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Abstract

Emerging evidence highlights the relevance of extracellular vesicles (EVs) in modulating human 

diseases including but not limited to cancer, inflammation, and neurological disorders. EVs can be 

found in almost all types of human body fluids, suggesting that their trafficking may allow for 

their targeting to remote recipient cells. While molecular processes underlying EV biogenesis and 

secretion are increasingly elucidated, mechanisms governing EV transportation, target finding and 

binding, as well as uptake into recipient cells remain to be characterized. Understanding the 

specificity of EV transport and uptake is critical to facilitating the development of EVs as valuable 

diagnostics and therapeutics. In this mini review, we focus on EV uptake mechanisms and 

specificities, as well as their implications in human diseases.
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1. Introduction

Extracellular vesicles (EVs) are heterogenous, membrane-bound packages containing 

complex cargos including nucleic acids, lipids, and proteins. While EVs were initially 

considered to be mechanisms for the discharge of cellular wastes [1], increasing evidence 

has implicated EVs as an important mean of intercellular communication via the 

transference of their cargo contents between cells [2–4]. Over the years, EVs have been 

broadly classified into two categories, namely exosomes and microvesicles (MVs), 

according to their physical sizes, biogenesis pathways, and cell surface markers. MVs are 

produced by the outward budding followed by pinching of the plasma membrane and range 

from 100 nm to 1000 nm in diameter [5]. In contrast, exosomes typically range from 30 nm 

to 100 nm in diameter and are formed as multivesicular endosomes (MVEs) from the 

maturation of intraluminal vesicles (ILVs), prior to their secretion via fusion with the cell 
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membrane [6]. Owing to the overlap in sizes, as well as the lack of consensus on specific 

surface markers of these EV categories, the International Society of Extracellular Vesicles 

(ISEV) has suspended and highly discourages the use of the aforementioned nomenclature 

for EV classification. Instead, the current guidelines set by ISEV follows that EVs can be 

termed based on, “(a) physical characteristics of EVs, such as size (“small EVs” (sEVs) and 

“medium/large EVs” (m/lEVs), with ranges defined, for instance, respectively, <100 nm or 

<200 nm [small], or >200 nm [large and/or medium]) or density (low, middle, high, with 

each range defined); (b) biochemical composition (CD63+/CD81+- EVs, Annexin A5-

stained EVs, etc.); or (c) descriptions of conditions or cell of origin (podocyte EVs, hypoxic 

EVs, large oncosomes, apoptotic bodies)” [7,8].

As sEVs (primarily the MVs and exosomes in the previous nomenclature) are implicated to 

a greater extent in various human diseases, we will focus on this EV subgroup throughout 

this review, unless otherwise stated.

EVs can be detected in almost all body fluids—including saliva, tears, blood, urine, and 

semen—and increasing evidence has pointed to its critical roles in physiological processes 

such as angiogenesis and immune regulation [9–11], as well as pathological conditions 

including neurological diseases and cancer [12,13]. EV uptake into recipient cells and the 

subsequent release of its contents—comprising of functionally active RNAs (such as 

microRNAs (miRNAs), mRNAs, and long non-coding RNAs (lncRNAs) and proteins—can 

modulate gene expression through the post-transcriptional regulation of target mRNAs and 

de-novo translation of EV-derived mRNAs [14]. Alternatively, EVs can induce intracellular 

signaling pathways in recipient cells via surface ligand-receptor interactions. Such 

alterations in gene expression and deregulation of signaling activities within the cells may 

result in phenotypic changes, leading to disease onset and progression.

The unique abilities of EVs to protect their cargo from enzymatic degradation and be 

modified for specific cell-targeting have also garnered massive interests for their potential as 

natural delivery vectors for therapeutic molecules. With emerging functions in physiological 

and pathological conditions, as well as therapeutic potential, it is imperative to understand 

the molecular mechanisms governing EV uptake by recipient cells. In this mini review, we 

will summarize the different ways in which EVs enter target cells and review the current 

knowledge on the specificity of EV uptake. In addition, we will highlight the roles of EVs in 

human diseases and discuss the potential of EVs as diagnostic and therapeutic agents for 

clinical applications.

2. EV Biogenesis, Isolation, and Characterization

Biogenesis of EVs mainly involves (1) the outward budding followed by pinching of the 

plasma membrane (commonly employed by MVs) and (2) the formation of multivesicular 

endosomes (MVEs) from the maturation of intraluminal vesicles (ILVs) (commonly 

employed by exosomes). MV shedding can often induced by intracellular physical and 

chemical activation such as an increase in cytosolic Ca2+ levels, as well as apoptosis [15]. 

MV formation can also be induced by the activation of the RHO family of small GTPases 
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and RHO-associated protein kinase (ROCK), key regulators of actin assembly and 

disassembly [16].

As opposed to MV biogenesis at the plasma membrane, exosomes originate from the 

endosomal compartment and involve multiple mechanisms that are responsible for processes 

ranging from cargo sorting to the transport and apposition of MVEs at the cell membrane for 

their release. The molecular processes mediating exosome formation can generally be 

distinguished by the involvement of the endosomal sorting complex required for transport 

(ESCRT) machinery (Figure 1).

2.1. ESCRT-Dependent Biogenesis

The involvement of ESCRT machinery in membrane shaping and scission provided insights 

into the mechanisms underlying ILVs and MVEs formation. It is now well established that 

the ESCRT-0 and ESCRT-I subunits form stable hetero-oligomers that act to recognize and 

cluster ubiquitinated cargo proteins, and thereafter recruit ESCRT-II for the assembly of the 

ESCRT-III complex to mediate membrane budding and scission [17].

2.2. ESCRT-Independent Biogenesis

Alternatively, exosomes can be generated in an ESCRT-independent manner involving 

ceramide, the syndecan/ALIX pathway and tetraspanins [18–20].

Although these mechanisms may be molecularly distinct from one another, exosome 

biogenesis often involves the concomitant dependence on multiple ESCRT-dependent and 

ESCRT-independent pathways governed by factors including cargo content, cell type, and 

external stimuli. Moreover, these different ways of production may account for the 

heterogeneity observed in EV populations secreted by different cells.

2.3. EV Cargo

It is well established that EVs carry a plethora of molecules, ranging from DNAs, RNAs to 

proteins and lipids, which can be transferred to recipient cells to elicit functional effects. 

However, little is known about the underlying mechanisms that may account for the specific 

repertoires of EV cargo as well as the heterogeneity in cargo compositions across different 

EVs populations and subtypes. Increasing evidence has pointed to the selectivity in cargo 

loading during EV biogenesis. Rather than a ‘universal’ regulation of cargo sorting into EVs, 

studies have demonstrated that it is a highly selective process that may be influenced by 

factors such as cell type of origin, physiological status of the donor cells and external 

stimulation [21,22]. Furthermore, a multitude of studies have identified specific proteins that 

may mediate the selective loading of molecules into EVs [23–26]. Critically, post-

translational modifications of these proteins are increasingly implicated in modulating their 

functions and the consequent sorting of their bound molecules into EVs [27].

2.4. MVE Secretion

Prior to their secretion into the extracellular space, MVEs must be transported, docked, and 

fused with the cell membrane. In general, the intracellular trafficking of MVEs requires 

molecular motors such as myosin, kinesins and dynein as well as GTPases for the 
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association with and rearrangement of the dynamic cytoskeleton. For example, the Rab11 

and Rab35 proteins have been shown to affect the docking and fusion of MVEs in 

erythroleukemia cells and oligodendrocytes, respectively [28,29]. In addition, Rab27a and 

Rab27b isoforms were demonstrated to positively regulate the motility of MVEs and 

docking at the plasma membrane via synaptotagmin-like protein 4 and exophilin 5 effector 

proteins [30]. Much like biogenesis, processes and the associated molecular regulators 

facilitating MVE secretion tend to vary across cell types and may be affected by the 

exposure to different exogenous stimuli.

2.5. EV Half-Life

Intravenously administered EVs were found to be detected as early as 2 min and can remain 

detected for as long as 30 min [31–33]. Studies have indicated that the in vivo half-life, 

biodistribution and clearance of EVs can vary greatly depending on factors including route 

of administration, cell-type origin, and availability of target cells for EV internalization [34].

2.6. EV Separation and Characterization

Biophysical and biochemical properties such as size, density, morphology, charge, and 

presence of different surface antigens can allow for the differentiation between MVs from 

exosomes or other EV subtypes. Based on the differences in these variables, EV isolation 

methods commonly include differential centrifugation, density gradient centrifugation, 

ultrafiltration, size exclusion chromatography, and immunoprecipitation assays [35].

However, isolation and purification by the various methods as described above is insufficient 

to accurately classify vesicles as exosomes or microvesicles. Instead, a combination of 

quantitative (such as protein composition) and qualitative (such as morphology and physical 

characteristics) criteria is necessary for the precise distinction between the different 

populations of vesicles. Physical features including size, as well as morphology, can be 

confirmed by transmission electron microscopy (TEM), which provides direct visualization 

of the vesicles. Alternatively, the use of nanoparticle tracking analysis (NTA) can enable the 

determination of vesicle size as well as vesicular concentration [36]. As for the biochemical 

characterization of vesicles, exosomal surface markers can be identified quantitatively with 

traditional methods including immunoblotting, flow cytometry, or proteomic profiling by 

mass spectrometry analysis.

3. EV Uptake

Upon their release from donor cells, EVs can interact with recipient cells to induce 

intracellular signaling and changes to molecular processes that may lead to alterations in 

their physiological or pathological states, either through binding with surface receptors or 

internalization and release of their cargo contents. Evidence for EV internalization was 

provided in multiple studies, including one that demonstrated the direct transfer of mouse 

RNAs and consequent detection of mouse proteins in human mast cells [37]. EV uptake was 

further substantiated by studies that showed the successful knockdown of target gene 

expression and production of bioluminescence via EV-mediated delivery of small interfering 

RNAs (siRNAs) and luciferin substrates, respectively [38,39].
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To date, majority of the experimental evidence indicates that EVs are typically internalized 

into the endosomal compartment by endocytosis [40]. However, the exact mechanisms 

governing the endocytosis of EVs remain highly debatable. Various mechanisms have been 

proposed, including clathrin-mediated endocytosis (CME), caveolin-dependent endocytosis 

(CDE), micropinocytosis, and phagocytosis (Figure 2). Additionally, the relevance of lipid 

raft proteins and specific protein–protein interactions in EV internalization have also been 

illustrated. Generally, the docking and subsequent endocytosis of EVs is facilitated by 

protein–protein interactions with membrane receptors, ligands or contact proteins of 

recipient cells. Proteins such as tetraspanins, lectins, proteoglycans, and integrins, as well as 

their PTMs have been implicated in these specific interactions to affect EV uptake.

3.1. Tetraspanins

Tetraspanins are membrane proteins that are abundantly found on the EV surfaces and 

known to be involved in cell adhesion and signaling [41]. The formation of tetraspanin-

enriched microdomains (TEMs), clusters comprising of tetraspanins, adhesion proteins, and 

transmembrane receptors at the plasma membrane mediates vesicular fusions and plays a 

role in EV docking and uptake [20]. Their regulatory role in EV internalization was further 

substantiated by the reduced EV uptake into dendritic cells after the inhibition of tetraspanin 

CD9 and CD81 [42]. In addition, EVs containing the Tspan8-CD49d complex on their 

surfaces were shown to be readily internalized by endothelial and pancreatic cells, 

presumably due to interactions with the intracellular adhesion molecule (ICAM-1) present 

on the membrane surfaces of these cells [43].

3.2. Lectins and Proteoglycans

Lectins such as DC-SIGN and DEC-205 were similarly found to be involved in EV binding 

and uptake; inhibition of EV internalization into monocyte-derived dendritic cells was 

observed following treatment with specific antibodies targeting these receptors [44,45]. 

Apart from tetraspanins and lectins, proteoglycans, proteins that are heavily glycosylated 

with one or more covalently attached glycosaminoglycan (GAG) chains, have also been 

implicated in EV binding and uptake. For instance, Glypican 1, a heparan sulphate 

containing proteoglycans was shown to be highly enriched in cancer cell-derived exosomes 

and mediate their attachment to recipient cells [46]. Furthermore, modifications of the 

glycosylation profiles of EV surface proteoglycans were found to affect the affinity for EVs 

by a variety of tested cell lines [47].

3.3. Integrins

Integrins, known for their functions—such as cell-to-cell adhesion, cell signaling, and 

leukocyte migration—have also been reported to play key roles in EV docking and 

internalization. For example, the role of integrin avβ3 in the adhesion and uptake of sEVs by 

breast cancer cells was demonstrated when sEV uptake was significantly inhibited upon its 

blockade with a disintegrin inhibitor (DisBa-01) [48]. Similarly, integrin beta 3 (ITGB3) was 

reported to play a central role in the recognition of heparan sulfate proteoglycans (HSPGs)-

associated EVs and subsequent focal adhesion kinase (FAK)-mediated endocytosis of these 

vesicles [49]. Furthermore, integrin composition and their consequent heterodimerization on 
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surfaces of cancer cell-derived exosomes was shown to affect their tissue-specific targeting 

to the lungs and liver [50].

3.4. Clathrin-Mediated Endocytosis (CME)

CME is an active process in which EVs can be internalized via the sequential formation of 

clathrin-coated vesicles which contain a variety of transmembrane receptors and small 

ligands. The assembly of these clathrin-coated vesicles progressively deform the membrane, 

leading to its collapse into a vesicular bud which then matures and pinches off from the cell 

surface. Clathrin proteins are subsequently uncoated from the internalized vesicle, allowing 

it to fuse with the endosome for the release of its contents [51]. Treatment with 

chlorpromazine, which prevents the generation of clathrin-coated pits at the cell membrane, 

inhibited EV uptake by phagocytic cells and ovarian cancer cells respectively [52,53]. 

Importantly, the siRNA-mediated depletion of the clathrin heavy chain (CHC) inhibited EV 

internalization [54], indicating that CME is at least in part involved in EV uptake.

3.5. Caveolin-Dependent Endocytosis (CDE)

Similar to CME, CDE involves the formation of small, cave-like invaginations known as 

caveolar vesicles within the plasma membrane that are eventually pinched off and 

internalized. Caveolae are domains of glycolipid rafts in the cell membrane that are rich in 

caveolins, cholesterol and sphingolipids. The formation of caveolae requires the caveolin 

proteins, whereby the oligomerization of these caveolins via the caveolin oligomerization 

domains mediates the generation and assembly of caveolin-rich rafts within the plasma 

membrane [55]. Caveolin-1 (Cav-1) protein alone was found to be sufficient for inducing 

caveolae formation and the specific knockdown of Cav-1 expression resulted in a significant 

impairment of EV uptake [56]. In another study employing an ischemia and reperfusion 

injury (IRI) mouse model, neuronal cells were shown to actively upregulate Cav-1 

expression to enhance the uptake of human umbilical vein endothelial cell(HUVEC)-derived 

EVs, which could confer cytoprotective effects for their survival [57].

3.6. Macropinocytosis

A process that is commonly referred to as ‘cell drinking’, uptake via macropinocytosis 

entails the generation of invaginated membrane ruffles and the subsequent pinching off into 

the intracellular space. The protrusion of ruffled extensions of the plasma membrane allows 

molecules or EVs to be ‘trapped’ and subsequently internalized upon the fusion of these 

protrusions, either with the plasma membrane or themselves [58]. Macropinocytosis is 

dependent on the activity of the Na+/H+ exchanger and requires cholesterol for the 

recruitment of activated rac1 GTPase to restructure the actin cytoskeleton at the sites of 

invagination [59,60]. Blocking macropinocytosis via the inhibition of the Na+/H+ exchanger 

and rac1 resulted in decreased oligodendrocyte-derived EV uptake in microglia cells [61], 

highlighting the role of this process in EV internalization.

3.7. Phagocytosis

As opposed to macropinocytosis, phagocytosis is a receptor-mediated process that does not 

involve direct contact with the internalized molecules, nor require the extension of 
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membrane ruffles [62]. Otherwise, phagocytosis similarly requires the sequential formation 

of membrane invaginations encompassing the material to be taken up [62]. Although 

primarily utilized by macrophages for the engulfment of particles such as bacteria and 

apoptotic fragments, phagocytosis has been identified as an efficient uptake mechanism for 

EVs [52]. The role of phagocytosis in EV uptake was further substantiated when the 

inhibition of PI3K by LY294002 and wortmannin, a kinase that is involved in the process of 

membrane insertion for the formation of phagosomes [63], led to a dose-dependent 

reduction in EV uptake [52].

3.8. Involvement of Lipid Rafts

Lipid rafts are transient and highly dynamic microdomains in the plasma membrane with an 

abundance of phospholipids, cholesterol, sphingolipids, and glycosylphosphatidylinositol 

(GPI)-anchored proteins [64]. Owing to the distinct physical properties attributed to the 

varied composition of lipid rafts, they can act as scaffolds for the recruitment and assembly 

of signaling complexes to affect membrane fluidity and protein trafficking [65]. Lipid rafts 

can be found in the clathrin and caveolar-coated vesicles and thus involved in both clathrin- 

and caveolin-mediated endocytosis. Alternatively, they can also be localized to flotillin-

enriched membrane regions, in which their associations mediate clathrin- and caveolin-

independent endocytosis [66–69]. The potential role of lipid rafts in affecting EV uptake was 

confirmed by studies employing inhibitors of cholesterol and glycosphingolipid synthesis. 

For example, treatment with fumonisin B1 and N-butyldeoxynojirimycin hydrochloride, 

compounds known to reduce glycosphingolipid composition in the plasma membrane via 

blockade of its biosynthesis [70,71], as well as cholesterol reducing agents such as filipin 

and simvastatin, significantly decreased EV uptake in recipient cells [72–74].

3.9. Membrane Fusion

While majority of the research on EV uptake supports a primarily endocytic mechanism, a 

handful of studies have shown that direct fusion of the EVs and plasma membrane is a 

possible route for EV internalization and release of its contents [39,74]. Direct contact 

between the two lipid bilayers in proximity generates a fusion stalk which further expands 

into a diaphragm bilayer, allowing the formation of a pore whereby the two hydrophobic 

cores are mixed [75,76]. Proteins that are known to be involved in membrane fusion include 

the family of the SNARE proteins [77,78] and Sec1/Munc-18 related proteins (SM-proteins) 

[79]. By employing fluorescent lipid dequenching techniques, EVs were observed to fuse 

with the plasma membranes of recipient melanoma cells, and fusion was enhanced under 

acidic [74].

4. EV Transportation and Uptake: Specific or Random?

Despite advances in our understanding of the molecular mechanisms underlying EV 

internalization, the long-standing question of EV uptake specificity remains to be 

comprehensively addressed in the field. While studies have indicated the prevalence of EV 

uptake into any cell type tested [73,80], results from other studies demonstrated that EV 

uptake is a highly specific process in which the recipient cells and EVs would require the 

‘right’ type of surface receptors and ligands for the coordinated protein–protein interactions 
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[43,50,80–84]. For example, the fusion of anti-epidermal growth factor receptor (EGFR) 

nanobodies to glycosylphosphatidylinositol (GPI) anchor signal peptides on the EV surface 

was sufficient to alter their cell targeting behavior and promote efficient binding to tumor 

cells that are dependent on EGFR density [81]. In addition, CD63-positive EVs were 

specifically bound to neuronal and glial cells, whereas CD63-negative EVs targeted only to 

the dendritic cells of neurons [82]. Recent evidence also indicated that the transfer of 

secreted exosomes is selective to the cell type of origin i.e., exosomes are preferentially 

taken up by cell types where they were originally secreted from [83,84]. Furthermore, EV 

uptake can also be affected by factors such as metabolic status of the recipient cells, and 

attributes including the types and characteristics of secreted EVs [47,84]. For example, it 

was observed that neural stem cells tend to exhibit a significantly higher capacity of 

internalizing EVs in comparison to mature neurons, implying that metabolically active cells 

may display higher rates of active EV uptake than terminally differentiated cells [84]. 

Alternatively, the modifications of EV surface glycosylation patterns, leading to either 

changes in glycosylation states or vesicular charges, were found to affect the subsequent 

uptake of the EVs. Additionally, high-content screening revealed the preferential affinities 

for EVs with varying surface glycosylation states by different recipient cell types [47]. 

However, a recent study involving human mesenchymal stem cells (HSMCs)-derived EVs 

demonstrated a common HSPG-sensitive and caveolin-mediated endocytic uptake 

independent of lineage-specificity of the donor HSMCs and recipient cell types [85]. A 

caveat on these existing data is that the heterogeneity in the populations of donor/recipient 

cells and EVs may confound some of the observations and contribute to their discrepancies.

Taken together, these results provided insights into how cells may selectively govern EV 

uptake. With the constant development of novel technological methodologies for studying 

EV uptake [86,87], detailed mechanisms governing this complex process will no doubt be 

elucidated in the near future. Nevertheless, it is apparent that a plethora of molecular 

mechanisms exist to mediate EV-cell communication and different combinations of these 

mechanisms may be employed by different EV and recipient cell types, depending on 

inherent properties of EV or dynamic changes in the physiological states of recipient cells.

Challenges in Studying EV Transportaion and Uptake

Despite the increasing characterization of molecular processes involved in EV uptake, 

advances in this field are still impeded by many scientific and technical hurdles. For 

instance, inadequate knowledge of the specific surface markers for different EV classes, 

coupled with the inherent heterogeneity of EV populations, limit the applicability of 

employing specific antibodies (to block ligand/receptor interactions), small molecule 

inhibitors and RNA interference to systematically identify the dominant molecular events 

that promote EV internalization in various physiological conditions. Secondly, advances in 

EV transportation research are hindered by the lack of high-throughput technology for the 

accurate and reliable detection, evaluation and tracking of EVs. For example, developing 

molecular labeling dyes that are highly stable against cleavage and degradation, together 

with novel imaging methods, will be useful for in vivo tracing of EVs. In addition, inherent 

physicochemical properties of EVs, such as a relatively short half-life, limits the time-course 

monitoring of EV trafficking and uptake.
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5. EV Uptake in Pathophysiological Diseases

Nevertheless, extensive research in the recent years have clearly demonstrated the critical 

implications of EV uptake in the pathophysiology of multiple diseases (Table 1). EV surface 

receptors-stimulated intracellular signaling pathways, as well as trafficking and release of 

biomaterials, such as nucleic acids and proteins, into recipient cells may deregulate gene 

expression and disrupt signaling pathways, leading to alterations in the functions and 

phenotypes of recipient cells. Due to the paramount interests in the emerging roles of EVs in 

cancer, inflammation and immunity, as well as neurodegeneration, we highlight the 

implications of EVs in these diseases in this review.

5.1. Cancer

A multitude of evidence point towards the increased production and release of EVs with 

functional alterations in cancer cells as opposed to normal cells, potentially attributed to the 

elevated expression of genes including the Rab proteins [102], syntenin [103], and 

heparinase [104]. The altered secretion and cargo composition of tumor EVs can promote 

tumor growth by affecting the various processes of cancer hallmarks, ranging from 

apoptosis, invasion, and metastasis to metabolism and tumor microenvironment [105]. For 

example, the elevated levels of miR-23a and miR-105 in EVs secreted by cancer cells 

suppressed the expression of prolyl hydroxylases (PHD1/2) and tight junction protein ZO-1, 

leading to an accumulation of HIF-1α and increased vascular permeability in the 

surrounding endothelial cells to enhance angiogenesis [89,90]. Additionally, tumor EV-

derived RNAs were found to activate the Toll-like receptor 3 (TLR3) in lung epithelial cells, 

leading to the stimulation of chemokine secretion and increased neutrophil infiltration to 

favor lung metastasis [91]. Furthermore, EV-mediated transfer of the lncRNA, named 

lncRNA Activated in RCC with Sunitinib Resistance (lncARSR), functions as a microRNA 

sponge for sequestering miR-34 and −449, resulting in the increased expression of tyrosine 

kinases AXL and c-MET to confer sunitinib resistance [106].

5.2. Inflammatory Diseases

EVs have also been extensively studied in the context of inflammation and autoimmune 

diseases, whereby the cargo and surface repertoire of EVs containing immune-related 

molecules (TGF-β, cytokines), transcriptional factors, as well as enzymes, can exert 

immunomodulatory effects upon their internalization into recipient cells [107]. For example, 

EVs secreted from neutrophils were found to mediate vascular inflammation in atheroprone 

endothelial cells, partly through the miR-155/NF-κB axis, leading to the development of 

atherosclerosis [94]. In rheumatoid arthritis, T cells and monocytes-derived EVs greatly 

induced the synthesis of matrix metalloproteinases (MMPs), including MMP-1, -3, -9, and 

-13, in the recipient fibroblasts and promoted the invasive and destructive phenotype of these 

cells, leading to the eventual manifestation of degraded bone and cartilage [108].

5.3. Neurodegenerative Diseases

A common molecular hallmark of several neurodegenerative diseases is the aggregation of 

infectious isoforms or misfolded proteins, such as the prion protein (PrPC) with its 

conformational isoform PrPSC in prion disease, β-amyloid plagues in Alzheimer’s disease 
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(AD), and α-synuclein fibrils in Parkinson’s disease (PD). Since these aggregated proteins 

are often transported in EVs, it is of little surprise that EV uptake may play a role in 

influencing the progression of these diseases. In AD, decreased EV biogenesis through the 

inhibition of nSMase2 was demonstrated to reduce plaque formation in vivo and impede 

disease progression, implicating the disease-stimulating potential of EV cargos in 

Alzheimer’s [98]. However, EVs were also shown to confer protective effects in AD, 

potentially via the sequestration of β-amyloid aggregates by the interaction between the 

PrPC receptors on EV surfaces and the toxic Abeta42 peptides [109,110]. Similarly, the 

functional role of EVs remains dichotomous in the context of PD. The reduction in 

exosomal release of α-synuclein, owing to a mutation in the PARK9/ATP13A2 ion pump 

found in MVEs, was shown to allow the increased clearance of the toxic oligomers and 

consequently lower intracellular levels of α-synuclein [111,112]. However, studies have also 

supported the EV-mediated dissemination of toxic α-synuclein oligomers from donor to 

recipient cells, potentially in a lymphocyte activation gene 3 (LAG3)-dependent manner 

[113], to accelerate disease progression [100].

5.4. Challenges in Studying Functional EV Cargo in Diseases

Despite the increasing identification of functional EV cargos in specific pathological 

contexts, a comprehensive analysis of these molecules is generally hindered by factors such 

as EV half-life and the inherent truncation of these EV cargos. Truncated nucleic acids and 

proteins can result in inconsistencies and unreliable detection of these EV cargos with the 

currently available sequencing and array platforms. Furthermore, the low copies of these EV 

cargos limits the ability to accurately quantify their differential expression levels under 

various physiological and pathological conditions.

6. Diagnostic and Therapeutic Applications of EVs

Over the past decades, efforts to develop new therapeutic strategies have focused on the 

utilization of nanoparticles, including synthetic gold nanoparticles, liposomes and 

adenovirus, for drug delivery. Amidst the demonstrated delivery efficacies with these 

nanostructures, the widespread use of these systems has been limited by factors including 

(1) the inability of these structures to facilitate crossover between different biological 

barriers and (2) the triggering of undesired inflammatory responses by repeated 

administration of these particles. In contrast, the intrinsic characteristics of EVs, such as (1) 

small size to reduce their clearance and allow passive entry into tissues, (2) enclosed 

membranal structure acts as a protective shield for the encapsulated cargo against 

degradation during delivery, and (3) modification of the EV cargo and surface proteins 

allows for the enhanced targeting specificity to certain tissues, making them a highly 

valuable drug delivery tool option for therapeutic strategies against a variety of pathological 

diseases.

A multitude of studies have shown promising results of employing EVs to deliver innovative 

therapies (RNAs, proteins, and therapeutic drug molecules) to specific target cells. For 

example, loading of curcumin, a highly hydrophobic drug with anti-oxidant and anti-

inflammatory properties, into a murine cell line (EL-4)-derived exosomes was demonstrated 
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to effectively decrease the in vitro secretion of inflammatory cytokines, including TNF-α 
and interleukin-6 (IL-6) by macrophages. In vivo, treatment of lipopolysaccharides (LPS)-

induced septic shock mice with curcumin-incorporated exosomes significantly reduced lung 

inflammation and exhibited increased overall survival [114]. In another study, the delivery of 

exosomes loaded with anticancer drugs, such as doxorubicin and paclitaxel, across the 

blood–brain barrier (BBB) was found to exhibit enhanced therapeutic efficacy in a zebrafish 

brain-cancer model [115]. Apart from small inhibitor molecules and siRNAs, exosomes 

incorporated with large proteins such as catalase were also efficiently delivered across the 

BBB to the brain tissue, leading to the neutralization of reactive oxygen species (ROS) and 

reduced inflammation in a PD mouse model [116]. Indeed, the exploitation of EVs as novel 

strategies for human diseases are clearly evident in the increasing number of clinical trials 

employing EV-based therapies (Table 2) [117].

Apart from their therapeutic value as drug delivery systems, exosomes can also be 

potentially utilized as biomarkers for clinically diagnostics of diseases. Owing to the wide 

range of DNA, RNA, and protein contents in EVs and that EVs are present in almost all 

body fluids, distinct molecular signatures (i.e., different combinations of RNAs and proteins) 

can be characterized from patients of a particular disease. These signatures can then be 

translated into useful diagnostic and prognostic information to identify subsets of susceptible 

individuals within the population. Indeed, numerous studies have since identified a wide 

array of exosomes carrying unique molecular signatures that may function as potential 

biomarkers for specific diseases, including cancer, and autoimmune and neurodegenerative 

diseases [118–121]. Importantly, these properties may allow EVs to be harnessed for 

precision medicine. The distinct molecular signatures of EVs characterized from different 

body fluids of a patient can be further assembled into a ‘personalized’ library to facilitate the 

identification of diagnostic markers and therapeutic targets that are specific to his profile. 

Furthermore, the comprehensive identification of EV surface markers and EV sources may 

enable the potential use of EVs as tissue or cell-specific delivery vectors for therapies.

7. Future Perspectives

With the growing evidence to support the functional links between EVs and diseases, as well 

as emerging capabilities of EVs as attractive diagnostic and therapeutic tools, it is imperative 

to gain full insights into the characteristics and regulation of EV uptake. Advancements in 

our knowledge of EV uptake specificity will no doubt aid in the development of novel 

therapeutic strategies to inhibit the interactions between disease-causing EVs and recipient 

cells, as well as to allow for the engineering of effective drug delivery systems. Along with 

the continuous improvements in EV isolation and characterization methods to address EV 

heterogeneity, understanding EV internalization will increase our ability to fully leverage the 

enormous potential of EVs and facilitate their translation from bench to bedside.
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Figure 1. 
Schema of the molecular mechanisms and interactions involved in exosome biogenesis. 

Exosomes can be formed as intraluminal vesicles (ILVs) in an endosomal sorting complex 

required for transport (ESCRT)-dependent manner, as well as via ESCRT-independent 

pathways involving molecules such as ceramide, tetraspanins, and proteoglycans prior to 

their secretion (a). Post-translational modifications of the vacuolar protein sorting-associated 

proteins (VPS) family proteins involved in the sorting of exosomal cargo and generation. 

Energy required for the scission of budding exsomes from membrane is dependent on the 

ATPase activity of the Vacuolar protein 4 (VPS4) complex (b).
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Figure 2. 
Schema of the pathways involved in EV uptake by recipient cells. EVs can be internalized 

into target cells via clathrin- and caveolin-mediated endocytosis, phagocytosis, and 

macropinocytosis. The role of lipid rafts in clathrinand caveolin-dependent and -independent 

endocytosis of EVs has also been described. Alternatively, EV cargo may be internalized 

following the direct fusion of EVs with the plasma membrane of target cells to induce 

phenotypic responses.

Kwok et al. Page 20

Processes (Basel). Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kwok et al. Page 21

Table 1.

Examples of pathological diseases associated with EV cargo

Disease EV Sources EV Cargo Potential Functions of EV 
Cargo References

Glioblastoma (GBM) Apoptotic GBM cells Splicing factor RBM11 Increased proliferation and 
therapeutic resistance [88]

Lung and breast 
cancer Lung and breast cancer cells miR-23a, miR-96, miR-105 and 

small nucleolar RNAs (snRNAs)
Enhanced angiogenesis; 

Immuno-modulation [89–91]

Breast cancer Breast cancer cells miR-122 Reprogramming metabolism [92]

Pancreatic cancer Pancreatic ductal 
adenocarcinomas cell lines

Macrophage migration inhibitory 
factor (MIF) Increased liver metastasis [93]

Atherosclerosis Human coronary endothelial 
cells and neutrophils miR-155 and adhesion proteins

Increased inflammation and 
monocyte infiltration into 

plaques
[94,95]

Prion disease Mouse plasma and neuroglial 
cells Prion protein isoform PrPSC Accumulation of infectious 

PrPSC [96,97]

Alzheimer’s disease 
(AD)

Human and mouse 
primaryastrocytes

Amyloid-β (Aβ) and 
hyperphosphorylated Tau (p-Tau)

Aggregation of Aβ and p-Tau 
plaques [98,99]

Parkinson’s disease 
(PD)

Human neuroglioma cells, 
mouse primary neurons α-synuclein Accumulation of toxic α-

synuclein oligomers [100,101]
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Table 2.

Examples of ongoing clinical trials involving EV-based therapies

Disease EV Source EV Modification Phase, Cohort NIH Clinical Trial 
Identifier

Acute ischemic stroke Mesenchymal stromal 
cells (MSCs) Enriched with miR-124 Phase 1/2, N = 5 NCT03384433

Bronchopulmonary dysplasia MSCs Not specified Phase 1, N = 18 NCT03857841

Colon cancer Plant Loaded with curcumin Phase 1, N = 35 NCT01294072

Malignant ascites and pleural 
effusion Tumor-derived Loaded with chemotherapeutic 

drugs Phase 2, N = 30 NCT01854866

Malignant pleural effusion Malignant pleural 
effusion Loaded with methotrexate Phase 2, N = 90 NCT02657460

Metastatic pancreatic cancer MSCs KrasG12D siRNA Phase 1, N = 28 NCT03608631

Macular holes (MHs) MSCs Not specified Phase 1, N = 44 NCT03437759

Radiation and chemotherapy-
induced oral mucositis Grape-derived Unmodified Phase 1, N = 60 NCT01668849

Ulcers Plasma Unmodified Phase 1, N = 5 NCT02565264
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