the SZ classification task, revealing the importance of utilizing mul-
tiple data streams to classify complex diseases and showing that genetic 
features can provide important information about SZ. Our study pro-
vided potential biomarkers for identifying individuals with SZ and may 
help to guide future research utilizing machine learning in identifying 
SZ. 
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