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As one of the most important post-transcriptional modifications of RNA, 5-cytosine-
methylation (m5C) is reported to closely relate to many chemical reactions and biological
functions in cells. Recently, several computational methods have been proposed for
identifying m5C sites. However, the accuracy and efficiency are still not satisfactory. In this
study, we proposed a new method, m5Cpred-XS, for predicting m5C sites of H. sapiens,
M. musculus, and A. thaliana. First, the powerful SHAP method was used to select the
optimal feature subset from seven different kinds of sequence-based features. Second,
different machine learning algorithms were used to train the models. The results of five-fold
cross-validation indicate that the model based on XGBoost achieved the highest
prediction accuracy. Finally, our model was compared with other state-of-the-art
models, which indicates that m5Cpred-XS is superior to other methods. Moreover, we
deployed the model on a web server that can be accessed through http://m5cpred-xs.
zhulab.org.cn/, and m5Cpred-XS is expected to be a useful tool for studying m5C sites.
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INTRODUCTION

RNAmodification plays pivotal roles in many biological processes (Tang et al., 2001; Matzke et al.,
2004; Xu et al., 2013; Jespersen et al., 2017; Xue Chen et al., 2020). Until now, about 170 types of
RNA modifications have been discovered (Xuan et al., 2018), among which, 5-methylcytosine
(m5C) is one of the most abundant post-transcriptional modifications (PTCM). In this
modification, a methyl group is transferred to the fifth carbon atom of cytosine by RNA
methyl-transferase (Jespersen et al., 2017). The m5C modification plays important roles in
many biochemical reactions (Catania and Fairweather 1991; Fasolino et al., 2017; Yang et al.,
2017; He et al., 2020; Xue MiaoMiao et al., 2020; Zhang et al., 2020), such as the pathogenesis of
various cancers (He et al., 2020; Xue MiaoMiao et al., 2020; Zhang et al., 2020), rRNA assembly
(Zhang et al., 2020), and cellular aging (Catania and Fairweather 1991), etc. Thus, it is meaningful
to pinpoint m5C sites in RNA sequences.

Several experimental methods have been developed to identify m5C sites, including miCLIP-seq
(Hussain et al., 2013), Aza-IP-seq (Khoddami and Cairns 2013), bisulfite sequencing (Agris 2008;
Schaefer et al., 2010), and m5C-RIP-seq (Khoddami et al., 2019). However, these methods have their
own shortcomings (Fu et al., 2012). For example, bisulfite sequencing cannot detect m5C sites in low-
abundance RNA. Moreover, these existing experimental methods are time-consuming and
expensive. In recent years, with the development of computer technology, several computational
methods, especially those machine-learning based methods, have been developed for RNA m5C site
identification (Feng et al., 2016; Qiu et al., 2017; Sabooh et al., 2018; Zhang et al., 2018).
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The computational methods are mainly classified into two
categories: random forest (RF)-based models and support vector
machine (SVM)-based models. Based on RF, Qiu et al. (2017)
proposed iRNAm5C-PseDNC based on pseudo dinucleotide
composition (PseDNC) feature encoding, and Li et al. (2018)
constructed RNAm5Cfinder by using mononucleotide binary
encoding (MNBE) to encode the RNA sequences. Based on
these two feature encodings and K-tuple nucleotide frequency
component (KNFC), Song et al. (2018) developed a predictor
named PEA-m5C. By using SVM as the classifier, Feng et al.
(2016) developed m5C-PseDNC based on features of PseDNC.
Fang et al. (2019) built RNAm5CPred based on the features of
PseDNC, KNFC, and MNBE. By integrating multiple SVM
methods, Zhang et al. (2018) developed an ensemble model,
m5C-HPCR, by incorporating different physical–chemical
properties into PseDNC. Chen Xiao et al. (2020) proposed
another SVM-based model, m5CPred-SVM, which uses six
sequence-based features, including k-nucleotide frequency
(KNF), K-spaced nucleotide pair frequency (KSNPF), position-
specific nucleotide propensity (PSNP), K-spaced position-specific
dinucleotide propensity (KSPSDP), PseDNC, and chemical
property with density (CPD).

As mentioned above, different kinds of features have been
generated for predicting m5C sites, and the dimension of these
features can be very high; however, not all the features are
relevant for building machine learning models. Moreover, the
features with ultrahigh dimensions also pose a great challenge to
computer performance (Li et al., 2021). Selecting the optimal
feature subset by appropriate feature selection methods can not
only improve the accuracy of the prediction model, but also
effectively reduce the huge computing power required for model
training.

Recently, different feature selectionmethods have been used in
developing models for predicting the RNA modification sites.
Wang et al. (2018) used a minimum redundancy maximum
(mRMR) correlation algorithm to select discriminative features
from the features encoded based on RNA sequences. Sabooh et al.
(2018) developed a new computational method pm5CS-Comp-
mRMR by also using mRMR for selecting the discriminate
features. Furthermore, Visentini et al. (2016) first sorted the
features according to the F-score obtained in the eXtreme
gradient boosting (XGBoost) (Chen, 2016) package and then
selected the top 50 features based on the incremental feature
selection (IFS) strategy as the optimal feature subset. To reduce
the dimension of features, Chai et al. (2021a) proposed an
efficient m5C sites prediction approach, Staem5, based on
features selected by F-score. The SHapley Additive
ExPlanations (SHAP) (Wang and Gribskov 2019; Bi et al.,
2020) method, which can interpret the importance of features,
is another effective method for selecting relevant features. The
method was also used in several recent works (Bi et al., 2020;
Pathy et al., 2020; Effrosynidis and Arampatzis 2021).

In this study, we established a new method to predict m5C
sites by using XGBoost based on features selected by SHAP. We
named this method m5Cpred_XS, which can be used to predict
m5C sites in multiple species. Extensive experiments
demonstrated that the proposed predictor, m5Cpred_XS,

outperformed other existing prediction methods. Finally, a
web server (http://m5cpred-xs.zhulab.org.cn/) was deployed for
the users.

MATERIALS AND METHODS

Overall Framework of m5Cpred_XS
For building our model reasonably, we conducted our study in six
steps. I) A benchmark data set was collected. The benchmark data
set was divided into the training set and the independent test set.
II) The features were extracted from RNA sequences. III) The
SHAP-based feature selection was carried out to select the
optimal feature subset. IV) The XGBoost was used to train the
model. V) The comparison and analysis of different models was
conducted. VI) A web server for predicting m5C sites was
developed for the community. The overall flow chart of our
study is shown in Figure 1.

Benchmark Data Sets
For fair comparison, we used the same data sets as in Chen Xiao
et al. (2020). In their work, they collected data for three species:H.
sapiens, M. musculus, and A. thaliana. As shown in Table 1, the
data sets contain 269, 5563, and 6289 positive samples for the
three species, respectively, and the numbers of negative samples
are the same as positive samples. The positive samples of H.
sapiens, M. musculus, and A. thaliana were collected from the
work of Yang et al. (2017), Khoddami et al. (2019), and Cui et al.
(2017), respectively. For the details about how the data sets were
obtained, please refer to Chen Xiao et al. (2020).

To build and evaluate the models, the benchmark data sets
were divided into two parts: the training data sets and the
independent test sets. The training data sets were used for the
model construction, cross-validation, and the determination
of the hyperparameters of machine learning algorithms,
whereas the independent test sets were used for testing the
prediction performance and generalization ability of the
models. For A. thaliana, 1000 positive and 1000 negative
samples were randomly selected from the data set as the
independent test data set, and the remaining 5298 positive
and 5298 negative samples were selected as the training data
set. Similarly, 1000 positive and 1000 negative samples from
M. musculus’ benchmark data set were selected as the
independent test set, and the remaining 4563 positive and
4563 negative samples were selected as the training data set.
For H. sapiens, 69 positive and 69 negative samples were
randomly selected as the independent test set, and the
remaining 200 positive and 200 negative samples were
selected as the training data set. The specific partitioning of
the data sets is shown in Table 1.

For each RNA segment, it can be expressed in the following
form:

Rλ(C) � N−λN−(λ−1) . . .N−1CN1 . . .Nλ−1Nλ.

In this formula, Nλ and N−λ represent the downstream and
upstream nucleotide with cytosine (C) at the center, respectively.
Previous studies (Hussain et al., 2013; Khoddami and Cairns
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2013; Qiu et al., 2017; Sabooh et al., 2018; Zhang et al., 2018;
Khoddami et al., 2019) show that the performance is better when
λ is set to 20. Therefore, in this study, we also set λ � 20, which
means that all the RNA segments have a length of 41 bp.

Feature Encoding Extraction
Enhanced Nucleic Acid Composition
ENAC encoding (Ahmad and Shatabda 2019) is used for feature
extraction in equal-length RNA sequences. It first determines a
fixed length window, and then the window is slid from the 5-
terminal to the 3-terminal of the RNA segment without interval.
The features of ENAC are expressed as follows (Han et al., 2019):

V � [NA,win1

S
,
Nc,win1

S
,
NG,win1

S
,
NU ,win1

S
,
NA,win2

S
,
NC,win2

S
, . . . ,

NC,winL−S+1
S

,
NG,winL−S+1

S
,
NU ,winL−S+1

S
].

In this formula, S represents the size of the sliding window,
and Nt,r represents the number of nucleotide t in this window r
(r � 1, 2, . . . , L − S + 1, t ∈ {A,C, G, U}). In this paper, the value
of S is set to five; thus, the dimension of ENAC is 148.

The Composition of K-Spaced Nucleic Acid Pairs
The CKSNAP feature encoding scheme (Cui et al., 2017; Ju and
Wang 2020) is based on the frequency of k-spaced nucleotide
pairs (k = 0, 1, 2, 3, 4, 5). For example, when k = 1, the nucleotide
pairs corresponding to k-spaced 16 possible nucleotide pairs
(i.e., “ApA″, “ApC″, “ApG″, . . ., “CpG″, “GpA″, . . ., “GpC″,
“UpU″, “UpA″, “UpC″, “UpG″), CKSNAP can be expressed as
the following formula:

(NApA

Ntotal
,
NApC

Ntotal
,
NApG

Ntotal
, . . . ,

NTpT

Ntotal
)

16

,

where p represents k arbitrary nucleotides, and NApA represents
the number of nucleotide pairs ApA appearing in the entire RNA
sequence. Ntotal represents the total number of nucleotide pairs
appearing in the RNA sequence with the interval k. A total

FIGURE 1 | The flowchart of m5Cpred_XS.

TABLE 1 | Training and test data sets of three species.

Datasetsa Length (bp) Positive subset Negativity subset

H_train 41 200 200
H_test 41 69 69
M_train 41 4,563 4,563
M_test 41 1,000 1,000
A_train 41 5,289 5,289
A_test 41 1,000 1,000

aH, M and H, M, A represent H. sapiens, M. musculus and A. thaliana, respectively.
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number of 96 (16p6) dimensional features were generated by
CKSNAP encoding.

Accumulated Nucleotide Frequency
ANF, also known as nucleotide density (ND), fully considers the
distribution and nucleotide frequency information of each
nucleotide in the RNA sequence (Chen Zhen, et al., 2020).
The density of a nucleotide ni at i position in RNA sequence
can be expressed as follows:

di � 1
i
∑i
j�1

f (Sj), f (q) � { 1, ni � q
0, otherwise,

where Sj represents the type of nucleotide at the sequence
position j. For example, an RNA sequence ‘AUCUCAUGAG,’
the densities of A at positions 1, 6, and 9 can be expressed as 1.00
(1/1), 0.33 (2/6), and 0.33 (3/9). The densities of U at positions 2
and 4 are 0.50 (1/2), 0.50 (2/4), respectively. In this way, the whole
RNA sequence can be expressed as (1.00.0.50.0.33.0.50,
0.20.0.33.0.43.0.13.0.33.0.20). ANF produces 41 dimensional
features for a 41-bp RNA sequence.

Nucleotide Chemical Property
Adenine (A), guanine (G), cytosine (C), and uracil (U) are the
four types of nucleotides in RNA, each of which has unique
chemical properties and physical structure. According to different
chemical properties, these four nucleotides can be divided into
three categories (Chen et al., 2016). The details are shown in
Table 2.

Based on the three types of chemical properties, A, C, U, and G
can be expressed as (1, 1, 1), (0, 1, 0), (1, 0, 0), and (0, 0, 1),
respectively. The feature dimension generated by NCP is 123.

Binary Encoding
The method of using a four-dimensional binary vector to encode
the nucleotide is called the binary encoding scheme (Foster et al.,
2003) by which A, C, G, and U are encoded as (1, 0, 0, 0), (0, 1, 0,
0), (0, 0, 1, 0), and (0, 0, 0, 1), respectively. Thus, we obtained a
164-dimensional feature vector for an RNA segment containing
41 nucleotides.

Series Correlation Pseudo Dinucleotide Composition
The expression of SCPseDNC (Chen et al., 2014) coding is as
follows:

D � [d1, d2, d3, . . . d16, d16+1, . . . , d16+λ, . . . , d16+λΛ]T ,

where dk represents

dk �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f k∑16

i�1 f i + w∑λ

j�1θj
(1≤ k ≤ 16)

wθk−16

∑16

i�1f i + w∑λΛ

j�1θj
(17≤ k ≤ 16 + λΛ)

.

Here, fk(k � 1, 2, . . . , 16) is the standardized occurrence
frequency of the 16 types of dinucleotides in a sequence, λ
represents the highest counted rank (or tie) of the correlation
along the nucleotide sequence, w is the weight, which
ranges from zero to one, and Λ is the six physicochemical
indices, including ‘Roll (RNA)’, ‘Rise (RNA)’, ‘Shift
(RNA)’, ‘Twist (RNA)’, ‘Slide (RNA)’ and ‘Tilt (RNA)’.
θj (j � 1, 2, . . . , λ) is the j-tier correlation factor, defined as
follows:

θ1 � 1
L − 3

∑L−3
i�1 j

1
i,i+1

θ2 � 1
L − 3

∑L−3
i�1 j

2
i,i+1

. . . . . .

θΛ � 1
L − 3

∑L−3
i�1 j

Λ
i,i+1 (λ< L − 2)

. . . . . .

θλΛ−1 � 1
L − λ − 2

∑L−λ−2
i�1 jΛ−1i,i+1

θλΛ � 1
L − λ − 2

∑L−λ−2
i�1 jΛi,i+1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where the correlation function jςi,i+k is defined as

{ Jςi,i+m � Pς(RiRi+1)Pς(Ri+mRi+m+1)
ς � 1, 2, . . . ,Λ;m � 1, 2, . . . , λ; i � 1, 2, . . . , L − λ − 2

,

where ς is the number of physicochemical indices. Pς(RiRi+1) is
the value of the ς-th physical and chemical index of the
i-dinucleotide RiRi+1. Pς(Ri+mRi+m+1) refers to the value of the
ς-th physical and chemical index of the i +m-dinucleotide
Ri+mRi+m+1. In this paper, we set λ � 20 and w � 0.9 to
generate a 136-dimensional feature vector.

Word2Vec by FastText
FastText is a natural language model released by Facebook
(Joulin et al., 2017). By considering the RNA segments as
sentences, we used the FastText program to build a word2vec
model and then to encode the RNA segments as word vectors.
Both skipgram and cbow models can be trained in FastText; we,
thus, trained a cbow model to generate word embeddings for
RNA segments. A total of 100-dimensional feature data was
generated by using FastText.

Feature Selection
Feature selection is an important step in building effective
machine learning models when high-dimensional features were

TABLE 2 | Chemical structure of each nucleotide.

Chemical property Class Nucleotides

Ring Structure Purine A, G
Pyrimidine C, U

Functional Group Amino A, C
Keto G, U

Hydrogen Bond Strong C, G
Weak A, U
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generated. In this study, three different feature selection methods
were employed to select the optimal feature subsets. As one of the
frameworks for explaining the prediction model, the SHAP
algorithm was proposed to characterize feature importance
and assess feature behavior (Swann et al., 2011). The
contribution of each feature can be evaluated by the SHAP
value, which is calculated by

Γi � ∑
S⊆F,{i}

(|S|!(|F| − |S|−1)!/|F|!)[ f S∪{i}(xS∪{i}) − f S(xS)],
where Γi represents the importance score of the feature i, F
denotes the set of all features, and S expresses all feature
subsets obtained from F without feature i. The predictive
results of the two models based on fS∪{i} and fS were
compared with the current input fS∪{i}(xS∪{i}) − fS(xS), where
xS represents the values of the input features in the set S. To
estimate Γi based on the 2|F| difference, the SHAP method
approximates the Shapley value by performing Shapley
sampling or Shapley quantitative influence.

The F-score (Polat and Guenes 2009) is another feature
selection method that measures the discriminatory ability of
two sets of real values. The F-score value of each feature in
the data set can be calculated by the following equation:

Fi �
(�x(+)i − �xi)2 + (�x(−)i − �xi)2

1
n+−1∑n+

k�1(x(+)k,i − �x(+)i )2 + 1
n−−1∑n−

k�1(x(−)k,i − �x(−)i )2,
where Fi represents the F-score value of the ith feature; �xi, �x

(+)
i ,

�x(−)
i are the average of the ith feature of all, positive, and

negative samples of the data set, respectively; n+ and n− mean
the numbers of positive and negative samples in the data set,
respectively; x(+)

k,i is the ith feature of the kth positive sample;
and x(−)k,i is the ith feature of the kth negative sample. Thus, the
numerator means the variance between means of the positive
and negative samples, and the denominator represents the sum
of variances of positive and negative samples. The larger
the F-score, the more likely this feature is to be more
discriminative.

The third feature selection method used in this study is
maximum relevance minimum redundancy (mRMR), which
was developed by Peng et al. (Hanchuan et al., 2005). In this
method, mutual information (MI) is used to evaluate the
relationships among the features and the labels, and the goal
of the method is to identify features that can maximize the
relevance between features and labels and simultaneously
minimize the relevance between the features. The following
equation is used to select features recursively:

max
f j∈Ωr

⎡⎢⎢⎢⎣I(f j, l) − 1

|Ωs| ∑f i∈Ωs
I(f j, f i)⎤⎥⎥⎥⎦,

where Ωs represents the subset with selected features and
Ωr represents the subset of remaining features; fj and fi

represent the features in Ωs and Ωr, respectively; l
represents the label vector; I(x, y) means the mutual
information between vector x and y, which can be
calculated as follows:

I(x, y) � ∫∫ p(x, y)log p(x, y)
p(x)p(y) dxdy,

where p(x, y) is the joint probabilistic density and p(x), p(y) are
the marginal probabilistic densities.

Classifier
The XGBoost was a distributed gradient enhancement library that
was widely used in classification scenarios (Ji et al., 2019; Zhao
et al., 2019; Ding et al., 2020; Samat et al., 2020). It has many
advantages, such as flexibility, efficiency, and portability. The
basic principle of this algorithm is to assign quantitative weight to
each leaf node of a series of decision trees. The parallel enhanced
trees are provided by XGBoost. This algorithm has very good
ability to process sparse and high-dimensional data, and it also
inherits the high accuracy of the original boosting algorithm.
Some researchers apply this algorithm in bioinformatics, such as
the prediction of m6A (Qiang et al., 2018; Zhao et al., 2019) and
m7G sites (Bi et al., 2020). In this paper, we used a python
package to build the XGBoost model and used a grid search
method to optimize hyperparameters, max_depth, learning_rate,
and n_estimators. The ranges of these three hyperparameters are
(2, 4, 6, 8,10, 12, 14.16), (0.005, 0.01, 0.02, 0.05, 0.1), and
(1,600,1800,2000, 2,200, 2,400, 2,600, 2,800), respectively.
Finally, we obtained different optimal hyperparameters for
different species. The optimal hyperparameters for three
species are shown in Table 3.

Evaluation Criteria
Cross-validation is often used to evaluate the performance and
generalization ability of machine learning models. In this paper,
five-fold cross-validation was used to evaluate the models, and the
random sampling method was used to divide the training data set
into five subsets with very close data volume (Fushiki 2011). In
each training, one of the five subsets was used as validation data
set, and the other four were used for training the model. Thus, a
total of five m5C site prediction models were obtained. Finally,
the prediction results of these five models were evaluated, and the
five evaluation values were averaged as the ultimate evaluation
indices. Similarly, this five-fold cross-validation was also adopted
for hyperparameter selection, algorithm comparison, etc.

Different evaluation metrics are used in bioinformatics
classification. In this study, we selected the accuracy (Acc),
sensitivity (Sen), specificity (Spe), precision (Pre), Matthews
correlation coefficient (Mcc), and F1-score as the main
evaluation metrics (Zhang et al., 2019; Lv et al., 2020). Counts
of true positive, true negative, false positive, and false negative
predictions were recorded as TP, TN, FP, and FN, respectively.
Thus, the six metrics can be represented as follows:

TABLE 3 | The optimal hyperparameters of XGBoost for three species.

Species learning_rate max_depth n_estimators

H. sapiens 0.05 2 2000
M. musculus 0.02 6 2,600
A. thaliana 0.01 16 1800
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sen � TP
TP + FN

Spe � TN
TN + FP

Pre � TP
TP + FP

Acc � TP + TN
TP + FP + TN + FN

Mcc � TNpTP − FNpFP������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

F1 � 2pTP
(2pTP + FP + FN)

In addition to the above evaluation indicators, the precision
recall curve (PRC curve) (Keilwagen et al., 2014; Saito and
Rehmsmeier 2017) and receiver operating characteristic curve
(ROC curve) (Fawcett 2006; Li et al., 2019) were also used to
evaluate the model. These two curves have the ability to evaluate
the prediction performance of the proposed method in the whole
decision value range, and the areas under the curves (AUPRC and
AUROC) are often used to quantify the performance of the
models. We quantify the performance of the model by plotting
these two kinds of curves and calculating the areas under the ROC
and PRC curves.

RESULTS

Models Based on Features Selected by
SHAP
Seven kinds of features were generated from the RNA segments of
the three species of which the dimension is 808 in total.
Considering the redundancy between the features, SHAP was
used to select the optimal feature subsets by which the scores of
importance of the 808-dimensional features were calculated
based on XGBoost ensemble algorithm. Figure 2 shows the

cross-validation AUROC values of models based on the top n
features. The highest AUROCs were obtained when the top 48,
228, and 208 features were used for H. sapiens,M. musculus, and
A. thaliana, respectively. The corresponding AUROC values are
0.935, 0.834, and 0.787, for the three species, respectively.

In addition, Table 4 shows all the evaluation metrics for the
models based on features selected by SHAP and the models based
on the original 808 features. It indicates that the models based on
features selected by SHAP achieved higher values than the model
based on the original 808 features for most of the metrics, which
demonstrates the advantages of using SHAP for feature selection.

Comparison With Other Feature Selection
Methods
Besides this, another two kinds of feature-selection methods,
F-score (Polat and Guenes 2009) and mRMR (Li et al., 2017;
Bugata and Drotar 2020), were also used to select the optimal
feature subsets. The cross-validation AUROCs of the models
based on the top n features selected by these two methods are also
plotted in Figure 2. As shown in Figure 2, generally, the models
based on features selected by SHAP are superior to the models
based on features selected by the other two methods. Thus, we
used the feature subsets selected by SHAP as the optimal feature
subsets.

Models Based on Different Classifiers
To verify the effectiveness of the XGBoost algorithm in m5C site
prediction, two other learning algorithms, random forests (Biau
2012; Ziegler and Konig 2014; Li et al., 2018) and support vector
machine (Boopathi et al., 2019; Chen et al., 2019; Liu et al., 2020),
were also used to build models based on the optimal feature
subsets selected by SHAP. The hyperparameters of RF and SVM
were also optimized by grid search.

Table 5 shows the five-fold cross-validation performances for
the models based on the three different learning algorithms. For
A. thaliana, the AUROC value of the model based on XGBoost
is 0.787, which is higher than the models based on RF (0.780)
and SVM (0.768). For M. musculus, the AUROC value of the

FIGURE 2 | The cross-validation AUROC values of models based on the top n features selected by SHAP, mRMR, and f-score.
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model based on XGBoost is 0.834, which is also higher than the
models based on RF (0.795) and SVM (0.824). For H. sapiens,
the AUROC value of the model based on XGBoost is 0.935,

which is also higher than the models based on RF (0.911) and
SVM (0.903). The ROC and PRC curves for three species are
shown in Figure 3. As shown in Figure 3, for H. sapiens, the

TABLE 4 | The five-fold cross-validation results for models based on features selected by SHAP or the original 808 features.

Species Feature used Pre (%) Sp (%) Sn (%) Acc (%) F1 MCC AUROC

H.sapiens Features selected by SHAP 83.2 82.0 89.0 85.5 0.860 0.712 0.935
808 features 78.9 78.5 80.5 79.5 0.797 0.590 0.873

M.musculus Features selected by SHAP 75.1 74.9 75.6 75.3 0.754 0.505 0.834
808 features 74.7 74.2 76.1 75.1 0.754 0.503 0.831

A.thaliana Features selected by SHAP 74.8 76.9 68.5 72.7 0.715 0.456 0.787
808 features 73.6 75.9 67.3 71.6 0.703 0.434 0.779

TABLE 5 | The five-fold cross-validation performance of models built based on different classifiers with the features selected by SHAP.

Species Classifiers Pre (%) Sp (%) Sn (%) Acc (%) F1 MCC AUROC

H. sapiens RF 82.8 82.5 84.5 83.5 0.837 0.670 0.911
SVM 79.9 79.0 83.5 81.3 0.817 0.626 0.903
XGBoost 83.2 82.0 89.0 85.5 0.860 0.712 0.935

M. musculus RF 70.7 69.2 74.4 71.8 0.725 0.437 0.795
SVM 73.5 72.6 76.0 74.3 0.747 0.487 0.824
XGBoost 75.1 74.9 75.6 75.3 0.754 0.505 0.834

A. thaliana RF 75.1 78.4 65.3 71.8 0.699 0.441 0.780
SVM 74.2 78.2 62.9 70.5 0.681 0.416 0.768
XGBoost 74.8 76.9 68.5 72.7 0.715 0.456 0.787

FIGURE 3 | The ROC curves and PRC curves of five-fold cross-validation results based on three learning algorithms for the three species.
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AUPRC of the model based on XGBoost is 0.942, which is
higher than the models based on RF (0.910) and SVM (0.897).
Similarly, for A. thaliana, the AUPRC of the model based on
XGBoost is 0.794, which is higher than that based on RF
(0.784) and SVM (0.771). In addition, for M. musculus, the
AUPRC of the model based on XGBoost is 0.827, which is
higher than the models based on SVM (0.812) and RF (0.791).
Thus, the models built by using XGBoost were selected as our
final models.

Comparison With Other Existing Methods
To further evaluate the generalization of our models, the
predictive results of our models on the independent test sets
were compared with other existing methods, iRNA-m5C (Lv
et al., 2020), m5CPred-SVM (Chen Xiao et al., 2020),
RNAm5Cfinder (Li et al., 2018), iRNAm5C-PseDNC (Qiu
et al., 2017), RNAm5CPred (Fang et al., 2019), PEA-m5C
(Song et al., 2018), and Staem5 (Chai et al., 2021b).
However, not all of these methods can predict m5C sites in
all three species. For example, RNAm5Cfinder (Li et al., 2018)
can predict m5C sites forH. sapiens andM. musculus but not for
A. thaliana. iRNAm5C-PseDNC (Qiu et al., 2017) and
RNAm5CPred (Fang et al., 2019) can only predict the m5C
sites of H. sapiens, and PEA-m5C (Song et al., 2018) can only be
used for prediction of A. thaliana. By using the default decision
threshold, Table 6 shows that our model achieved the highest
performance for all seven evaluation metrics except specificity
for H. sapiens compared with other state-of-the-art methods.
For M. musculus, our model obtained the best AUROC, MCC,
accuracy, and FOR (false omission rate). For A. thaliana, our
model achieved the highest values for all seven evaluation
metrics. Thus, we prove the superiority of our m5Cpred_XS
model for predicting the m5C sites for three species. By using
other decision thresholds as shown in Table 6, the precisions,

specificities, accuracies, and MCCs of our models can be
improved; however, other evaluation metrics, such as
sensitivities and F1 scores drop away.

It is noted that the predictive accuracies of iRNA-5mC and
PEA-m5C on the independent test sets are even less than 0.50.
The possible reason is that the corresponding training data sets
for building these models are small. For example, the model of
iRNA-m5C for homo sapiens is based on a data set that only
contains 120 positive samples, and PEA-m5C is based on a data
set that contains 1196 positive samples. Both data sets were
smaller than the data sets used in this study. The small size of
the data set limits the generalization of the model on the
independent test set. In addition, the model was not evaluated
on an independent test set in the original paper of iRNA-m5C
and the redundancy of the data set used for PEA-m5C was not
removed.

Implementation of the m5CPred-XS Web
Server
To facilitate the use of our model, we built a web server that is
freely available at http://m5cpred-xs.zhulab.org.cn/. The
server was implemented using flask, docker, and nginx. The
users can easily carry out the prediction by the following
procedures: First, users can type the query RNA sequences
into the input box or upload a FASTA format file. (Note that
the input sequence should be in FASTA format, and the length
of each query sequence should be longer than 41 bp.) After
that, one of the three species, H. sapiens, M. musculus, and A.
thaliana, should be chosen. Users can provide their email
address as a way to obtain the query results. Then, by
clicking the “submit” button, the server generates a unique
task ID and do the calculation until the final result is reached.
During this process, you can query the task status by task ID.

TABLE 6 | Comparison with other existing models on the independent test sets.

Species Modela Pre (%) FOR (%)b Sp (%) Sn (%) Acc (%) F1 Mcc AUC

H. sapiens RNAm5Cfinder 76.5 41.3 88.4 37.7 63.1 0.505 0.303 0.635
iRNA-m5C 43.9 55.5 46.4 42.1 44.2 0.429 -0.116 –

iRNAm5C-PseDNC 60.1 49.6 97.1 4.4 50.7 0.081 0.039 –

RNAm5CPred 68.1 30.3 66.7 71.0 68.9 0.695 0.377 0.772
m5CPred-SVM 78.8 23.6 79.7 75.4 77.5 0.770 0.551 0.858
Our method (Threshold = 0.5) 80.6 21.1 81.2 78.3 79.7 0.794 0.594 0.885
Our method (FPR ≈ 10%) 0.875 24.4 89.9 71.0 80.4 0.784 0.620 0.885

M. musculus RNAm5Cfinder 64.5 43.8 78.9 38.6 58.8 0.483 0.191 0.593
iRNA-m5C 75.1 49.9 99.8 0.6 50.2 0.012 0.032 –

m5CPred-SVM 73.0 30.0 74.9 67.9 71.4 0.704 0.429 0.775
Staem5 69.7 30.3 77.8 66.1 71.9 0.735 0.442 0.787
Our method (Threshold = 0.5) 74.3 29.9 76.8 67.2 72.0 0.706 0.442 0.790
Our method (FPR = 15%) 79.9 32.3 85.0 59.5 72.3 0.682 0.460 0.790

A. thaliana iRNA-m5C 73.5 26.7 75.6 72.4 74.1 0.729 0.481 –

PEA-m5C 43.8 55.6 45.4 43.2 44.3 0.454 -0.114 –

m5CPred-SVM 76.0 24.4 76.1 75.5 75.8 0.757 0.516 0.836
Staem5 74.2 25.8 72.6 74.8 73.7 0.734 0.474 0.829
Our method (Threshold = 0.5) 77.1 23.6 77.4 76.1 76.8 0.766 0.535 0.838
Our method (FPR = 20%) 78.8 24.2 80.0 74.4 77.2 0.765 0.545 0.838

aThe settings in the parentheses mean different decision thresholds for determining positive prediction.
bFOR, means false omission rate and FOR = FN/(FN + TN).
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When the task was done, the results would be sent back to the
users as an email attachment.

DISCUSSIONS

Analysis of Features Selected by SHAP
To further analyze the features selected by SHAP, the most
important top 20 features for the three species are shown in
Figure 4, in which the horizontal axis shows the distribution of
the SHAP values and the vertical axis shows the features. If the
SHAP values are positive, it will help to predict the m5C sites.
Otherwise, it means the prediction tends to be of the
negative class.

Figure 5 shows the distribution of the top 20 features in the
seven types of features for three species. Overall, the top 20 most
important features are not evenly distributed in the seven types of
features for the three species. ENAC and SCPseDNC are the two
types of features that appear in the top 20 features of all three
species. ENAC represents the detailed distribution of nucleotides
in each slide window. SCPseDNC represents the detailed
distribution of dinucleotides and the distribution of its
physical–chemical properties. Our results indicate that the
distribution of nucleotides and their properties are related to
the modification. Specifically, when identifying m5C sites of H.

sapiens, features belonging to ENAC account for the largest
proportion of the top 20 most important features, including a
total of seven features. The three types of features, binary, ANF,
and word2vec, are not included in the top 20 most important
features, which indicates that these features contribute little to the
prediction m5C sites of H. sapiens. ForM. musculus, five features
from NCP and SCPseDNC appeared in the top 20 features, and
ANF and CKSNAP did not appear. For A. thaliana, five features
of SCPseDNC and FastText appeared in top 20 features, and NCP
was not included. These results indicate that the relevant features
are related to the data sets, and feature selection is helpful for
building high-performance models.

Moreover, the principal component analysis was used to
visualize the effectiveness of the selected features. Figure 6
shows that the boundaries between positive and negative
samples for the three species are a little bit clearer in the
features selected by SHAP than the original 808 dimensional
features.

Cross-Species Validation
To further evaluate the generalization of our models, we
conducted the cross-species validation to analyze the species-
specificity and transferability of the models that were tested on
the three independent test sets of the three species. Figure 7
shows that the models of all three species performs well

FIGURE 4 | Top 20 features sorted by SHAP for the three species.

FIGURE 5 | Distribution of top 20 features in the seven types of features for the three species.
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FIGURE 7 | The heat map for the cross species predictive AUROCs. The models (y-axis) were tested on the three independent test sets (x-axis).

FIGURE 6 | PCA plots for the original 808 dimensional features and features selected by SHAP for the three species. Upper panel: the original 808 dimensional
features; Lower panel: the features selected by SHAP.
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(AUROC>0.7) on the independent test set of H. sapiens.
However, the model of H. sapiens does not performs well on
the independent test sets of the other two species. Figure 7 also
shows that the model of M. musculus performs on the
independent set of H. sapiens even better than that of M.
musculus. In addition, the model of A. thaliana performs
worse on the independent test set of M. musculus. We thought
the small size of the benchmark data set of H. sapiens was one of
the possible reasons for the results. The other reason is that both
M. musculus and H. sapiens are mammals.

CONCLUSION

In this study, we proposed a new computational model,
m5Cpred_XS, for predicting m5C sites. Three different
feature-selection methods were used to select the optimal
subset from 808 dimensional data of seven kinds of features. It
turns out that the features selected by SHAP are more relevant
compared with the features selected by the other two methods.
The selected feature subsets were used to build our models. Our
results show that the models based on XGBoost are superior to
the models trained with RF and SVM. The m5Cpred_XS was
further compared with other existing methods on the

independent test sets, which demonstrates that our model
outperforms the other methods according to AUROC values.
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