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Abstract: Highly reactive arynes activate the N–C and C=O bonds of amide groups under transition
metal-free conditions. This review highlights the insertion of arynes into the N–C and C=O bonds
of the amide group. The insertion of arynes into the N–C bond gives the unstable four-membered
ring intermediates, which are easily converted into ortho-disubstituted arenes. On the other hand,
the selective insertion of arynes into the C=O bond is observed when the sterically less-hindered
formamides are employed to give a reactive transient intermediate. Therefore, the trapping
reactions of transient intermediates with a variety of reactants lead to the formation of oxygen
atom-containing heterocycles. As relative functional groups are activated, the reactions of arynes
with sulfinamides, phosphoryl amides, cyanamides, sulfonamides, thioureas, and vinylogous amides
are also summarized.

Keywords: amide; arynes; insertion; activation; heterocycles; organic synthesis; multi-component
coupling reaction

1. Introduction

In recent years, the use of arynes as highly reactive and strained intermediates in organic
synthesis has attracted substantial attention [1–15]. Arynes have been extensively utilized in
transition-metal-catalyzed reactions [16,17]. The development of ortho-trimethylsilyl aryltriflates 1
as mild aryne precursors led to growing activity in this field (Scheme 1) [18]. Arynes A can be
generated in situ from triflate 1 and fluoride ion under mild reaction conditions. Therefore, the aryne
chemistry using aryltriflates 1 has achieved some remarkable success, particularly in the transition
metal-free reactions.
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1. Introduction 

In recent years, the use of arynes as highly reactive and strained intermediates in organic 
synthesis has attracted substantial attention [1–15]. Arynes have been extensively utilized in 
transition-metal-catalyzed reactions [16,17]. The development of ortho-trimethylsilyl aryltriflates 1 as 
mild aryne precursors led to growing activity in this field (Scheme 1) [18]. Arynes A can be generated 
in situ from triflate 1 and fluoride ion under mild reaction conditions. Therefore, the aryne chemistry 
using aryltriflates 1 has achieved some remarkable success, particularly in the transition metal-free 
reactions. 
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Scheme 1. Transition metal-free reaction of arynes. Scheme 1. Transition metal-free reaction of arynes.

Molecules 2018, 23, 2145; doi:10.3390/molecules23092145 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/23/9/2145?type=check_update&version=1
http://dx.doi.org/10.3390/molecules23092145
http://www.mdpi.com/journal/molecules


Molecules 2018, 23, 2145 2 of 16

Most of transition metal-free reactions proceed through the addition of nucleophiles to arynes A
and the subsequent trapping of intermediates B with electrophiles to give multi-substituted arenes
with structural diversity and complexity. The transition metal-free concerted reactions, such as the
Diels-Alder reaction, [2 + 2] cycloaddition reaction, and dipolar cycloaddition reaction, are also
synthetically useful [6,7,11,12].

When the nitrogen atom of amides acts as nucleophiles toward arynes, the insertion of arynes into
the N–C bond is induced to give the N–C insertion products 3, via the formation of four-membered
ring intermediates, C (Scheme 2). In contrast, insertion into the C=O bond is promoted by the
nucleophilic addition of the oxygen atom of amides to arynes (Scheme 3). In the C=O insertion reaction,
the four-membered ring intermediates D and ortho-quinone methides E are highly reactive [19,20];
thus, a variety of further transformations using D or E have been developed as multi-component
coupling reactions [9]. As shown in Section 3 with the C=O bond activation, the suitable amides for
C=O insertion are the sterically less-hindered formamides, such as N,N-dimethylformamide (DMF).
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2. N–C Bond Activation

At first, the insertion of arynes into the N–C bond of the amide group was reported in the reaction
of ureas with arynes [21]. In the presence of CsF, treatment of 3-methoxy-2-(trimethylsilyl) phenyl
triflate 4 as an aryne precursor with 1,3-dimethyl-2-imidazolidinone (DMI) 5 gave 1,4-benzodiazepine
derivative 6 in 77% yield (Scheme 4). Under similar reaction conditions, N,N′-dimethylpropyleneurea
(DMPU) 7 worked well to give 1,5-benzodiazocine derivative 8. The insertion of aryne into the N–C
bond of acyclic N,N,N′,N′-tetramethylurea 9 also proceeded. In these reactions, aryne is generated by
the reaction of triflate 4 with the fluoride anion of CsF. The sequential transformation is achieved via a
route involving the addition of the urea nitrogen atom to an aryne, followed by the intramolecular
nucleophilic attack on the carbonyl carbon atom. The resulting four-membered ring intermediate
readily undergoes ring opening to afford the N–C insertion products 6, 8, and 10.
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The reaction of pyridynes with ureas was studied [22]. In the presence of CsF, the reaction of
4-triethylsilyl-3-trifluoromethanesulfonyloxypyridine 11 as a 3,4-pyridyne precursor with DMI 5 gave
pyridodiazepine derivatives 12 and 13 in 86% yield and a ratio of 65:35 (Scheme 5). High regioselectivity
was obtained by using the 3,4-pyridyne precursor 14 having a methoxy group at the 2-position to
give the product 15, selectively. The use of DMPU 7 instead of DMI 5 led to the formation of the
corresponding pyridodiazocine, 16. When 1-methyl-2-oxazolidone 17 was employed, the selective
insertion into the N–C bond of 17 proceeded to give pyridooxazepine 18.
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The reaction of DMI 5 with 4,5-benzofuranyne precursor 19 was also studied (Scheme 6) [23].
The N–C insertion product 20 was regioselectively obtained in 90% yield as a result of the initial attack
of DMI 5 at C5 of 4,5-benzofuranyne.

Molecules 2018, 23, x 4 of 16 

 

The reaction of DMI 5 with 4,5-benzofuranyne precursor 19 was also studied (Scheme 6) [23]. 
The N–C insertion product 20 was regioselectively obtained in 90% yield as a result of the initial 
attack of DMI 5 at C5 of 4,5-benzofuranyne. 

 

Scheme 6. Insertion of 4,5-benzofuranyne into N–C bond. 

It is reported that silylaryl bromides and iodides can be used as aryne precursors under the 
conditions similar to those employed for silylaryl triflates, such as precursors 4, 11, and 19 [24]. The 
utility of silylaryl bromides 21a–c was demonstrated in the N–C bond reaction (Scheme 7). In the 
presence of tetramethylammonium fluoride (TMAF), 1-bromo-3-methoxy-2-(dimethylsilyl) benzene 
21a reacted with DMPU 7 to give 22a in 64% yield. Silylaryl bromides 21b and 21c also worked well. 

 

Scheme 7. Reaction of silylaryl bromides 21a–c with DMPU 7. 

The insertion of arynes into the N–C bond of N-phenyltrifluoroacetamides proceeded effectively 
[25]. In the presence of CsF, the reaction of N-phenyltrifluoroacetamide 24a with triflate 23 as an 
aryne precursor gave the N–C insertion product 25a in 77% yield (Scheme 8). The substituted N-
aryltrifluoroacetamides 24b–d also afforded the corresponding products 25b–d in good yields. Since 
the CF3 group on amides is critical to the success of these transformations, they propose the reaction 
mechanism involving the abstraction of the hydrogen on amide nitrogen by fluoride anion as a base. 
The products 25a–d are obtained via the attack of amide nitrogen anion to aryne, the intramolecular 
trapping process with the carbonyl carbon atom, and the four-membered ring opening. 

Scheme 6. Insertion of 4,5-benzofuranyne into N–C bond.

It is reported that silylaryl bromides and iodides can be used as aryne precursors under the
conditions similar to those employed for silylaryl triflates, such as precursors 4, 11, and 19 [24].
The utility of silylaryl bromides 21a–c was demonstrated in the N–C bond reaction (Scheme 7). In the
presence of tetramethylammonium fluoride (TMAF), 1-bromo-3-methoxy-2-(dimethylsilyl) benzene
21a reacted with DMPU 7 to give 22a in 64% yield. Silylaryl bromides 21b and 21c also worked well.
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The insertion of arynes into the N–C bond of N-phenyltrifluoroacetamides proceeded
effectively [25]. In the presence of CsF, the reaction of N-phenyltrifluoroacetamide 24a with triflate 23
as an aryne precursor gave the N–C insertion product 25a in 77% yield (Scheme 8). The substituted
N-aryltrifluoroacetamides 24b–d also afforded the corresponding products 25b–d in good yields.
Since the CF3 group on amides is critical to the success of these transformations, they propose the
reaction mechanism involving the abstraction of the hydrogen on amide nitrogen by fluoride anion as a
base. The products 25a–d are obtained via the attack of amide nitrogen anion to aryne, the intramolecular
trapping process with the carbonyl carbon atom, and the four-membered ring opening.
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To develop the amide insertion reaction having broad utility, the reaction of N-pivaloylaniline
26a with triflate 23 was investigated by changing solvents and fluoride sources [26]. Employing
tetrabutylammonium triphenyldifluorosilicate (TBTA) as a fluoride source, amide 26a underwent the
N–C insertion in toluene at 50 ◦C to afford the tert-butylketone 27a in 64% yield (Scheme 9). Exploration
of substrate scope showed that N-phenyl derivatives 26b and 26c were similarly efficient substrates.
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Additionally, this reaction was applied to the synthesis of acridones and acridines (Scheme 10).
The one-step synthesis of acridone 29 was achieved by the reaction of ortho-halobenzamide 28,
with triflate 23 under microwave irradiation at 120 ◦C in the presence of TBAT. Acridone 29 was formed
via a route involving the N–C insertion, followed by the intramolecular SNAr reaction. In contrast,
acridine 31 was synthesized by a one-pot procedure using BF3·OEt2 via a route involving the N–C
insertion of amide 30 into aryne, followed by a BF3-mediated Friedel-Crafts acylation and dehydration.
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The reaction of β-lactam 32 with aryne gave acridone 29 in 50% yield by employing 3.5
equivalents of the aryne precursor 23 in the presence of CsF (Scheme 11) [27]. In this transformation,
2,3-dihydroquinolin-4-one 33 is formed as an intermediate as a result of N–C bond insertion of aryne
into β-lactam 32. In fact, 33 reacted under the same reaction conditions to give acridone 29 in 77%
yield. The conversion of 33 into 29 will proceed through the N-arylation of 33 with second aryne,
the subsequent cyclization, the extrusion of ethylene, and the final N-arylation with third aryne.
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Scheme 11. Reaction of β-lactam with aryne leading to acridone.

The insertion of arynes into the N–C bond of imides was investigated [28]. The formation of
simple N-arylated products could be suppressed when the reactions of imides 34a–d with triflate 23
were carried out in toluene at 60 ◦C in the presence of TBAT (Scheme 12). The desired N–C insertion
products 35a–d were selectively obtained. Additionally, this reaction was applied to the one-pot
synthesis of quinolone 36 through Camps cyclization using KOH and 18-crown-6.
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3. C=O Bond Activation

At first, the insertion of arynes into the C=O bond of the amide group was reported [29]. Aryne,
generated from precursor 37, reacted with N,N-dimethylformamide (DMF) to give salicylaldehyde 38
in 32% yield (Scheme 13).
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When the bulky N,N-dimethylacetamide (DMA) was used, competitive insertion into the C=O
and N–C bonds of DMA was observed [30]. In the presence of TBAF, treatment of 4 with DMA gave
the C=O insertion product 39 in 34% yield, and the N–C insertion product 40 in 10% yield (Scheme 14).
This result indicates that the sterically less-hindered formamides are the suitable nucleophiles for C=O
insertion. The insertion into the C=O bond will proceed via the stepwise mechanism involving the
addition of the oxygen atom of amide to an aryne, followed by the intramolecular nucleophilic attack
on the iminium.
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The sequential reaction involving the trapping process of transient intermediates with
organometallic reagents was studied [30,31]. After a solution of triflate 4 in DMF was stirred in the
presence of CsF, a solution of Et2Zn in hexane was added to the reaction mixture (Scheme 15). The desired
aminophenol 41 was obtained in 71% yield. Diethyllzinc also trapped the transient intermediate
generated from triflate 4 and formamide 42, to give the aminophenol 43 by a one-pot procedure.
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Three-component sequential coupling of arynes, DMF, and diaryliodonium salts was studied [32].
In the presence of KF, a three-component coupling reaction was found using triflate 23 and
diphenyliodonium triflate 44 in DMF-facilitated 2-phenoxybenzaldehyde 45 in 87% yield (Scheme 16).
In this transformation, diphenyliodonium triflate 44 acted as an electrophile by trapping the oxygen
atom of a transient intermediate.
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The 2:1 coupling reaction of two molar amounts of aryne and one molar amount of DMF was
reported (Scheme 17) [33]. Initially, the reaction of precursor 23 and DMF gives salicylaldehyde 38
via the hydrolysis of a transient intermediate. 9-Hydroxyxanthene 46 is formed by the reaction of
salicylaldehyde 38 with aryne.
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The trapping reactions of transient intermediates generated from arynes precursors and
DMF with a variety of reactants have been widely studied as being synthetic approaches to
oxygen atom-containing heterocycles [34–43]. The synthesis of 2H-coumarin derivatives was also
studied [34–36]. Three-component coupling reactions leading to chromene 48 was achieved by the use
of acetate 47, having an aryl group as a nucleophile for trapping the unstable intermediate (Scheme 18).
In the presence of KF, the reaction of triflate 23 and acetate 47 was carried out in DMF at 80 ◦C to give
the coumarin 48 in 95% yield [35]. The synthesis of 2-aryliminochromene skeleton of biologically active
compounds was studied by using a three-component coupling reaction [36]. A transient intermediate,
generated from triflate 23 and DMF, could be trapped by N,S-keteneacetal 49 to give the biologically
important arylimino-2H-chromene-3-carboxamide 50 in 81% yield. The synthesis of 4H-chromene
derivatives was also achieved by using a three-component coupling reaction involving the hetero
Diels-Alder reaction between transient intermediates and dienophiles [37].
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Scheme 18. Synthesis of coumarin derivatives.

The synthesis of benzofurans was also studied [38–40]. The use of α-halogenated enolate,
generated from α-chloromalonate 51 and Et2Zn, led to the formation of benzofuran 52 (Scheme 19) [38].
In the presence of CsF, treatment of aryne precursor 4 and α-chloromalonate 51 with Et2Zn in DMF gave
52 in 59% yield. In this transformation, α-chloromalonate acts as a nucleophilic and electrophilic one
carbon-unit for trapping a transient intermediate. Benzofuran 52 will be formed via a route involving
the retro-aldol type reaction. The simple one-pot synthesis of benzofurans was also reported [40].
When 2-bromoacetophenone 53 was used as a nucleophilic and electrophilic reactant, benzofuran 54
was obtained in 79% yield.
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Additionally, the trapping reaction of transient intermediates was successfully applied to a
four-component coupling reaction for the convenient synthesis of xanthene derivatives [34,41,42].

4. Activation of Relative Bonds

The insertion of arynes into the N–S bond of sulfinamides was studied [25]. In the presence of
n-Bu4NF, the reaction of N-phenyltrifluoromethanesulfinamides 55a–c with triflate 23 as an aryne
precursor gave the corresponding N–S insertion products 56a–c in good yields (Scheme 20).
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The insertion of arynes into the P–N bonds of arylphosphoryl amides was studied [44]. In the
presence of KF and 18-crown-6, the reaction of diphenylphosphinic amides 57a–c with triflate 23 was
carried out at 80 ◦C in a sealed tube (Scheme 21). The ortho-aniline-substituted arylphosphine oxides
58a–c were obtained in moderate yields. This transformation proceeded through the addition of the
nitrogen atom of 57a–c to an aryne, the intramolecular trapping, and the four-membered ring opening.
Additionally, the P–N insertion product 58a was converted to ortho-amine-substituted arylphosphine
59 in 96% yield by the reduction using HSiCl3.
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The insertion of arynes into the N–C bonds of aryl cyanamides was reported [45]. In the presence
of CsF, triflate 23 reacted with aryl cyanamides 60a–e to give the 1,2-bifunctional aminobenzonitriles
61a–e in good yields (Scheme 22). This N–C bond insertion also proceeds via the formation of the
four-membered ring intermediates.
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When a solution of triflate 23 and thiourea 64 in toluene/MeCN was heated in the presence of CsF, 
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The synthesis of biaryl compounds was achieved by using the reaction of aryl sulfonamides
with arynes [46]. In the presence of KF and 18-crown-6, aryl sulfonamides 62a–c having an
electron-withdrawing group reacted with aryne to afford 2-amino-biaryls 63a–c (Scheme 23).
This reaction involves the addition of sulfonamides to aryne, and the subsequent Smiles-type
ipso-substitution with sulfur dioxide SO2 extrusion.
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Formal π-insertion into the C=S bond was observed in the reaction of thioureas with aryne [47].
When a solution of triflate 23 and thiourea 64 in toluene/MeCN was heated in the presence of CsF,
amidine 65 was formed in 70% yield, accompanied with the simple S-arylated product 66 in 20% yield
(Scheme 24). The sequential transformation leading to 65 was started by the reaction of the sulfur
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atom of 64 with an aryne, which was followed by intramolecular trapping to give a four-membered
ring intermediate. The amidine 66 was obtained via the four-membered ring opening and subsequent
S-arylation by an aryne.
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The C=C double bond of vinylogous amide derivatives reacted with aryne [48,49]. In the presence
of CsF, the reaction of vinylogous amide derivatives 67a–b with aryne gave the carbonyl compounds
68a–b in good yields (Scheme 25). This transformation proceeded via the [2 + 2] cycloaddition between
aryne and 67a–b and the four-membered ring opening. The bulky vinylogous amides 69a–c having
ester, ketone, or cyano group as an electron-withdrawing group reacted well with aryne to give the
corresponding products 70a–c in good yields.
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5. Concluding Remarks

Arynes are highly reactive intermediates that can activate the N–C and C=O bonds of an amide
group under transition-metal-free conditions. As described above, the insertion of arynes into the N–C
bond has been studied as a powerful method for preparing ortho-disubstituted arenes. In contrast,
the selective insertion of arynes into the C=O bond proceeds when sterically less-hindered formamides
are employed. Moreover, the trapping reactions of transient intermediates with a variety of reactants,
leading to the multi-component coupling reaction, disclosed a broader aspect of the utility of N–C
bond insertion for the synthesis of oxygen atom-containing heterocycles. I hope that this review will
inspire new creative contributions to organic chemists.
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