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Abstract

Obesity is an important and intractable public health problem. In addition to the well-known risk factors of behavior, diet,
and genetics, gut microbial communities were recently identified as another possible source of risk and a potential
therapeutic target. However, human and animal-model studies have yielded conflicting results about the precise nature of
associations between microbiome composition and obesity. In this paper, we use publicly available data from the Human
Microbiome Project (HMP) and MetaHIT, both surveys of healthy adults that include obese individuals, plus two smaller
studies that specifically examined lean versus obese adults. We find that inter-study variability in the taxonomic
composition of stool microbiomes far exceeds differences between lean and obese individuals within studies. Our analyses
further reveal a high degree of variability in stool microbiome composition and diversity across individuals. While we
confirm the previously published small, but statistically significant, differences in phylum-level taxonomic composition
between lean and obese individuals in several cohorts, we find no association between BMI and taxonomic composition of
stool microbiomes in the larger HMP and MetaHIT datasets. We explore a range of different statistical techniques and show
that this result is robust to the choice of methodology. Differences between studies are likely due to a combination of
technical and clinical factors. We conclude that there is no simple taxonomic signature of obesity in the microbiota of the
human gut.
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Introduction

Obesity is among the defining public health challenges of our

time, with an estimated 3.4 million annual deaths attributable to

high BMI [1]. Dietary and lifestyle interventions have only modest

effects, and it is unclear whether these benefits persist over time

[2]. Thus, there is substantial interest in alternative approaches to

weight loss.

A tantalizing new theory has emerged in recent years,

suggesting that the gut microbiome may offer a therapeutic target.

Supporting a causal role of gut microbes in obesity, studies in mice

showed that obesity can be induced in lean individuals via fecal

transplants from obese individuals [3,4]. While the mechanisms

through which gut microbes influence BMI are unknown, multiple

investigations of gut microbiome composition in both mice and

humans have shown that obese individuals have a lower ratio of

bacteria from the phylum Bacteroidetes to bacteria from the phylum

Firmicutes than lean individuals [3,5–7]. Obese individuals have

also been shown to harbor less diverse bacterial communities [7,8].

Both the scientific literature [9,10] and the popular press [11]

have heralded the association of obesity and the relative

abundance of Bacteroidetes vs. Firmicutes as a robust finding.

However, several recent reports question the strength of this

association. Two large studies found no association between

obesity and the Bacteroidetes: Firmicutes ratio [12,13]. Furthermore,

several publications actually report a higher ratio of Bacteroidetes to

Firmicutes among obese individuals [14], in direct contradiction

with the original findings.

The Human Microbiome Project (HMP) Consortium has

collated the largest existing dataset describing the microbiota of

healthy individuals, with sequences curated using stringent quality

control. The cohort includes 16S rRNA sequencing of stool

microbiomes from more than 200 adults living in Houston and

Saint Louis [15], and it contains subjects with a comprehensive

range of BMI values, including 24 obese (BMI §30) and 123 lean

(BMI ƒ25) individuals. These data provide an opportunity to

investigate the conflicting findings about taxonomic composition

of the gut microbiome and obesity.

To this end, we conducted an extensive assessment of the

relationship between BMI and the taxonomic composition of the

gut microbiome in the HMP dataset and compared our results to

trends in the MetaHIT data [16], which is another large survey of

healthy obese and non-obese adults, as well as to two earlier

studies that specifically sampled lean and obese individuals [6,7].

Our analysis expands upon the work of the HMP Consortium,

which explored a large set of candidate relationships between host

phenotypic data (e.g., BMI, age, blood pressure) and microbial,

enzymatic and pathway abundance and did not find a significant
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association between BMI and the relative abundance of Bacter-

oidetes or Firmicutes [13]. That analysis was designed to search

automatedly over a large number of candidate relationships by a

single pre-specified approach. To ensure that an association

between BMI and gut community composition was not missed, we

employed a range of graphical and statistical modeling techniques,

quantified community composition in a variety of ways, and

performed power calculations. This thorough interrogation of the

data confirms that there is no association between BMI and stool

microbiome taxonomic composition or diversity in the HMP

cohort. When we examined the relationship between stool

microbiome composition and BMI across different studies, we

found that inter-study variability far exceeds differences in

composition between lean and obese individuals within each

study. Our results suggest that there is no simple relationship

between BMI and gut microbiota and that significant technical

and clinical differences exist between published studies.

Results

The Bacteroidetes:Firmicutes ratio is not associated with
obesity or BMI

We began by attempting to reproduce the best-known result

supporting the theory that obese individuals have a lower ratio of

Bacteroidetes to Firmicutes in their guts. We found no difference

between obese versus lean individuals in their relative abundance

of Bacteroidetes or Firmicutes (p = 0.30 and 0.86, respectively, by

t-test).

Importantly, our failure to detect these differences was not due

to insufficient statistical power. With our sample sizes and

previously reported effect sizes, it is very unlikely that we would

have found no association in the HMP data if an association did

exist in the St. Louis and Houston populations. For example, using

effect sizes from Turnbaugh et al. [7] for the V6 region of the 16S

rRNA gene in European Americans, we would have had 96%

power to detect a difference in the relative abundance of

Bacteroidetes and 80% power for Firmicutes. These power calcula-

tions account for the fact that the proportion of obese individuals

in the HMP cohort is lower than in [7].

Because the detrimental health effects of being overweight occur

along a continuum of BMI values and not just above the obesity

cutoff (BMI §30), we next looked for a quantitative association

between the continuous BMI variable and the ratio of Bacteroidetes

to Firmicutes. There was no association (Figure 1; linear regression

p = 0.41), and this ratio varied greatly between individuals

regardless of BMI.

Alternative quantifications of taxonomic composition are
also not associated with BMI

Next, we investigated the possibility that – for the purposes of

detecting an association with BMI – the ratio of Bacteroidetes to

Firmicutes did not adequately summarize the taxonomic composi-

tion of the gut microbiome at the phylum level. Specifically, we

quantified the relative abundance of the five major bacterial phyla

in each sample and constructed a phylum-level compositional

profile for each individual. We then visualized these compositional

profiles as a function of BMI. No signal was apparent (Figure 2).

Then, to ensure that we had not missed a subtle pattern in this

plot, we used a statistical model to isolate BMI effects from residual

variance due to sampling and measurement error. Specifically, we

modeled the isometric log ratio transform [17] of the relative

abundance of each major phylum in each sample using a linear

model, including a fixed effect of phylum plus a phylum-specific

effect of BMI plus a random error term. We again found no

significant association between BMI and taxonomic composition

at the phylum level.

We then considered the possibility that a BMI association exists

at a finer taxonomic resolution, despite the lack of association at

the phylum level. For each individual, we generated a new

taxonomic composition profile that quantified the relative

abundance of each bacterial genus in the individuals stool

microbiome. We applied principal components analysis to these

genus-level profiles to reduce their dimensionality, as in Smith et al.

Figure 1. There is no association between BMI and the
Bacteroidetes :Firmicutes ratio in HMP stool microbiomes.
doi:10.1371/journal.pone.0084689.g001

Figure 2. There is no relationship between BMI and the
phylum-level composition of the microbiome. Each row shows
the relative abundance of major gut bacterial phyla in an individual.
Individuals are ordered according to their BMI.
doi:10.1371/journal.pone.0084689.g002
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[18]. We then tested for an association between BMI and any of

the first six principal components (which explain 96% of the

variance in genus-level profiles). We found no significant

associations.

Additionally, to ensure that the principal components reduction

did not obscure an association, we used logistic regression to model

the probability of observing each major genus as a function of

BMI. We again found no associations.

Gut microbiome community diversity is not associated
with BMI

Finally, we investigated the hypothesis that BMI is associated

not with the relative abundance of particular taxa but rather the

diversity of taxa present. This possibility was supported by

Turnbaugh et al. [7] and by Le Chatelier et al. [8], who both

concluded that a diverse gut microbiome can have a protective

effect against obesity. Following the approach of Turnbaugh et al.

[7], we used the 97% identity operational taxonomic unit (OTU)

calls on the sequencing reads for each HMP sample to calculate

rarefaction curves. We then used these curves to compare richness

levels (i.e., total number of OTUs) between obese and lean

individuals. In contrast to the results in [7] and [8], we found no

relationship between richness and obesity, but rather observed a

high degree of residual variability in OTU richness across

individuals.

To ensure that these surprising results were not an artifact of

diversity measure or calculation procedure, we validated our

findings using the Shannon entropy measure as well as a variety of

microbial ecology analysis software packages (mothur[19], QIIME

[20], and MetaPhlAn[21]). This sensitivity analysis confirmed that

our null diversity results were robust.

Obesity effects are not consistent across studies
To ensure that we could reproduce the significant findings of

previous analyses [6,7], and to assess whether another large, recent

study with a wider range of BMI values (MetaHIT [16]) could help

clarify the contradictory results, we reanalyzed data from [6], [7],

and from the Danish subjects in [16]. Although the primary

analyses of the present manuscript were restricted to the V35

region of the 16S rRNA gene, we also included HMP data from

the V13 region to assess the possibility that a 16S-region-specific

bias could be obscuring a true underlying relationship.

In Figure 3, we show that variation in the relative abundance of

Firmicutes and Bacteroidetes is much larger among studies than

between lean and obese individuals within any study. Not only do

the MetaHIT and HMP results fail to recapitulate the findings of

Ley and Turnbaugh, but they actually go in the opposite direction.

In the HMP data, this finding is consistent for the V13 and V35

regions of the 16 S locus, both of which were sequenced in the

same individuals on the same platform (Roche 454). The

substantial between-study variability could be due to an unmea-

sured factor such as diet [22] or due to technical factors such as

DNA extraction technique, region of the 16 S locus targeted, or

sequencing platform [23]. However, the consistent lack of BMI

association for the V13 and V35 regions in the HMP data suggest

that 16 S region is not a major confounder, at least in this cohort

and for these two variable regions.

Discussion

Fecal transplant studies in mice have shown conclusively that

the microbiome has a causal effect on obesity [3,4], and a number

of high-profile papers have found that obese individuals have

lower ratios of Bacteroidetes to Firmicutes [3,5–7]. Yet we and others

have found no relationship between BMI and the gut micro-

biome’s phylum-level composition in large-scale analyses [12,13].

These contradictory observations suggest that no simple taxo-

nomic signature of obesity exists in the gut microbiome.

There are a number of possible reasons for these conflicting

results. One possibility is that unmeasured confounders obscure a

true underlying relationship. For example, diabetes status [24],

diet [22], total caloric intake [25], or the duration of fasting

periods [26] may be associated both with BMI and with

microbiome composition. Thorough and standardized collection

of host physiological data is needed to evaluate the contribution of

these variables to the relationship between BMI and the

composition of the intestinal microbiome. Another possibility is

that technological issues may have differential effects across studies

[14,23]. Finally, it may be the case that the microbiome’s effect on

obesity is not mediated through its taxonomic composition but

rather its function, since closely related taxa can have widely

varying functions and distantly related taxa can have similar

functions. This theory is supported by data from Turnbaugh et al.

[7] (who found an enrichment of genes involved in carbohydrate

and lipid metabolism in obese individuals), but not by results from

the HMP Consortium [13] (who found no association between

BMI and any pathway abundance). Additional functional

metagenomic investigations are needed to determine whether a

robust relationship exists between BMI and microbiome function.

Once the nature of this relationship is better understood, further

epidemiological work will be needed to estimate the proportion of

human obesity attributable to microbial factors.

A limitation of our primary analyses is that they were restricted

to the healthy subjects of the HMP cohort, none of whom had

BMI w 35. For example, we hypothesize that the HMP’s health

screen may have excluded low-diversity individuals, thus con-

founding our ability to discern an association between obesity and

richness. We note, however, that the Danish MetaHIT cohort

included n = 12 (17%) subjects with BMI w 35, and it nonetheless

revealed no association between obesity and the taxonomic

composition of the gut microbiome.

Methods

We downloaded high-quality, taxonomically annotated Roche

V35 16 S rRNA gene sequences from the HMP Data Analysis and

Coordination Center (www.hmpdacc.org). These are PCR-

amplified V35 regions sequenced en masse on a Roche 454

instrument. These sequences were previously subject to extensive

quality control analyses [15], including trimming, denoising, and

chimera filtering. For each sequence, we extracted phylum-level

taxonomic annotations and bootstrap statistics via RDP classifier

2.2 [27] using the default 032010 training set and taxonomy and

the ‘allrank’ output format option, as per the HMP SOP.

Sequences with annotations having a bootstrap statistic less than

80% were treated as ‘‘unclassified’’. Sequences were then mapped

to their corresponding HMP sample identifier and used to

calculate phylum-level relative abundance for each sample. For

subjects with multiple stool samples, since longitudinal BMI

trajectory data were not available, we analyzed the sample with

the largest number of reads. Out of a total of 217 available

samples, we excluded five samples with v1000 reads, bringing our

total sample size down to 212 samples. The same approach was

used to obtain HMP V13 16 S rRNA gene sequences.

We tested for associations between arcsin square root genus

relative abundance and all additional quantitative phenotypes

from the HMP. We found no significant associations (FDR-

adjusted pv0:2) in any body site, consistent with the low number
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Figure 3. The between-study variability in the relative abundance of Bacteroidetes and Firmicutes is greater than the within-study
differences between lean and obese individuals. The Ley data are from [6]. The ‘‘Turnb.’’ data are from Turnbaugh et al. [7], from African
Americans (AA) and European Americans (EA), from variable regions (V) 2 and 6. The MetaHIT data are from the Danish subjects in [16] who do not
have inflammatory bowel disease. The HMP data are from V13 and V35. We note that the primary results from this manuscript were generated using
data from HMP V35. All p-values by t-test.
doi:10.1371/journal.pone.0084689.g003
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of microbe-phenotype associations found in [13] and supportive of

the validity of our primary findings regarding BMI.

The MetaHIT data was composed of shotgun metagenomes,

which we downloaded from The European Bioinformatics

Institute (www.ebi.ac.uk). We restricted our analysis to the Danish

samples that contained read-lengths of at least 75 base pairs (bp)

(n = 70), and we randomly analyzed 20 M reads from each sample.

We quantified microbiome phylum-level diversity from these

samples by using the STAP database [28] and the GreenGenes

database [29] to identify metagenomic homologs of the 16 S locus

and the RDP classifier to taxonomically annotate these sequences.

We conducted a statistical simulation to identify the optimal

bootstrap statistic thresholds for classifying 16 S RNA metage-

nomic reads into phyla using the RDP classifier. Briefly, we used

Grinder [30] to simulate 10,000 75-bp 16 S reads from the STAP

database and the GreenGenes database, plus 90,000 75-bp reads

from the coding sequences (CDS) of 11 bacterial genomes

randomly selected from the J. Craig Venter Institute?s Compre-

hensive Microbial Resource database [31]. All reads were subject

to classification using the RDP classifier. We found that a

bootstrap threshold of 70% captured 83% of the simulated 16 S

sequences and correctly classified 99% of these reads while

filtering out all but 0.001% of CDS reads.

Publicly available, high-quality 16 S amplicon sequences

generated as part of the Ley [6] and Turnbaugh [7] studies were

downloaded and taxonomically annotated. Specifically, we down-

loaded 18,348 full-length 16 S assembled from shotgun sequences

generated in [6] from gordonlab.wustl.edu/microbial_ecology_

human_obesity/and 817,942 V6 hypervariable regions and

1,119,519 V2 variable regions of 16 S RNA pyrosequencing

sequences generated in [7] from gordonlab.wustl.edu/NatureT-

wins_2008/. All sequences were classified into phyla using the

RDP classifier as described above.
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