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ABSTRACT

Molecular epidemiology of Clostridium difficile infection (CDI) has been extensively studied in North America and Europe;
however, limited data on CDI are available in the Asia-Pacific region. A multicentre retrospective study was conducted in
this region. C. difficile isolates were subjected to multilocus sequence typing (ST) and antimicrobial susceptibility testing.
Totally, 394 isolates were collected from Hangzhou, Hong Kong, China; Busan, South Korea; Fukuoka, Japan; Singapore;
Perth, Sydney, Australia; New York, the United States. C. difficile isolates included 337 toxin A-positive/B-positive/binary
toxin-negative (A*B*CDT), 48 AB*CDT, and nine A*B*CDT". Distribution of dominant STs varied geographically with
ST17 in Fukuoka (18.6%), Busan (56.0%), ST2 in Sydney (20.4%), Perth (25.8%). The antimicrobial resistance patterns were
significantly different among the eight sites (y> = 325.64, p < 0.001). Five major clonal complexes correlated with unique
antimicrobial resistances. Healthcare-associated (HA) CDI was mainly from older patients with more frequent
antimicrobial use and higher AB* positive rates. Higher resistance to gatifloxacin, tetracycline, and erythromycin were
observed in HA-CDI patients (x> = 4.76-7.89, p = 0.005-0.029). In conclusion, multiple C. difficile genotypes with varied
antimicrobial resistance patterns have been circulating in the Asia-Pacific region. AB" isolates from older patients with
prior antimicrobial use were correlated with HA-CDI.
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Introduction
healthcare-associated (HA) disease related to advanced

Clostridium difficile is a Gram-positive ubiquitous
endospore-forming anaerobic bacterium that is a lead-
ing cause of antimicrobial-associated diarrhea and coli-
tis [1]. C. difficile infection (CDI) is a toxin-mediated
disease, with clinical presentations ranging from mild
self-limiting diarrhea to life-threatening pseudomem-
branous colitis, toxic megacolon, bowel perforation
and sepsis [2]. While CDI was initially mainly a

age, exposure to antimicrobials and duration of hospi-
talization [3-5], there has been an increase in commu-
nity-associated (CA)- CDI worldwide [6].

Recent global epidemics of CDI have shown that
C. difficile is frequently transmitted between conti-
nents[7,8]. The epidemiology of CDI has been well
documented in North America and Europe, particu-
larly the emergence of ribotype (RT) 027 [6,9],
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however, the epidemiology continues to evolve. In
comparison to these published in 2011 [9], data from
2012 to 2014 in Europe showed that the distribution
of the most common RTs has changed and new RTs
have emerged with a wide diversity of genotypes in
different countries[10]. According to recent reports
from the United States of America (USA) the pro-
portion of RT 027 decreased significantly from 2011
to 2017 with increases of RTs: 106, 002, and 056 [11].

With its large population and expanding economy
over recent decades, Asia has been facing challenges
related to many infectious diseases, including CDI
[12]. The mean overall prevalence of CDI in Asia was
14.8% with a pooled C. difficile incidence density of
5.3/10,000 patient days [13]. A recent prospective
study in Japan found a higher C. difficile incidence den-
sity (7.4/10,000 patient days) than that previously
reported [14]. Based on limited data from China, CDI
among hospitalized patients with diarrhea had a pooled
prevalence of 14.0% [15]. However, in general, thereis a
paucity of data on CDI in Asia owing to poor awareness
among clinicians and an underestimation of contri-
bution of CDI to antimicrobial-related diseases [12].

The molecular epidemiology of CDI in different
regions in Asia is even more poorly understood than
the traditional epidemiological features of the disease.
There have been few studies in recent years with variable
results among different countries. In China, C. difficile
isolates with the dominant genotypes of ST2, ST3,
ST35, and ST37 have been shown to be highly resistant
to clindamycin and erythromycin, with high rates of
multidrug resistance [15-17]. In Japan, ST17, which
includes the closely related RTs smz/RT018 and smz'/
QX239, was the dominant genotype, followed by
RT014/ST2, RT002/ST8, and RT369/ST81 [12,14].
ST17 was also the predominant genotype in South
Korea, showing high resistance to clindamycin and
moxifloxacin [12,18]. However, in general, the molecu-
lar characteristics and antimicrobial resistances of
C. difficile strains circulating in patients with CDI in
the Asia-Pacific region have not been well-described,
and differences between HA- and CA-CDI in the
Asia-Pacific region are still unclear.

Therefore, to improve our understanding of CDI
epidemiology in the Asia-Pacific region, we conducted
a multicenter retrospective study at seven clinical sites
and one comparative clinical site to analyze differences
in molecular features and antimicrobial resistance pat-
terns of C. difficile isolates and investigate risk factors
associated with HA- and CA-CDI.

Materials and methods
C. difficile isolates

In total, 394 C. difficile isolates were collected from CDI
patients on a purely random basis without selection

between January 2015 and March 2016. Isolates from
Perth, Australia (n=31); Sydney, Australia (n=>54);
Busan, South Korea (n=50); Singapore (n=29);
Fukuoka, Japan (n=70); and Hong Kong, China (n
=50) were sent to our laboratory in transport medium
for anaerobes. A total of 60 isolates were from
New York, USA for the purpose of comparison. Fifty
isolates were cultured from fecal samples collected
from CDI patients in Hangzhou, China, as previous
assays reported [16]. All isolates were recovered on
cefoxitin-cycloserine fructose agar plates (Oxoid,
Basingstoke, United Kingdom) incubated for 48 h at
37°C in an anaerobic chamber with GENbag Anaer
(bioMérieux, Marcy [I'Etoile, France). Six control
strains, including ATCC 43255 (RT087), ATCC
BAA-1870 (ST1, RT027), and ATCC BAA-1801
(RT010) were obtained from the American Type Cul-
ture Collection (ATCC; Manassas, VA, USA).

Collection of clinical data

A standardized questionnaire was completed for each
CDI patient at eight of the clinical sites, excluding
Hong Kong and Singapore, to record sex, age, CDI
type, CDI stage, antimicrobial treatment within the
prior 8 weeks, and biochemical examinations, includ-
ing white blood cells (WBCs), neutrophils, serum albu-
min, and creatinine, with cutoff values according to
standard values [19]. Patients with diarrhea induced
by other pathogens were excluded and HA- and
CA-CDI were defined on the basis of the Society for
Healthcare Epidemiology of America and the Infec-
tious Diseases Society of America guidelines [3,20].
Ethical approval for C. difficile isolate and clinical
data collection was received from the Institutional
Review Boards for each respective site. This study
was approved by the Ethics Committee of Zhejiang
Provincial Center for Disease Control and Prevention.

Detection of C. difficile toxin genes

Bacterial genomic DNA of C. difficile isolates and refer-
ence C. difficile strains (ATCC 43255, BAA-1870, and
BAA-1801) were prepared using a DNeasy Blood &
Tissue kit (Qiagen Inc., Valencia, CA, USA) according
to the manufacturer’s protocol. The housekeeping gene
tpi, toxin genes tcdA (toxin A) and tcdB (toxin B), and
binary toxin genes cdtA and cdtB were detected by
using a conventional PCR assay with the primer
sequences as previously described [21,22]. The PCR
amplicon sizes of c¢dtA and cdtB genes were 221-bp
and 262-bp, respectively [21]. The tcdA primers
amplified a 369-bp amplicon for toxin A-positive/B-
positive (A"B") strains and a 110-bp amplicon for
toxin A-negative/B-positive (A™B") strains [22]. After
amplification, the PCR products were analyzed by
agarose gel electrophoresis. A reference C. difficile



strain (ATCC 43255) was used as a positive control for
tcdA and tcdB and negative control for the binary toxin
genes. C. difficile ATCC BAA-1870 was used as a posi-
tive control for the binary toxin genes, and C. difficile
ATCC BAA-1801 was chosen as a negative control
for tcdA and tcdB and the binary toxin genes. A
blank, and positive and negative controls were exam-
ined in parallel for each test.

Multilocus sequence typing (MLST)

Seven housekeeping genes (adk, atpA, dxr, glyA, recA,
sodA and tpi) were selected, and MLST was performed
as previously described [22]. PCR products were
sequenced commercially by Sangon Biotech Co., Ltd.
(Shanghai, China). Data for C. difficile alleles were
deposited to determine STs in a public C. difficile
MLST database (accessible at http://pubmlst.org/
cdifficile).

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed by
using the agar dilution assay described by the Clinical
and Laboratory Standards Institute in 2017 [23]. All
isolates were subcultured on 5% Columbia blood agar
(Oxoid, UK) and incubated for 48 h anaerobically at
37°C. After adjusting the turbidity to a 0.5 McFarland
standard, aliquots (approximately 1 pL) of the cultures
was spotted onto 1.2% Brucella agar (containing 5%
lysed defiber sheep blood, 0.005%o0 hemin, and 0.1%
vitamin K1) plus antimicrobials at a given concen-
tration using a multipoint inoculator and incubated
anaerobically at 37°C for 48 h. The antimicrobials
tested were as follows: piperacillin-tazobactam (PIP-
TAZ), metronidazole, moxifloxacin, clindamycin,
tetracycline, fusidic acid, vancomycin, rifampicin, ery-
thromycin, ciprofloxacin, gatifloxacin, and levofloxa-
cin. Interpretation of the minimal inhibitory
concentration (MIC) results was based on previous
studies [16]. Recommended control strains of Bacter-
oides fragilis (ATCC 25285) and C. difficile (ATCC
700057) were utilized. The C. difficile isolates resistant
to three antimicrobial classes was defined as multidrug
resistance (MDR) according as previously described
[23].

Data analysis

Data were analyzed using Statistical Package for Social
Sciences (SPSS, Chicago, IL, USA) version 22.0. Chi-
square and Fisher’s exact tests were used to analyze
correlations among clinical characteristics, toxin gene
profiles, MLST types and antimicrobial susceptibility
profiles of C. difficile isolates. The t-test and nonpara-
metric statistics were used to compare differences in
ages among all sites. P values were calculated to assess
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the differences among groups, and results with P values
of less than 0.05 were considered statistically
significant.

Results
Analysis of clinical data at six sites

Clinical information was obtained for 315 patients with
CDI at six clinical sites, excluding Hong Kong and Sin-
gapore. All clinical data were analyzed and compared
among different clinical sites (Table 1). The following
parameters were found to be significantly correlated
with the presence of CDI among all six sites: age,
CDI type, fever higher than 38.3°C, neutrophils over
70%, serum albumin less than 35 g/L, creatinine
more than 111 pM, and antimicrobial use within the
prior 8 weeks (Table 1). No significant differences
were found in WBCs, and the proportion of WBCs
(cells x 10°/L) of more than 10 at all sites was less
than 50% (range: 26.7-44.3%). The mean age of
patients with CDI was significantly younger in Hang-
zhou than in Busan (t=5.19, P<0.001), Fukuoka
(Z=-5.18, P<0.001), and New York (Z=-3.11, P<
0.001) and tended to be younger in Perth (f=1.63,
P=0.107) and Sydney (Z=—1.67, P =0.095). The pro-
portions of HA-CDI were greater among older patients
in Fukuoka and Hangzhou than in Busan (y*=11.33,
P=0.001), New York (y*=16.46, P<0.001), Perth
(x*=18.55, P<0.001), and Sydney (y*=20.36, P<
0.001). The proportions of patients with CDI having
a fever of higher than 38.3°C were significantly in
Hangzhou and Fukuoka than in New York and Perth
(y*=13.93, P=0.001). Only 8.6% of patients with
CDI from Fukuoka had over 70% neutrophils, which
was significantly lower than those from the other five
sites (y*= 18.69-96.63, P < 0.001). The proportions of
patients with CDI having serum albumin levels less
than 35 g/L were much higher in Busan and Fukuoka
than in the other four sites (y*=33.49-86.32, P<
0.001). Furthermore, only 12.0% and 11.1% of patients
with CDI had a history of antimicrobial treatment
within the prior 8 weeks for cases occurring in Busan
and Sydney; these values were much lower than those
from other sites (y*=21.61-91.67, P < 0.001).

Antimicrobial susceptibility analysis

The antimicrobial resistance patterns of 394 C. difficile
isolates are presented in Table S1. Antimicrobial pat-
terns were significantly different among eight clinical
sites (XZ: 325.64, P <0.001). All isolates were suscep-
tible to vancomycin and metronidazole, with MIC
values of less than 0.5 and 2 pg/mL, respectively. No
isolates were resistant to PIP-TAZ in Busan,
New York, Singapore and Sydney. The rates of rifam-
pin resistance were much lower than those of other
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Table 1. Clinical information of CDI patients.

Busan Fukuoka

Hangzhou

New York Perth Sydney Analysis results

Characteristics (h=50) (n=70) (n=50) (n=60) (n=31) (n=54) )(2 P value
Gender, male (%) 9 (58.0%) 46 (65.7%) 32 (64.0%) 27 (45.0%) 16 (51.6%) 23 (42.6%) 10.99 0.052
Age, Mean (range) 67 (22-87) 67.1 (1-94)  53.4 (26-81) 59.6 (1-85)  58.3 (24-88) 66.2 (0.6-93) 36.96 <0.001
CDI type, HA-CDI (%) 32 (64.0%) 64 (91.4%) 40 (80.0%) 36 (60.0%) 16 (51.6%) 30 (55.6%) 31.20 <0.001
CDI stage, Primary CDI (%) 0 (100%) 70 (100%) 50 (100%) 53 (88.3%) 5 (80.6%) 50 (92.6%) Fe <0.001
Fever, >38.3°C (%) 14 (20.0%) 11 (22.0%) 1(1.7%) 2 (6.5%) - 14.34 0.002
WBC (cells x10°/L), >10 (%) 22 (44.0%) 31 (44.3%) 19 (38.0%) 16 (26.7%) 13 (41 .9%) 22 (40.7%) 5.38 0.371
Neutrophils, >70% (%) 1 (42.0%) 6 (8.6%) 20 (40.0%) 57 (95.0%) 27 (50.0%) 98.83 <0.001
Serum albumin (g/L), <35 (%) 42 (84.0%) 62 (88.6%) 22 (44.0%) 14 (23.3%) 0 16 (29.6%) 122,51 <0.001
Creatinine (umol/L), >111 (%) 7 (14.0%) 21 (30.0%) 5 (10.0%) 0 10 (32.3%) 14 (25.9%) 29.16  <0.001
Antimicrobial used within 8 weeks, Yes (%) 6 (12.0%) 59 (84.3) 30 (60.0%) 26 (43.3%) 19 (61.3%) 6 (11.1%) 97.95 <0.001

°F: Fisher's exact test.

antimicrobials in the Asia-Pacific region. The antimi-
crobial resistance rates were compared among three
continents as follows. The rates of fusidic acid resist-
ance in New York, Sydney, and Perth were significantly
higher than those in sites from Asia ()(2 =125.03, P<
0.001). However, the rates of moxifloxacin, tetra-
cycline, and erythromycin resistance in C. difficile iso-
lates from the three above sites were much lower than
those from other sites (X2=26.46—63.81, P<0.001).
The proportions of isolates resistant to gatifloxacin in
two sites from Australia were significantly lower than
those in other sites (y°=52.84, P<0.001). Notably,
186 (47.2%) of these isolates were MDR, although the
rate of MDR was significantly lower in isolates from
three sites in the USA and Australia than those from
sites in Asia (y*=51.35, P<0.001).

Genotyping analysis of C. difficile isolates

Of the 394 C. difficile isolates, 337 (85.5%) were positive
for both tcdA and tcdB and negative for both cdtA and
cdtB (A'B'CDT"), 48 (12.2%) including one from
New York, four from two sites in Australia, and 43
from other sites in Asia tested negative for tcdA and
positive for tcdB without cdtA and cdtB (A™B*
CDT7), and nine (2.3%) including two from Australia,
two from sites in Asia, and five from New York were
positive for tcdA, tcdB, cdtA, and cdtB (A"B*CDT™).

Busan
@ Fukuoka

.Hangzhou

L ® New York

® Hong Kong

L4 Singapore

®perth 4 Sydney

Singapore

The MLST analysis identified 68 different STs, and
five C. difficile isolates were not typed because several
housekeeping genes were not amplified. ST2 (n =12,
4.8%), ST3 (n=15, 6.0%), ST8 (n=21, 8.4%), ST17
(n=42, 16.9%), ST35 (n=14, 5.6%), ST37 (n=20,
8.0%), ST54 (n=18, 7.2%), ST63 (n=9, 3.6%), and
ST81 (n=17, 6.8%) were the dominant genotypes in
Asia. However, the different distribution of STs was
found in USA and Australia as follows. ST2 (n=7,
11.7%) and ST42 (n=11, 18.3%) were dominant ST's
in New York. ST2 (n=19, 22.4%) and ST8 (n =10,
11.8%) were dominant genotypes in two sites in Aus-
tralia. There was a significant difference on the distri-
bution of STs among three above regions (y*=24.73,
P<0.001).

Different sites had a variety of STs, exhibiting vary-
ing distributions (Figure 1). Two isolates from
New York and Sydney were ST11. The CDT-positive
isolates included three ST1 isolates (one from Hong
Kong, two from New York), three ST41 isolates (one
from New York, two from Perth), and three other
STs (ST32 and ST67 from New York, ST95 from Singa-
pore). The dominant genotypes between sites varied
significantly, with ST17 in Fukuoka (n=13, 18.6%)
and Busan (n=28, 56.0%); ST2 in New York as
above, Sydney (n=11, 20.4%) and Perth (n=38,
25.8%); ST8 in Hong Kong (n =10, 20.0%), Fukuoka
(n=9, 12.8%), and Sydney (n=7, 13.0%); ST63 in

B

== ST63

- ST81
ST110

mm Other STs

Fukuoka

New York

Hangzhou

Figure 1. Distribution of STs at each site in this study. A: The seven sites are distributed in the Asia-Pacific region, and one com-
parative clinical site is New York, USA. B: Each site had various STs with different types of distribution. The major STs of C. difficile

were labelled with different colours.



Singapore (n=9, 31.0%); ST42 in New York as above;
and ST3 (n=10, 20.0%), ST37 (n=13, 26.0%), and
ST54 (n =10, 20.0%) in Hangzhou.

Comparison of clinical characteristics between
HA- and CA-CDI

Of 315 patients with CDI with available clinical infor-
mation, one patient from New York belonged to neither
HA-CDI nor CA-CD], exhibiting onset between 4 and
12 weeks after the final discharge, as previously pub-
lished guidelines [3,20]. Clinical characteristics and gen-
otypes were compared between HA- and CA-CDI for
255 patients in the Asia-Pacific region with retrievable
C. difficile isolates (Table 2), the 59 patients from
New York were also analyzed (data not shown). In com-
parison with CA-CDI, HA-CDI had a significantly
higher frequency of age over 65 years and more frequent
antimicrobial use. Moreover, patients with HA-CDI had
a greater frequency of isolates with A™B" genotype than
patients with CA-CDI, although there were no signifi-
cant differences in the distributions of STs between
these groups (Table 2). Higher resistance rates to
gatifloxacin, tetracycline, and erythromycin was
observed in patients with HA-CDI (y*=4.76-7.89, p =
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0.005-0.029). C. difficile isolates related to CA-CDI
had much higher rates of fusidic acid resistance than iso-
lates related to HA-CDI in the Asia-Pacific region (Table
2) and New York (data not shown). Furthermore,
C. difficile isolates associated with CA-CDI had signifi-
cantly higher rates of moxifloxacin resistance than
isolates with HA-CDI in New York (Fisher’s exact test,
p=0.029) (data not shown).

Phylogenetic analysis based on MLST

The genetic diversity and phylogenetic relationships of
the 394 isolates were analyzed on the basis of MLST
patterns. The minimum spanning tree (MST) was gen-
erated as shown in Figure 2. In total, 68 STs were dis-
tributed in the phylogenetic tree. Five major clonal
complexes (CC) were artificially divided based on the
discriminating ability and typeability of MLST[24,25]
according the certain assay, among which more than
two allelic differences existed between each of the two
clusters, and there were fewer than two allelic differ-
ences between STs in the same cluster. The detailed
STs were shown in each CC in Figure 2. The STs in
CCl, CC2, and CC4 were distributed from various
regions; all STs in CC3 belonged to A™B" and mainly

Table 2. Differences of clinical characteristics, genotypes and antimicrobial resistance between HA-CDI

and CA-CDI.
No. (%) of CDI patients Analysis results
HA-CDI CA-CDI

Characteristics (n=182) (n=73) X P value

Gender, male (%) 111 (61.0%) 35 (47.9%) 3.62 0.057

Age, Mean (range) 63.5 (0.8-94) 61.0 (0.6-93)

Years of age, >65 (%) 87 (47.8%) 22 (30.1%) 6.64 0.010

Fever, >38.3°C 2 (12.1%) 5 (6.8%) 1.51 0.219

Primary CDI (%) 175 (96.2%) 66 (90.4%) 2.30 0.130

Antimicrobials used within 8 weeks (%) 3 (51.1%) 21 (28.8%) 10.51 0.001

Toxin gene pattern

A*B" (n=216) 148 (81.3%) 68 (93.2%) 5.63 0.018

A*B*CDT* (n=2) 1 (0.5%) 1(1.4%) F 0.532
A*B*CDT™ (n=214) 47 (80.8%) 67 (91.8%)

MLST type F 0.119
ST2 (n=27) 2 (6.6%) 15 (20.5%) 10.72 0.001
ST3 (n=15) 0 (5.5%) 5 (6.8%) 0.01 0.904
ST8 (n=21) 7 (9.3%) 4 (5.5%) 1.03 0.311
ST17 (n=43) 2 (17.6%) 11 (15.1%) 0.23 0.628
ST35 (n=12) 0 (5.5%) 2 (2.8%) 0.37 0.541
ST54 (n=12) 8 (4.4%) 4 (5.5%) <0.01 0.966
Other STs (n = 86) 59 (32.4%) 27 (37.0%) 0.49 0.485

A"B*(n=39) 34 (18.7%) 5 (6.8%) 5.63 0.018

MLST type F 1.000
ST37 (n=19) 16 (8.8%) 3 (4.1%) 1.66 0.198
ST81 (n=17) 15 (8.2%) 2 (2.7%) 173 0.189
Other STs (n=3) 3 (1.6%) 0 F 0.560

Antimicrobial resistance rate®
Fusidic acid, non-S (%) 101 (55.5%) 54 (73.9%) 5.13 0.024
Ciprofloxacin, non-S (%) 173 (95.1%) 71 (97.3%) 0.20 0.658
PIP-TAZ, non-S (%) 2 (6.6%) 4 (5.5%) <0.01 0.963
Rifampicin, non-S (%) 1 (6.0%) 4 (5.5%) <0.01 1.000
Moxifloxacin, non-S (%) 2 (39.6%) 20 (27.4%) 3.34 0.068
Gatifloxacin, non-S (%) 2 (45.1%) 19 (26.0%) 7.89 0.005
Clindamycin, non-S (%) 157 (86.3%) 65 (89.0%) 0.36 0.550
Levofloxacin, non-S (%) 70 (93.4%) 67 (91.8%) 0.21 0.647
Tetracycline, non-S (%) 8 (26.4%) 10 (13.7%) 4,76 0.029
Erythromycin, non-S (%) 9 (54.4%) 26 (35.6%) 735 0.007

2F: Fisher's exact test;  S: susceptible.
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Figure 2. Relationship of all C. difficile isolates based on MLST by MST. The number in the circle shows the ST type, and the size of
circle corresponds the total number of C. difficile isolates belonging to this ST. The number of allelic differences between STs is
showed on the branches. Nodes are connected by a dashed line if the allelic difference is over two alleles. Different colours corre-
spond to different sites. A: The MST of C. difficile isolates in the study, B: A part of MST-CC1 including ST34, 35, 44, 54, 58, 95, and
357; C: A part of MST-CC2 including ST2, 3, 4, 8,13, 14, 16, 17, 18, 28, 29, 32, 33, 42, 48, 49, 53, 66, 83,92, 101, 102, 110, 183, 203, and
322; D: A part of MST-CC3 including ST37, 81, and 219; E: A part of MST-CC4 including ST43, 104, 129, 152, 235, and 239; F: A part of

MST-CC5 including ST1, 41, 67, and 362.

came from Hangzhou and Fukuoka (69.0%, 29/42);
and STs in CC4 were predominantly from New York
(62.5%, 5/8). The remaining STs were distributed out-
side of the five major CCs (Figure 2).

Correlations between major genotypes and
antimicrobial resistance patterns

Correlations between antimicrobial resistance and
dominant genotypes are shown in Table S2. The anti-
microbial patterns for A"B" isolates were significantly
different from those of A™B* isolates (y*=35.11, P<
0.001). Eleven PIP-TAZ-resistant isolates were distrib-
uted in different STs, and only one isolate was found in
ST37 (A™B™). All ST81 isolates were susceptible to PIP-
TAZ and rifampin, but presented higher resistance
rates for other antimicrobials than those of other STs.
ST37 isolates possessed a higher rifampin resistance
rate than other STs (Fisher’s exact test, P<0.001).
ST?2 isolates had lower resistance rates to moxifloxacin,
tetracycline, and erythromycin than other antimicro-
bials. ST37 and ST17 isolates showed lower fusidic
acid resistance rates than other STs, except ST3 and
ST54 (y*=10.35-53.25, P<0.001). In general, the
resistance patterns for most antimicrobials were sig-
nificantly different among predominant STs (y°=
53.25-109.05, P < 0.001).

Correlations between major CCs and
antimicrobial resistance patterns

The distributions of antimicrobial resistance patterns
in five major CCs are shown in Table 3. The rates of
resistance to fusidic acid, ciprofloxacin, and PIP-TAZ
in CC3 were lower than those in other CCs, although
there were no significant differences. However,
C. difficile isolates had significantly higher rates of
resistance to rifampin, fluoroquinolone, tetracycline,
and erythromycin in CC3 in the A”B" group than in
other CCs in the A"B" group (X2:36.84—49.29, P<
0.001). No isolates resistant to PIP-TAZ, metronida-
zole, rifampin, moxifloxacin, vancomycin, tetracycline,
and erythromycin were found in CC4, in which the rate
of MDR was also significantly lower than in other CCs
(Fisher’s exact test, P = 0.001).

Discussion

In recent years, an increasing number of studies has
evaluated CDI epidemiology in Asia [12,26]. These
have suggested that CDI is a very much under-recog-
nized problem in Asia owing to poor clinical awareness
among physicians [12]. To date, small-scale data have
described CDI epidemiology within different countries
in Asia. However, the molecular characteristics and
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Table 3. Difference of antimicrobial resistance patterns in five clonal complexes of C. difficile isolates.

Clonal complexes based on MLST type (No. [%)] of non-susceptible isolates)

Analysis results

2

Antimicrobial CC1 (n=52) CC2 (n=204) CC3 (n=42) CC4 (n=15) CC5 (n=8) X P value
Fusidic acid 30 (57.7%) 121 (59.3%) 21 (50.0%) 10 (66.7%) 6 (75.0%) 2.63 0.622
Ciprofloxacin 51 (98.1%) 199 (97.5%) 40 (95.2%) 5 (100%) 8 (100%) F 0.806
PIP-TAZ 2 (3.8%) 12 (5.9%) 1 (2.4%) 0 0 F 0.908
Metronidazole 0 0 0 0 0 N/AP N/A

Rifampin 4 (7.7%) 4 (2.0%) 7 (16.7%) 0 1 (12.5%) F 0.001
Moxifloxacin 5 (9.6%) 75 (36.8%) 26 (61.9%) 0 3 (37.5%) 36.84 <0.001
Gatifloxacin 6 (11.5%) 92 (45.1%) 31 (73.8%) 4 (26.7%) 4 (50.0%) 39.49 <0.001
Vancomycin 0 0 0 0 0 N/AP N/A

Clindamycin 48 (92.3%) 186 (91.2%) 36 (85.7%) (93.3%) 5 (62.5%) F 0.115
Levofloxacin 47 (90.4%) 196 (96.1%) 39 (92.9%) (100%) 8 (100%) F 0.369
Tetracycline 23 (44.2%) 19 (9.3%) 3 (54.8%) 0 1 (12.5%) 67.92 <0.001
Erythromycin 35 (67.3%) 80 (39.2%) 35 (83.3%) 0 3 (37.5%) 49.29 <0.001
MDR 51 (98.1%) 194 (95.1%) 38 (90.5%) (66.7%) 6 (75.0%) F 0.001

3F: Fisher's exact test; °N/A: not applicable.

antimicrobial resistances of C. difficile isolates in the
Asia-Pacific region have not been fully elucidated,
despite the large population in this region. In this retro-
spective study, we found that there were significant
differences in ST distributions and antimicrobial resist-
ance patterns among the seven sites in the Asia-Pacific
region and New York. Patients with HA-CDI tended to
be older, have more frequent antimicrobial use, exhibit
lower infection rates with A"B" genotypes, and show
higher resistance to gatifloxacin, tetracycline, and ery-
thromycin than patients with CA-CDI in Asia-Pacific
region but not in New York. Five major CCs correlated
with unique antimicrobial resistances, and the rifam-
pin, fluoroquinolone, tetracycline, and erythromycin
resistance rates in the A™B" cluster were significantly
higher than those in the A"B" group.

Interestingly, a different distribution of STs was
found in different regions located in separate conti-
nents including Australia, USA, and Asian countries.
Moreover, specific STs were dominant in neighbouring
regions. ST17 was a dominant genotype in Fukuoka
and Busan, both of which were located in Northeast
Asia. Sydney and Perth, two major cities in Australia,
had the same dominant genotype, ST2. Similar data
has been reported previously [12,18]. In addition,
different sites had their own dominant genotypes, i.e.
ST3, ST37, and ST54 in Hangzhou; ST63 in Singapore;
ST8 in Hong Kong; and ST42 in New York. Addition-
ally, these sites showed different antimicrobial resist-
ance patterns.

CDI epidemiology in America has been changing in
recent years. ST42 has replaced ST1 as one of the most
frequent types in the USA [27], and ST42 has become
one of the most common genotype in Brazil [28]. How-
ever, CDI epidemiology in China presented stable, and
ST3, ST37, and ST54 have been being dominant geno-
types in different regions in China [15,16]. Conse-
quently, our study demonstrated that multiple
C. difficile genotypes are circulating in the Asia-
Pacific region and exhibit unique molecular character-
istics at each site. C. difficile isolates with the same ST's
may be transmitted between different regions through

food trade and travel in the Asia-Pacific region as pre-
viously reported [26]. Further studies focusing on
analysis of whole-genome sequences combined with
epidemiological data are required to investigate genetic
relationship between different sites for the same STs.

There were statistically significant differences in anti-
microbial resistance patterns not only among different
sites but also among the major STs identified in our
study. Our previous study also showed that the major
genotypes were associated with significantly different
antimicrobial resistance patterns in comparison with
other genotypes in C. difficile in Eastern China [16].
Antimicrobial resistance mechanisms in C. difficile
have been investigated and associated with genes and
gene mutations [29]. Different STs obtained various
mobile genetic elements containing different antimicro-
bial resistance-related genes at the different time in the
course of genome evolution, maybe resulting in signifi-
cant differences in antimicrobial resistance patterns
among the STs [8,30]. Although extremely high rates
of resistance to clindamycin, and levofloxacin were
observed at all sites, New York, Sydney, and Perth
showed lower rates for moxifloxacin, tetracycline, and
erythromycin resistance than isolates from Asian
locations. The low antimicrobial resistance rates in
these sites could have several explanations. In Australia,
the use of fluoroquinolones has historically been regu-
lated and restricted in both humans and food-produ-
cing animals [31]. Access to antimicrobials for clinical
use can only be obtained through physician prescription
and antimicrobials are not available for over the counter
purchase. Furthermore, antimicrobial stewardship pro-
grammes were established during the early stages of epi-
demic outbreaks and strictly implemented in the USA
and Australia, respectively [32-35]. As inappropriate
use of antimicrobials has been a major concern in recent
years in Asia, a stewardship approach to antimicrobial
use in humans and animals, when combined with
enhanced infection control, may help to decrease anti-
microbial resistance rates in the future.

Even though some clinical parameters were found to
be significantly correlated with CDI, small numbers of
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samples might lead to possible bias in our data analysis
results between sites. Thus, more clinical samples
should be collected to investigate differences on clinical
parameters of CDI patients among different countries
in the Asia-Pacific region. Notably, we found that the
mean age of patients with CDI in Hangzhou was
younger than that in other sites despite small numbers
of samples involved in this study. Similar results have
been reported in the other studies of CDI epidemiology
in China [16,36,37]. Interestingly, we also found the
high rates of HA-CDI with over 50% in each site,
and HA-CDI tended to be older patients with more fre-
quent antimicrobial use. Furthermore, C. difficile A"B*
genotypes infected more patients with HA-CDI, with
higher rates of gatifloxacin, tetracycline, and erythro-
mycin resistance, than patients with CA-CDI in the
Asia-Pacific region. These above molecular character-
istics of CDI were obviously different from those in
New York. To the best of our knowledge, this was
the first study elucidating the differences between
patients with HA- and CA-CDI in the Asia-Pacific
region and differences on molecular characteristics of
CDI in between the Asia-Pacific region and the other
region. While healthcare associated acquisition has
been the primary pathway for CDI increasing inci-
dence densities in the USA [38], recent data indicated
that over 40% of CDIs in the USA were community-
associated [6,39]; in Europe, 76.4% of CDI cases were
healthcare-associated [40]. However, the main trans-
mission pathway of CDI is still unknown in Asia, par-
ticularly China. Large-scale CDI epidemiological
investigations are required to clarify the main route
of transmission for CDI.

Our study had several limitations. First, all
C. difficile isolates used in this study were not collected
at the same period. CDI epidemiology is dynamically
changing; thus, the distributions of genotypes and anti-
microbial resistance patterns may have shown slight
bias during data analysis. Second, this was a retrospec-
tive study involving relatively small numbers of cases
recruited from each site. There were no detailed set
inclusion or exclusion criteria thereby potentially
resulting in a possible bias in our data analysis results
between sites. Third, as there is a paucity of data on
clinical outcomes in CDI patients, the differences of
clinical outcomes among different regions and among
CDIs with different molecular genotypes were not ana-
lyzed. Fourth, our study lacked some sites in Asian
countries and did not cover the whole Asia-Pacific
region. Thus, further investigations are required to
clarify the differences of clinical outcomes induced by
various genotypes of C. difficile in different regions,
and confirm the molecular characteristics of
C. difficile isolates in the Asia-Pacific region.

In conclusion, this was the first multicenter retro-
spective study in the Asia-Pacific region evaluating
differences in the molecular features and antimicrobial

resistance patterns of C. difficile isolates and investi-
gating risk factors in patients with HA- and CA-CDI.
Multiple C. difficile genotypes with varied antimicro-
bial resistance patterns have been circulating in the
Asia-Pacific region. A"B" isolates in older people and
individuals with prior antimicrobial use were associ-
ated with HA-CDI. Consequently, CDI has a major
presence in the Asia-Pacific region, and it is necessary
to initiate CDI surveillance through international col-
laboration and implement antimicrobial stewardship
programmes in order to prevent and control CDIL
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