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Abstract

Urbanization results in pervasive habitat fragmentation and reduces standing

genetic variation through bottlenecks and drift. Loss of genomewide variation

may ultimately reduce the evolutionary potential of animal populations experi-

encing rapidly changing conditions. In this study, we examined genomewide vari-

ation among 23 white-footed mouse (Peromyscus leucopus) populations sampled

along an urbanization gradient in the New York City metropolitan area. Geno-

mewide variation was estimated as a proxy for evolutionary potential using more

than 10 000 single nucleotide polymorphism (SNP) markers generated by

ddRAD-Seq. We found that genomewide variation is inversely related to urban-

ization as measured by percent impervious surface cover, and to a lesser extent,

human population density. We also report that urbanization results in enhanced

genomewide differentiation between populations in cities. There was no pattern

of isolation by distance among these populations, but an isolation by resistance

model based on impervious surface significantly explained patterns of genetic dif-

ferentiation. Isolation by environment modeling also indicated that urban popu-

lations deviate much more strongly from global allele frequencies than suburban

or rural populations. This study is the first to examine loss of genomewide SNP

variation along an urban-to-rural gradient and quantify urbanization as a driver

of population genomic patterns.

Introduction

Humans exert an outsized influence on ecosystems (Vitou-

sek et al. 1997) in the Anthropocene. This era began some-

time between the late Pleistocene (Ellis et al. 2013;

Ruddiman et al. 2015) and industrialization in the last few

centuries (Steffen et al. 2007), but is always characterized

by a global increase in human influence on biological and

geochemical processes. Rapid urbanization is a key charac-

teristic of the contemporary Anthropocene. The proportion

of humans in cities increased from 16% to 50% in the last

century and is projected to reach 70% by 2050 (Heilig

2011). Urban land conversion may occur at an even faster

rate than population growth, thus resulting in accelerating

encroachment of cities on reservoirs of biodiversity (Seto

et al. 2012). Urban areas become ecologically homoge-

neous (Groffman et al. 2014) due to loss of vulnerable

species that in turn enhances the probability of abrupt state

shifts (Barnosky et al. 2012).

Most species are ‘urban avoiders’ that do not persist after

urbanization, but ‘urban adapters’ and ‘exploiters’ are fac-

ultative or obligate users, respectively, of human-domi-

nated habitats (Blair 2001; McKinney 2002). Although

Blair’s (2001) conception of urban adapters did not explic-

itly include evolution after urbanization, local adaptation

may have enhanced the ability of urban adapters to exploit

human subsidies. Urban habitats are ‘novel ecosystems’

composed of unique ecological communities and processes

(Hobbs et al. 2006, 2009), and thus, many species likely

face new, strong selection pressures from urbanization.

Humans have undoubtedly altered the evolutionary trajec-

tory of crop, pest, and disease species (Palumbi 2001), but

conclusive cases of human-driven evolution in organisms

that are not human commensals or pathogens have been
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difficult to identify (Meril€a and Hendry 2014) outside of a

few recent examples (Donihue and Lambert 2014).

Urbanization results in severe habitat fragmentation

(Zipperer et al. 2012), a process that reduces genetic varia-

tion among animal populations (Keyghobadi 2007; Rivera-

Ort�ız et al. 2014). Loss of variation may in turn reduce the

evolutionary potential of populations experiencing rapidly

changing ecological conditions (Etterson and Shaw 2001;

Hoffmann and Sgr�o 2011; Oakley 2013). Definitive evi-

dence of adaptive evolution from standing variation in wild

populations is still relatively scarce (Colosimo et al. 2005;

Renaut et al. 2011; Domingues et al. 2012), but new user-

friendly approaches to generating large population geno-

mic datasets have improved prospects for quantifying and

analyzing genetic variation in the wild (Narum et al. 2013).

Evolution can proceed at the nucleotide level through new

mutations or changes in frequency of standing genetic vari-

ants (Orr 2005), but it is likely that standing variation is

more important in cases of rapid evolution (Barrett and

Schluter 2008). Results from laboratory experiments

(Teot�onio et al. 2009; Burke et al. 2010), ancestral varia-

tion in model organisms (Rockman 2008; Scarcelli and

Kover 2009), humans (Pritchard et al. 2010), artificial

selection in crops (Gibson and Dworkin 2004), viral patho-

gens (Pennings 2012), and invasive species (Prentis et al.

2008) all support this association.

Predicting the loci, genetic architecture, and additive

effects involved in adaptive responses to urbanization will

be difficult in most cases, but estimating genomewide vari-

ation as a general proxy for evolutionary potential is a

useful alternative. Measures of allelic diversity and

heterozygosity from genomewide markers have the advan-

tages of accounting for traits influenced by many loci of

small effect, and for predicting how much variation will be

available for future adaptive responses to unknown selec-

tion pressures (Harrisson et al. 2014). One criticism of

using genomewide single nucleotide polymorphism (SNP)

datasets to estimate evolutionary potential is that many loci

are not associated with functional genomic regions. How-

ever, average allele frequency divergence predicts the most

extreme FST outliers, and the geographic structure of neu-

tral and selected alleles is nearly identical, in humans (Coop

et al. 2009). Genomewide SNPs have also been successfully

used to predict phenotypic improvement through ‘genomic

selection’ methods in artificially selected species such as

livestock (Meuwissen et al. 2013). The increased accessibil-

ity of genomewide markers for nonmodel organisms thus

provides many opportunities for measuring and predicting

evolutionary potential in an urbanizing world (Harrisson

et al. 2014). Here, we examine genomewide variation in

white-footed mouse populations sampled along an urban-

to-rural gradient and robustly quantify urbanization as a

driver of population genomic patterns.

Previous microsatellite-based analyses on this system

showed substantial genetic structure between white-footed

mouse populations in NYC’s forest fragments (Munshi-

South and Kharchenko 2010). Park area, age, or the extent

of habitat within parks did not explain levels of genetic

variation among these populations (Munshi-South and

Nagy 2014), but these studies focused exclusively on forest

fragments within NYC that were highly isolated by sur-

rounding urbanization. In a separate analysis, we identified

SNPs from transcriptomes sequenced from urban and rural

populations, and found that population structure was

greater among the urban than the rural populations (Harris

et al. 2015a). This analysis was limited to only six sampling

sites, however, and SNPs from coding regions may often

deviate from neutral expectations. In this study, we expand

these investigations using large, genomewide SNP datasets,

and include populations sampled along an urban-to-rural

gradient spanning 142 km from the urban core to exten-

sive, rural protected areas. We specifically used a double-

digest RADseq protocol (Peterson et al. 2012) to generate

over 10 000 SNPs for analyzing the population genomics of

white-footed mice.

Land use transformation and anthropogenic barriers

may ultimately reduce gene flow between populations

(Epps et al. 2007; Balkenhol and Waits 2009; Jha 2015),

leading to greater genetic structuring and loss of genome-

wide variation in urbanized areas. Several statistical

approaches have recently been developed to investigate the

influence of landscapes on genetic structure, although they

vary in ability to distinguish between isolation by distance

(IBD) and ecological factors. Isolation-by-resistance (IBR)

models examine the statistical association between genetic

and ‘resistance’ distances, where the latter represent proba-

bilities that individuals disperse between populations given

the landscape ‘friction’ to dispersal (McRae 2006). The fric-

tion values are inferred from empirical movement data or

optimized using model selection approaches. One draw-

back of IBR is that resistance distances are calculated across

all paths that individuals may take between populations,

and thus are not truly independent from IBD. Isolation-by-

environment (IBE) processes, in contrast, are characterized

by positive correlations between environmental differences

around sites and genetic distances that are independent of

the effects of geographic distance (Wang and Bradburd

2014). Both IBR and IBE patterns are influenced by the

same biological processes that limit migration across land-

scapes (such as costs of movement or selection against dis-

persing genotypes), but IBE patterns are defined by their

independence from IBD. IBR and IBE also differ in that the

former is focused primarily on the influence of the land-

scape between sites or individuals, whereas the latter is con-

cerned with the influence of the environment in and

around sites.
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We previously reported that gene flow between popula-

tions of white-footed mice could be explained by IBR mod-

els based on patterns of urban vegetation cover in NYC

(Munshi-South 2012). Here, we investigate IBR in a much

broader range of landscape conditions along an urban-to-

rural gradient. In our earlier work, we used partial Mantel

tests and a causal modeling approach to identify ecological

distances between populations (based on vegetation cover)

that best explained gene flow after factoring out IBD

(Cushman and Landguth 2010). While this approach can

be successful for landscapes composed of high-contrast

cover types (such as NYC), several authors have argued that

partial Mantel tests have low statistical power and are

prone to false positives (Legendre and Fortin 2010; Graves

et al. 2013). Here, we use a partial Mantel test for our IBR

model, as well as a new statistical IBE approach to quantify

the relative contributions of urbanization and IBD to

genetic differentiation between white-footed mouse popu-

lations (Bradburd et al. 2013). Specifically, we model the

strength of covariance in allele frequencies between popula-

tions as a function of IBD and IBE due to urbanization of

the landscape.

In this study, we test the following interrelated predic-

tions about the population genomics of white-footed mice

(Peromyscus leucopus Rafinesque) in the New York City

(NYC) metropolitan area:

1) Genomewide variation within populations is inversely

related to urbanization of the surrounding landscape.

2) Urbanization of the landscape results in greater genomic

structure and differentiation between populations.

3) ‘Resistance distances’ and ‘ecological distances’ resulting

from urbanization are better predictors of genetic

differentiation than geographic distances between

populations.

Methods

Study species and sampling sites

White-footed mice are one of the most widespread and

abundant small mammals in eastern North America, and

occupy a broad range of forest, meadow, and secondary

growth habitats. They have served as model systems for

population ecology for decades (Vessey and Vessey 2007;

Brunner et al. 2013) because of their ubiquity and easy

trappability. Peromyscus spp. more broadly have emerged

as model systems for the genomics of adaptation (Bedford

and Hoekstra 2015), and the first reference genomes are

currently being assembled (Kenney-Hunt et al. 2014).

For this study, we sampled white-footed mice from 23

sites in the NYC metropolitan area (Table 1). The 12 sites

within NYC limits were the same as in previous studies,

Table 1. Characteristics of numbers of white-footed mice sampled at 23 locations along an urban-to-rural gradient.

Site Code Type N Latitude Longitude Human population size % Impervious surface

Alley Pond/Cunningham AP City 13 40.747605 �73.742505 1298.3, 59880.1 21.2, 50.8

Central Park CP City 9 40.798231 �73.956198 15908.3, 351698.8 48.6, 60.2

Flushing Meadows FM City 10 40.721442 �73.830805 1577, 125893.1 32.3, 58

Forest Park FP City 6 40.703356 �73.850889 268.3, 123722 6.8, 61.3

Fort Tilden FT City 4 40.561031 �73.887552 17.2, 2357.5 5.5, 8.5

Inwood Hill Park IP City 6 40.873295 �73.925005 1073.6, 121354.2 7.5, 30

Jamaica Bay JB City 5 40.623063 �73.824582 0, 1438.4 3.6, 3.2

Kissena Park KP City 9 40.746547 �73.811192 2039.9, 107273.1 28.5, 62.3

NY Botanical Garden NYBG City 11 40.871613 �73.874079 6875, 256359.1 44.4, 60.9

Pelham Bay PB City 11 40.879895 �73.804063 1.8, 3508.1 0, 9.5

Ridgewood Reservoir RR City 10 40.687347 �73.88711 2725.8, 143223.9 21.7, 66.9

Van Cortlandt Park VC City 6 40.902086 �73.882341 0, 77541.7 10, 27.7

Pleasant Valley CPV Suburb 7 41.707149 �73.796406 45.7, 720 0.5, 1

Louis Calder Center LCC Suburb 13 41.128624 �73.73042 235.8, 3118.6 3.1, 10.6

Mianus River Gorge MRG Suburb 6 41.185234 �73.622813 76.4, 1681.4 0.3, 0.6

Saxon Woods Park SW Suburb 7 40.988344 �73.753852 45.7, 8164.7 0.6, 17.6

C. Fahnestock St. Park CFP Rural 9 41.468662 �73.843355 1.9, 56 0.1, 0.1

Cary Institute CIE Rural 7 41.784468 �73.735476 5.6, 263.8 0.5, 1.3

Highpoint State Park HIP Rural 8 41.262754 �74.703121 4.2, 157.5 0.8, 0.4

Harriman State Park HP Rural 9 41.282946 �74.068317 0, 2.8 0.1, 0.2

Cornwall, CT MH Rural 8 41.787584 �73.385292 5.7, 183.5 2.2, 0.9

Minnewaska Reserve MR Rural 8 41.727843 �74.260149 0, 9 0, 0.1

Wildwood State Park WW Rural 9 40.939296 �72.828573 13.1, 2080 0.9, 3.5

Human population size and percent impervious surface were measured at two buffer sizes around these sites: 500 m and 2.0 km.
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although here we combined samples from Pelham Bay and

Hunters Island in the Bronx, and Alley Pond and Cunning-

ham Parks in Queens, because evolutionary clustering

results showed that these pairs of sites were not strongly

differentiated from each other (Munshi-South and Kharch-

enko 2010). These urban sites contained secondary forest

typically dominated by oaks, hickories, maples, and/or

tulip trees, with very thick understories composed primar-

ily of invasive plants. Suburban and rural sites contained

similar canopies, but the understories were largely cleared

of thick vegetation by rampant deer herbivory.

At each site, we trapped white-footed mice over a period

of one to three nights using two or more 7 x 7 grids of

Sherman live traps (9″93″93″). Traps within grids were

placed 15 m apart, and grids were located several hundred

meters apart to avoid trapping close relatives. We collected

ear punches or tail clippings from up to 25 mice at each

site, and stored the tissue in 80% EtOH before transfer to a

-20 C freezer in the laboratory. Animal handling

procedures were approved by Fordham University’s Insti-

tutional Animal Care and Use Committee (Protocol No.

JMS-13-03).

We chose sites that qualitatively represented typical

urban (n = 12 sites), suburban (n = 4), and rural (n = 7)

sites in the NYC metropolitan area based on the levels of

development (Fig. 1). However, suburban counties adja-

cent to NYC have higher human population densities than

major cities in other parts of North America. To facilitate

comparisons with other urban areas, we calculated the size

of the human population and percent impervious surface

in geographic buffers around each site as proxies for rela-

tive urbanization (Fig. 1B).

We first incorporated GPS coordinates for our study

sites into base layers (2010 TIGER/Line� Shapefiles—
County or States and equivalent) available from the US

Census Bureau. Buffers were created in ArcGIS v10.1

(ESRI, Redlands, CA, USA) around each site’s GPS coordi-

nates with radii of 500 m, 1000 m, 1500 m, and 2000 m.

These buffers were chosen because they are relevant to the

typical lifetime dispersal distance of many white-footed

mice; for example, no mice over a 40-year study of one

woodlot dispersed to the nearest neighboring woodlot

<1.5 km away (Vessey and Vessey 2007). To determine

human population size inside each buffer, we used US Cen-

sus Blocks as these provide the smallest geographic unit

with 100% census data. We first calculated the area of each

census block and then intersected the census block and buf-

fer layers. We interpolated human population size within

each buffer based on the percentage of area for each census

block that intercepted each buffer ([area of census block

within buffer/area of census block] 9 population of census

block). We then summed all of the interpolated population

sizes that fell within each buffer.

To determine percent impervious surface within each

study site buffer, we used the 2011 Percent Developed

Imperviousness layer from USGS National Land Cover

Data (Xian et al. 2011). We then calculated zonal statistics

to measure the geometry of the raster file and summarize

the cell values of the raster that fell within each buffer.

(A)

(B)

Figure 1 (A) Geographic locations of the 23 sites at which we sampled

white-footed mice for this study. The map contains land cover cate-

gories and impervious surface levels from the 2011 National Land Cover

Database at 30 m resolution. Red to purple colors represent increasing

percentages of impervious surface cover. Site abbreviations correspond

to Table 1. (B) Scatterplot of percent impervious surface cover vs.

human population size for the 23 sampling sites. Both variables were

log-transformed to improve linearity, and were measured using 2-km

buffers around study sites as described in the text. Red dots represent

urban sites, green dots represent suburban sites, and black dots repre-

sent rural sites.
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From these data, we calculated the average percent imper-

vious surface within each landscape buffer for each site.

These estimates of impervious surface and human popu-

lation size could be highly correlated at the different spatial

buffers, so we calculated Pearson correlation coefficients

between all pairs of values (Table S1). To avoid including

redundant information in downstream analyses, we

removed any variables that exhibited r > 0.90 in pairwise

comparisons with the other variables. The 1-km and 1.5-

km buffers were removed because they were highly corre-

lated with other estimates, and percent impervious surface

and human population size estimated for the 500-m and

2-km buffers were retained.

ddRADSeq, SNP genotyping, and population genomic

statistics

We generated SNP genotypes for 233 individuals using a

double-digest RADseq protocol (Peterson et al. 2012). We

aimed to obtain genotypes from 10 individuals from each

site, but sample dropout due to poor DNA yield during

library preparation resulted in variability in the sample size

for each site (Table 1). In brief, we extracted DNA from tail

snips or ear punches using Qiagen DNEasy tissue kits (Qia-

gen, Valencia, CA, USA) with an RNAse treatment, and

then digested 500–1000 ng of DNA using the enzyme com-

bination of SphI-HF and MluCI for 1 h following the man-

ufacturer’s instructions (New England Biolabs, Ipswich,

MA, USA). A Qubit 2.0 fluorometer (Life Technologies,

Norwalk, CT, USA) was used to quantify DNA concentra-

tion at several steps in the library preparation. Next,

digested DNA was cleaned with 1.5X AMPure XP magnetic

beads (Beckman-Coulter, Brea, CA, USA) and custom in-

line ‘flex’ barcodes and P1/P2 adapters were ligated to 200–
400 ng of digested DNA for each sample (Peterson et al.

2012). Up to 48 individual libraries with unique barcodes

were then pooled in equimolar amounts and cleaned with

1.5X AMPure XP beads. Next we selected DNA fragments

of known sizes (376–412 bp) from the pooled libraries

using a Pippin Prep (Sage Science, Beverly, MA, USA). We

then conducted multiple PCR amplifications using 20 ng

of size-selected DNA and Phusion High-fidelity PCR

reagents with manufacturers’ PCR conditions (New Eng-

land Biolabs). This PCR step added a second, unique index

sequence and Illumina sequencing primers to the pooled

libraries so each individual sample contained a unique

combination of the in-line barcode and index. We then

pooled the PCRs for each size-selected library, cleaned the

pools using 1.5X AMPure XP beads, and checked the

libraries using an Agilent BioAnalyzer (Agilent Technolo-

gies, Santa Clara, CA, USA) for DNA concentration and

the correct distribution of fragment size. The libraries were

sequenced using three lanes of Illumina HiSeq 2000

2 9 100 bp paired-end sequencing at the New York

University Center for Genomics and Systems Biology (New

York, NY, USA).

As an initial check on the quality of our Illumina

sequence data, we analyzed the raw reads in FastQC

(Andrews 2010). Subsequent demultiplexing, quality filter-

ing, and de novo SNP calling were conducted using the

Stacks 1.21 pipeline (Catchen et al. 2013). First, we used

the process_radtags script to filter out low-quality reads and

demultiplex the remaining reads according to their unique

combination of in-line barcode and index. Based on

FastQC results, we trimmed all reads to 96 bp to remove

poor-quality base calls at the ends of reads. Next, we con-

catenated the single- and paired-end reads for each individ-

ual into one fastq file because the two paired reads did not

overlap and were not aligned to a reference genome. To

identify RAD loci and call SNPs, we used the den-

ovo_map.pl script in Stacks with default settings except for

the minimum number of identical reads required to create

a ‘stack’ (m = 7), number of mismatches allowed between

RAD loci for a single individual (M = 3), and the number

of mismatches allowed when building the catalog (n = 2).

After building the initial catalog of loci, we used the popu-

lations script in Stacks to filter loci for those that occurred

in at least 22/23 sampling sites (P = 22) and in at least 50%

of individuals at each site (r = 0.5) to a minimum coverage

of 7X (m = 7). These parameter values imply that each

base pair position was sequenced at least 668X across the

entire dataset. Stacks calculates the likelihood of the two

most common genotypes at each site given a maximum-

likelihood estimate of the sequencing error rate, and then

uses a likelihood ratio test to identify the most likely geno-

type at that position. Full details of the models underlying

Stacks are given in Catchen et al. (2013). The populations

script also produced genotype output in multiple formats

(i.e., Genepop, Structure) with one randomly selected SNP

from each locus (–write_random_SNP), and generated

summary statistics such as observed heterozygosity, nucleo-

tide diversity, and pairwise FST between all populations.

These summary statistics were calculated for the sites that

were polymorphic in at least one population (i.e., variant

sites; Table 2), as well as for all the sites (Table S2). We

used summary statistics for the variant sites in downstream

analyses, although the two estimates were typically highly

correlated (i.e., r < 0.99).

We loaded the RAD loci and individual data from Stacks

into a MySQL database and visualized the output using the

Stacks webserver. Based on the results of the first pipeline

run, we removed 26 individuals because their small number

of reads resulted in very small SNP datasets and excessive

missing genotypes compared to other samples. Highly related

individuals in our dataset could also bias downstream analy-

ses. We avoided relatives at our urban sites using relatedness
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values from previous microsatellite studies of the same indi-

viduals (Munshi-South and Kharchenko 2010). For the SNP

dataset, we identified highly related individuals by calculating

kinship coefficients in the software package KING (Mani-

chaikul et al. 2010). Kinship analysis identified 16 pairs of

individuals that were related at the half-sib level or greater.

We removed one of the pair members from the dataset,

resulting in a final dataset comprised of 191 of the original

233 individuals. We then reran the Stacks pipeline on the

screened dataset of 191 individuals.

Besides the filters applied by Stacks and the removal of

highly related individuals, we also omitted outlier loci

detected using the approach in BayeScan 2.1 (Foll and Gag-

giotti 2008). Operating with default parameters and a false

discovery rate <0.01, we identified 200 outliers using

BayeScan. Five of these outliers showed a signature of posi-

tive selection, whereas 195 showed signatures of balancing

selection. We omitted these outliers from the dataset

because they did not fit assumptions of neutrality inherent

to our downstream analyses.

Modeling genomewide variation within populations

We modeled four measures of genomewide variation

within populations against our two urbanization proxies to

test the hypothesis that urbanization is associated with

reduced genetic variation. Summary statistics for each pop-

ulation included observed heterozygosity (HO), nucleotide

diversity (p), number of private loci, and the percent of

polymorphic loci. We examined genetic (dependent) vari-

ables using seven candidate general linear models (GLMs)

consisting of combinations of human population size and

percent impervious surface estimated using different geo-

graphic buffers as described above (500 m and 2000 m): an

intercept-only model, four univariate models with one

variable measured at one buffer size, and two bivariate

models including both human population and impervious

surface estimated for the same buffer size. Human popula-

tion size and percent impervious surface were ln-trans-

formed prior to analysis to improve normality. If a model

performed substantially better than the intercept-only

model, then we interpreted that result as evidence of a sta-

tistical effect of the urbanization variable(s) on genetic

diversity within white-footed mouse populations. We cal-

culated maximum-likelihood estimates of model parame-

ters for each model, and then ranked models using values

of AICc, the corrected Akaike’s information criterion

(Burnham and Anderson 2002). The relative quality of

models was further assessed based on DAICc, and the rela-

tive weight (wi) of each model. For the best GLMs, we

Table 2. Summary genetic diversity statistics calculated by STACKS for nucleotide positions that were polymorphic in at least one population.

Site Type N Sites %Poly Private P Hobs p

AP City 10.4 14 859 0.388 154 0.944 0.080 0.089

CP City 6.6 14 031 0.321 152 0.936 0.095 0.102

FM City 7.7 14 812 0.229 90 0.953 0.061 0.071

FP City 5.4 14 904 0.224 92 0.951 0.066 0.076

FT City 3.7 14 880 0.235 78 0.948 0.082 0.086

IP City 5.2 14 879 0.304 146 0.944 0.083 0.091

JB City 4.3 14 750 0.230 54 0.952 0.075 0.079

KP City 7.8 14 872 0.278 139 0.951 0.069 0.077

NYBG City 7.9 12 657 0.321 138 0.925 0.117 0.106

PB City 9.1 14 788 0.414 269 0.899 0.164 0.143

RR City 7.7 14 648 0.209 88 0.957 0.054 0.066

VC City 5.5 14 909 0.350 159 0.928 0.115 0.116

CPV Suburb 6.0 14 712 0.383 273 0.903 0.164 0.142

LCC Suburb 10.3 14 670 0.450 431 0.904 0.158 0.138

MRG Suburb 5.1 14 830 0.371 198 0.903 0.165 0.146

SW Suburb 5.7 14 698 0.303 126 0.945 0.081 0.090

CFP Rural 7.0 14 814 0.380 269 0.914 0.141 0.122

CIE Rural 5.6 14 393 0.300 134 0.946 0.078 0.088

HIP Rural 7.0 14 886 0.416 515 0.910 0.148 0.129

HP Rural 7.1 14 797 0.452 516 0.915 0.137 0.135

MH Rural 6.9 14 906 0.432 362 0.894 0.181 0.150

MR Rural 6.3 14 856 0.295 381 0.947 0.074 0.085

WW Rural 6.6 14 630 0.327 131 0.920 0.132 0.113

Mean 6.7 14 660 0.331 212.8 0.930 0.110 0.106

N = average number of individuals genotyped at each locus; Sites = number of polymorphic nucleotide sites across the dataset; %Poly = percentage

of polymorphic loci; Private = number of variable sites unique to each population; P = average frequency of the major allele; Hobs = average

observed heterozygosity per locus; p = average nucleotide diversity.
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examined the statistical significance of the urbanization

coefficients. We also examined scatterplots (Fig. 2) and fit-

ted regression lines to confirm that the model explained

variation in the genetic parameter of interest. We con-

ducted all statistical analyses in R 3.2.1 (R Development

Core Team 2008), and used GLM regression in the

AICcmodavg package for model selection (Mazerolle

2015).

Genetic structure and population differentiation

To investigate whether urbanization results in greater

genetic differentiation between populations, we used

discriminant analysis of principal components (DAPC) in

the R package adegenet (Jombart and Ahmed 2011) to

identify evolutionary clusters among 191 white-footed

mice. DAPC first reduces total genetic variation (i.e., vari-

ance in allele frequencies) into principal components, and

then identifies discriminant functions that maximize differ-

ences between clusters while minimizing variation within

clusters. We used cross-validation in adegenet to identify

the optimal number of principal components. This proce-

dure uses a randomly generated training set and validation

set of individuals to identify the optimal number of princi-

pal components that accurately predict group membership

without overfitting. To visualize clusters, we used DAPC
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Figure 2 Scatterplots and trend lines for best GLMs identified using AICc modeling that describe the relationship between urbanization and (A)

heterozygosity, (B) nucleotide diversity, (C) percent polymorphic loci, and (D) number of private alleles for the 23 populations. Red dots represent

urban sites, green dots represent suburban sites, and black dots represent rural sites. Site abbreviations correspond to Table 1.
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scatterplots and barplots (compoplot command in ade-

genet) to visualize membership of individuals in different

clusters. Genomewide SNP datasets often have power to

discriminate between all groups, and results from analyses

such as DAPC may reflect hierarchical structure. Thus, we

ran DAPC on the full dataset as well as subsets of sampling

sites to investigate hierarchical structure.

We also used the model-based evolutionary clustering

approaches in fastSTRUCTURE (Raj et al. 2014) and

ADMIXTURE (Alexander et al. 2009). fastSTRUCTURE

uses approximate inference of the Bayesian model in the

original STRUCTURE (J. Pritchard et al. 2000) whereas

ADMIXTURE computes maximum-likelihood estimates of

parameters to estimate the most likely number of evolu-

tionary clusters, K. We ran fastSTRUCTURE on our data

for each value of K from 1 to 23 using the standard model

with a simple prior. A fastSTRUCTURE script (chooseK.py)

also calculates heuristic scores for detecting the range of the

most likely values of K. After identifying likely values of K,

we reran fastSTRUCTURE with the more computationally

demanding logistic prior model on a smaller subset of K

values. The most likely values of K were determined in

ADMIXTURE using its cross-validation procedure

(Alexander and Lange 2011). To compare clustering results

from fastSTRUCTURE and ADMIXTURE, we used the

CLUMPAK (Cluster Markov Packager Across K) web ser-

ver (Kopelman et al. 2015) to align and visualize bar plots

for both programs at multiple values of K.

Landscape genomics

To investigate IBD, IBR, and IBE between white-footed

mouse populations, we first tested for IBD using a Mantel

test in the ecodist package in R. The data were bootstrapped

10 000 times to generate 95% confidence intervals for the

Mantel P value. We then used the BEDASSLE package

(Bradburd 2014) in R to estimate the relative contributions

of IBD and IBE to genetic differentiation between the sam-

pling sites. We computed allele counts and sample sizes for

each population using the—counts function in VCFtools

0.1.12b (Danecek et al. 2011). We examined the following

IBE models using BEDASSLE: (i) a simple binary matrix

indicating whether the population was located in NYC or

outside the city; and (ii) a pairwise matrix of ‘resistance

distances’ calculated between populations using the IBR

approach in Circuitscape 4.0 (McRae and Beier 2007).

Circuitscape calculates a pairwise matrix of resistance

distances between populations based on the ability of a

simulated electrical current to flow between adjacent land-

scape cells connected by resistors with user-defined resis-

tance values. We used the 2011 Percent Impervious Surface

layer from USGS National Landcover Data (Xian et al.

2011), and set the resistance value for each 30-m cell as

equivalent to its percent impervious surface unless the cell

exceeded 70% impervious surface. For cells exceeding 70%,

we set the resistance level to 100; in other words, any cell

with >70% impervious surface was assumed to be 100X

more resistant to migration than a cell with 1% impervious

surface. The 70% cutoff for relatively high, quasi-barrier

resistance was based on results of an earlier IBR analysis we

conducted in NYC (Munshi-South 2012). To calculate

resistance distances between all populations, we ran Cir-

cuitscape in pairwise mode with raster cells connected to

all eight neighboring cells. The analysis also produced a

cumulative current map to visualize hypothesized migra-

tion between all populations. As an initial check on the suc-

cess of the resistance distances at explaining variation in

pairwise FST, we conducted a partial Mantel test with

10 000 bootstraps in ecodist that factored out the effects of

Euclidean geographic distance. We then used these resis-

tance distances for the IBE model in BEDASSLE.

BEDASSLE uses a Markov Chain Monte Carlo (MCMC)

approach and includes several graphing functions for eval-

uating success of the MCMC posterior parameter estima-

tion. To confirm adequate mixing and convergence of

chains, we examined traces and marginal distributions for

all parameters. We also examined acceptance rates for

MCMC parameter estimation, and when these rates were

too high or low, we adjusted the tuning parameters and

reran the analysis for 5–10 million steps. For the final runs,

we calculated the median and 95% credible intervals for the

aE: aD ratio after discarding the first 20% as burn-in. This

ratio represents the effect size of ecological distance relative

to geographic distance.

The simple BEDASSLE model assumes identical variance

of allele frequencies about the global mean allele frequency.

However, populations deviate from the global mean for a

number of demographic reasons (i.e., bottlenecks, inbreed-

ing), and outlier populations can have a strong influence

on posterior distributions. To account for this variation,

BEDASSLE includes a beta-binomial model that estimates

an additional parameter, ΦK, that measures the strength of

drift and lack of fit of each population to the model. To

address population history, we also ran the beta-binomial

model for the two IBE scenarios above. For these models,

we examined the posterior distributions of the ΦK values

(recalculated as FK = 1/1 + ΦK) to identify outlier popula-

tions.

To test the relative fit of the models to our data, we gen-

erated 1000 posterior predictive samples for each model

and compared the simulated data to our observed data in

BEDASSLE. BEDASSLE includes a function that randomly

draws parameter values from the posterior distributions

and simulates new datasets. These simulated datasets are

then used to calculate FST between all pairs of populations.

Simulated FST values can then be compared to the observed
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FST values to examine the models’ ability to describe

patterns in the real data.

Results

ddRADSeq dataset and summary population genomic

statistics

Three lanes of Illumina HiSeq 2 9 100 PE sequencing pro-

duced a total of 1.16 billion reads, of which 936.64 million

reads (80.9%) passed initial quality filters. Reads were fil-

tered out due to ambiguous barcode sequences (56.3%),

low-quality scores (40.9%), and ambiguous RAD tags

(2.8%). The catalog generated by STACKS included

880 898 RAD loci with at least 7X coverage, but this num-

ber was reduced to 14 930 after requiring loci to be present

in 22/23 populations and at least 50% of individuals within

each population. All populations were well-represented in

the final dataset, with averages of 4 to 10 individuals geno-

typed per locus across the 23 populations (median = 6.6;

Table 2).

For all loci that were polymorphic in at least one popula-

tion, the major allele frequency (P) ranged from 0.894 to

0.957, and the average observed heterozygosity from 0.054

to 0.181 (Table 2). If all invariant positions are included,

then the major allele frequency exceeded 0.999 in all popu-

lations and the heterozygosity ranged only from 0.001 to

0.002 (Table S2). Nearly all of the populations located

within NYC exhibited lower genetic variation than subur-

ban or rural populations as measured by the percentage of

polymorphic sites, numbers of private alleles, major allele

frequency, observed heterozygosity, and nucleotide diver-

sity (p). The only exceptions to these trends were relatively

high diversity values for the Pelham Bay (PB) population

in NYC, and low values for suburban Saxon Woods (SW),

the rural Cary Institute (CIE) and Minnewaska Reserve

(MR; Table 2). Excluding those four outliers, heterozygos-

ity ranged from 0.054 to 0.117 in the urban populations

and 0.158 to 0.181 in the suburban and rural populations.

Nucleotide diversity similarly ranged from 0.066 to 0.116

in NYC and 0.138 to 0.15 in the suburban and rural popu-

lations.

Modeling urbanization and genomewide variation within

populations

Sampling sites could be distinguished by their combina-

tions of human population size and percent impervious

surface (Fig. 1B). The rural sites all clustered at very low

values for both urbanization variables. Urban and rural

sites exhibited little overlap in the scatterplot, with the

exception of Fort Tilden (FT), Jamaica Bay (JB), and Pel-

ham Bay in NYC. Figure 1B shows the relationship

between the two urbanization variables measured for a

2-km buffer around sampling sites, but results were

qualitatively similar for the 500-m buffer.

Model selection based on AICc confirmed that nearly all

GLMs with one or more urbanization variables described

variation in genomic diversity better than intercept-only

models, except for human population size estimated at a

500-m buffer (Table 3). Impervious surface cover,

Table 3. Results of selection among general linear models describing the influence of percent impervious surface cover (imprv) and human popula-

tion size (pop) at 500-m and 2-km buffer sizes on a) observed heterozygosity, b) nucleotide diversity, c) the number of private alleles within each pop-

ulation, and d) the percentage of polymorphic loci within each population.

Models AICc Di wi Models AICc Di wi

a) observed heterozygosity b) nucleotide diversity (pi)

imprv2 km �85.98 0.00 0.62 imprv2 km �104.59 0.00 0.57

pop2 km + imprv2 km �84.46 1.52 0.29 pop2 km + imprv2 km �103.55 1.04 0.34

imprv500 m �79.89 6.09 0.03 imprv500 m �98.43 6.17 0.03

pop2 km �79.47 6.52 0.02 pop500 m + imprv500 m �98.36 6.23 0.03

pop500 m + imprv500 m �78.95 7.04 0.02 pop2 km �97.61 6.98 0.02

intercept �78.57 7.41 0.02 intercept �96.94 7.66 0.01

pop500 m �76.65 9.34 0.01 pop500 m �94.84 9.75 0.00

c) number of private alleles d) percentage of polymorphic loci

imprv2 km 291.03 0.00 0.56 imprv2 km �53.85 0.00 0.55

pop2 km + imprv2 km 293.82 2.79 0.14 pop2 km + imprv2 km �51.37 2.49 0.16

imprv500 m 294.51 3.47 0.10 pop2 km �50.09 3.76 0.08

pop2 km 294.67 3.64 0.09 intercept �49.89 3.96 0.08

intercept 295.90 4.86 0.05 Imprv500 m �49.82 4.03 0.07

pop500 m + imprv500 m 296.25 5.22 0.04 pop500 m + imprv500 �48.39 5.46 0.04

pop500 m 297.49 6.45 0.02 pop500 m �47.63 6.22 0.02

The best models were chosen based on the second-order Akaike’s information criterion (AICc), the rate of change in AICc (Di), and the Akaike weights (wi).
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estimated at the 2-km buffer, was the highest ranked model

for all four genetic variables, with the second best models

all including both impervious surface cover and human

population size at the 2-km buffer. The Akaike weights for

the best models were all equal to or >0.55, and the delta

AICc for moving from the second to third model were all

>3.0. Heterozygosity was negatively associated with percent

impervious surface, with the exception of the outlier popu-

lations mentioned above (i.e., rural populations with low

genetic diversity; Fig. 2A). Nucleotide diversity was also

negatively associated with percent impervious surface, and

exhibited the same outlier populations as the heterozygos-

ity scatterplot (Fig. 2B). The number of private alleles and

percent polymorphic loci were negatively associated with

percent impervious surface (Fig. 2C,D). All urbanization

coefficients from the top GLMs were also significant at

P < 0.05, with the coefficients for nucleotide diversity and

number of private alleles significant at P < 0.001.

Genetic structure and population differentiation

Pairwise FST calculated using STACKS ranged from a low

of 0.033 between a rural (MH) and suburban (LCC) popu-

lation, and a high of 0.145 between a suburban (MRG) and

urban (RR) population. Most values were between 0.05

and 0.10. Some NYC populations exhibited many

FST > 0.10, particularly RR and JB, as did one suburban

population (MRG). A simple Mantel test revealed no sig-

nificant IBD (Mantel r = 0.041, 95% CI = �0.046–0.124,
P = 0.32).

Cross-validation identified n = 23 as the optimal num-

ber of principal components to retain for DAPC analysis

(Figure S1). The first two discriminant functions distin-

guished two isolated NYC sites, Jamaica Bay (JB) and Fort

Tilden (FT), from the other populations. Discriminant

function three separates out a cluster of the other popula-

tions on Long Island (AP, FM, FP, KP, RR, WW), a cluster

of NYC populations in the middle (IP, NYBG, PB, VC)

with suburban populations just below them (LCC, MRG,

SW, CPV), and rural populations (CIE, CFP, HIP, HP,

MH, MR) at the bottom (Fig. 3A). This clustering largely

recapitulates the spatial orientation of these populations

along a north–south axis. One exception is the most urban

population, Central Park (CP), which does not occur where

it would be expected based on geography. This placement

indicates that Central Park is one of the most isolated and

unique NYC populations, along with Fort Tilden and

Jamaica Bay. The DAPC compoplot (i.e., a barplot of

membership probability) indicated that nearly all individu-

als could be assigned to their sampling site with high prob-

ability (Figure S2).

To clarify relationships between major clusters of sam-

pling sites, we reran the DAPC analysis on two subsets: all

populations on the mainland and Manhattan, and all pop-

ulations located on Long Island. Twelve principal compo-

nents were retained for the mainland–Manhattan analysis,

and the scatterplot of the first two discriminant functions

revealed a major, central cluster that recapitulated the

geography of the populations. However, three isolated,

urban populations were distinct from this cluster (Fig. 3B):

Central Park (CP), Inwood Hill Park (IP), and Van Cort-

land Park (VC). The Long Island analysis retained seven

principal components, and confirmed that JB and FT are

highly distinct populations, as well as the Ridgewood

Reservoir (RR; Figure S3).

Both the heuristic analysis in fastSTRUCTURE (using

the simple prior) and cross-validation in ADMIXTURE

identified K = 2 as the most likely number of evolutionary

clusters among the 23 white-footed mouse populations we

sampled. CLUMPAK confirmed that individual assignment

to the two clusters was highly correlated across the two

methods (r = 0.93; Fig. 4A,B). One cluster (blue in

Fig. 4A,B) contained all the NYC populations on Long

Island, the two populations on Manhattan (CP and IP),

and three other suburban/rural populations with atypically

low genetic variation (CIE, MR, and SW). All other popu-

lations were assigned to the other cluster (orange in

Fig. 4A,B), except for WW located in rural Long Island

which was an admixture of the two clusters in almost equal

proportions. When we reran the fastSTRUCTURE analysis

for K = 1–4 using the more accurate logistic prior, the

heuristic analysis identified K = 3 as the upper bound on

the likely number of evolutionary clusters. Cross-validation

in ADMIXTURE also identified K = 3–5 as only slightly

worse than K = 2 (Figure S4), so we created barplots for

these numbers of evolutionary clusters. For K = 3, the blue

cluster of urban Long Island, Manhattan, and outlier rural

populations was maintained, but the other cluster was split

into two largely based on location east or west of a north–
south axis (Fig. 4C). The fourth cluster in the K = 4

ADMIXTURE analysis included a new cluster (Fig. 4D)

with the two Manhattan populations, a Bronx population

(NYBG), and a few distant populations adjacent to or west

of the Hudson River (CFP and HIP). The additional cluster

for K = 5 included two suburban populations in relative

proximity (CPV and LCC; Fig. 4E).

Landscape genomics

For the simple BEDASSLE model examining presence or

absence in the city, the median aE: aD ratio was 7.14 and

the 95% credible set was 6.90 to 7.36. The interpretation of

this result is that being located in NYC has an impact of

approximately 7 km of extra pairwise geographic distance

on genetic differentiation. Comparison of posterior predic-

tive samples for the simple and beta-binomial model con-

© 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 546–564 555

Munshi-South Population genomics of the Anthropocene



firms that the latter is a much better fit to the data

(Fig. 5A,B). For the beta-binomial model, the median aE:
aD ratio was 0.006 and the 95% credible set was 0.0002 to

0.038. This model indicates that presence in NYC has virtu-

ally no additional impact over geographic distance on

genetic differentiation. However, values of Fk were elevated

(A)

(B)

DA eigenvalues

PCA eigenvalues

DA eigenvalues

PCA eigenvalues

Figure 3 Scatterplots resulting from discriminant analysis of principal components (DAPC) for (A) all 23 sampling sites, and (B) a subset of sites occur-

ring on Manhattan and mainland North America. Insets represent the eigenvalues of retained principal components (top left), and the eigenvalues of

discriminant functions portrayed in the scatterplots (bottom left). Site abbreviations correspond to Table 1.

556 © 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 546–564

Population genomics of the Anthropocene Munshi-South



for most of the urban populations (range in medians from

0.04–0.25; mean = 0.12) relative to the suburban

(range = 0.01–0.06; mean = 0.03) and rural populations

(range = 0.001–0.11; mean = 0.03), with the exception of

two rural populations that also had high values (CIE and

MR; Fig. 5D). These Fk values indicate that the urban pop-

ulations deviated substantially more from global allele fre-

quency estimates than the suburban and rural populations.

Pairwise resistance distances from the IBR model (Fig-

ure S5) were significantly associated with FST, even after

factoring out the effects of geographic distance (partial

Mantel r = 0.521, 95% confidence interval = 0.438–0.621,
P < 0.0001; Table S3). The simple IBE model using resis-

tance distances did not converge after trying many different

combinations of prior values. The beta-binomial model did

converge, producing a median aE: aD ratio of 0.0001 and

K = 2 fastStructure(A)

K = 2 ADMIXTURE

K = 3

K = 4

K = 5

(B)

Figure 4 Bar plots resulting from evolutionary clustering analyses using (A) fastSTRUCTURE assuming K = 2, and (B) using ADMIXTURE assuming

K = 2–5. Site abbreviations correspond to Table 1 and are ordered geographically in the bar plots. The first five sites are on Long Island (AP-WW),

the next two on Manhattan (CP and IP), the next 10 east of the Hudson River (VC-MH, organized from North to South), and the last three west of

the Hudson River (HP-MR).
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95% negligible impact on genetic differentiation compared

to geographic distances, which contradicts the IBR results.

Posterior predictive sampling indicated that this beta-bino-

mial model performed moderately well, but systematically

underpredicted observed FST < 0.05 (Fig. 5C).

Discussion

This study is the first to our knowledge to examine the

influence of urbanization on genomewide SNP variation in

a city-dwelling species. We found that populations of

white-footed mice along an urban-to-rural gradient exhibit

a negative correlation between genomic variation and

urbanization in and around their habitat. Populations

within NYC also exhibited greater genetic differentiation

from one another than pairs of populations in rural areas.

IBR and IBE models based on urbanization explained a

greater proportion of pairwise population differentiation

overall than IBD by some metrics. NYC populations devi-

ated more strongly from global mean allele frequencies

than rural populations, indicating that urbanization has

substantially altered the evolutionary trajectories of urban

wildlife (Donihue and Lambert 2014).

Many recent studies have documented reduced migra-

tion and loss of heterozygosity at microsatellite loci among

populations in urbanized landscapes (Gortat et al. 2014;

Barr et al. 2015; Jha 2015). However, for logistical reasons

the most variable microsatellite loci are often chosen for

population genetic analysis, and thus may not represent

unbiased samples of genomewide diversity (V€ali et al.

2008). Heterozygosity measured using microsatellites and

traits related to fitness are also often weakly correlated,

even though there is a publication bias toward reporting

only high heterozygosity–fitness correlations (Chapman

et al. 2009). New approaches such as ddRAD-Seq used here

produce genomewide SNP markers that are more appropri-

ate for assessing genomewide variation in relation to eco-

logical factors such as urbanization.

Population genomic variation is a key to understanding

and predicting evolutionary responses to environmental

transformation. While urbanization may not directly cause

extinctions of most species, it is likely to decrease the evo-
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Figure 5 Posterior predictive sampling with 1000 simulated datasets in BEDASSLE, using pairwise FST as a summary statistic for (A) the simple IBE

model with presence in or outside NYC as the environmental variable; (B) the beta-binomial IBE model for presence in or outside NYC; and (C) the

beta-binomial IBE model with resistance distances based on percent impervious surface as the environmental variable. (D) Map of study sites with

points scaled using the values of FK estimated by the beta-binomial model in BEDASSLE. FK estimates the deviation of each population from global

mean allele frequencies, and was highest for populations located within NYC.
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lutionary potential of populations. Results from native spe-

cies in cities are few. Urban bobcats maintained variation

at immune-linked loci due to balancing selection from dis-

ease pressures, even after a population bottleneck and pop-

ulation subdivision by freeways (Serieys et al. 2015).

Blackbirds colonizing cities also exhibited polymorphisms

in a candidate behavioral gene that was strongly associated

with urban habitats (Mueller et al. 2013), indicating that

functional variation is important for the evolutionary suc-

cess of urban wildlife. We previously identified candidate

genes that may be under selection in urban white-footed

mice (Harris et al. 2013), but our results here indicate that

these populations have lost as much as half of their genetic

diversity compared to nearby rural populations. While can-

didate genes of large effect may be relevant to understand-

ing some responses to landscape change, screening

genomewide variation offers many advantages for measur-

ing evolutionary potential. Most adaptive traits are poly-

genic and influenced by many loci of small effect.

Information on genomewide variation will also capture

cryptic variation and quantify the amount of standing vari-

ation available for responses to future change (Harrisson

et al. 2014). Loss of standing variation will thus make it less

likely that urban populations will be able to adapt to local

conditions, or to global phenomena such as climate change

(Franks et al. 2014). Mutation is likely too slow of a

process for rapid recovery of evolutionary potential in frag-

mented urban populations. However, increasing connectiv-

ity in cities would immediately boost genetic variation if

migration between genetically differentiated populations

could be re-established.

Modeling urbanization and genomewide diversity

We found that percent impervious surface cover, and to a

lesser extent human population size, estimated at 2-km

buffers around study sites were highly correlated with levels

of genomewide diversity. Gradient studies have predomi-

nated in urban ecology, but terms such as ‘urban’ and ‘sub-

urban’ have been used in many different contexts without

standardization (Magle et al. 2012). Study sites are often

defined based on subjective criteria, or chosen simply to

represent a linear geographic gradient regardless of the

actual pattern of urbanization (Ramalho and Hobbs 2012).

We advocate that future landscape genetics studies report

percent impervious surface cover in and around study sites

to facilitate comparisons between landscapes and species.

Impervious surface and human population size are highly

correlated, but humans may be present in large numbers

outside of cities for recreation in protected areas (Monz

et al. 2013). Impervious surface can be readily used to track

urbanization over time, and has relevance to both terres-

trial and aquatic systems (Walsh et al. 2005). Extensive

impervious surface in the form of roads, parking lots, and

buildings characterizes all cities (Nowak and Greenfield

2012). Roads in particular have well-characterized negative

impacts on the connectivity of wildlife populations

(Balkenhol and Waits 2009; Ben�ıtez-L�opez et al. 2010).

Nearly 70% of global forest cover is now fragmented, and

areas subject to urbanization and high-intensity agriculture

are most severely affected (Haddad et al. 2015). Reporting

measures of impervious surface cover will provide much

needed standardization. We found that estimates for 2-km

buffers were much better than 500-m buffers, although the

spatial effects will likely vary for different species. In this

case, 500 m was likely too small of a buffer to capture the

extent of urbanization’s influence on study sites, whereas

2 km was near the maximum buffer size we could use

around many of our study sites and still retain statistical

independence from other study sites.

Population structure and differentiation

Urban and rural populations were differentiated from each

other, with many FST > 0.10. Some populations within

NYC had pairwise FST as high as urban–rural pairs that

were much more distant, indicating that isolation within

the city is quite high. Higher FST values reported here are

similar to those reported for endangered beach mice (Aus-

tin et al. 2015) and Channel Island deer mice (Ozer et al.

2011) that recently experienced strong genetic drift from

extirpations and translocations. The lack of IBD reported

here, but moderate-to-strong genetic population differenti-

ation, suggests that dispersal is limited by barriers and high

landscape resistance rather than geographic distance. Thus,

evolutionary clustering and IBE (Sexton et al. 2014; Wang

and Bradburd 2014) are more appropriate models for

understanding patterns of genomewide diversity among

these populations.

Discriminant analysis of principal components, and two

model-based clustering analyses, sorted individuals into 23

clusters that largely recapitulated geographic patterns. We

identified one major split between Long Island and main-

land populations, which historical demographic modeling

indicated is likely related to glacial retreat and ecological

succession in the region (Harris et al. 2015b). The other

striking pattern was that several urban populations were

outliers in their genetic divergence from the major clusters

of sampling sites. Previous clustering analyses using

microsatellites also identified most NYC sites as distinct

populations (Munshi-South and Kharchenko 2010). SNPs

evolve more slowly than microsatellites, and there is likely

still considerable ancestral variation in isolated urban pop-

ulations. These NYC populations may also not have

reached linkage and Hardy–Weinberg equilibrium at many

SNP loci because not enough generations have elapsed
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since isolation, or the populations have not reached muta-

tion–migration–drift equilibrium.

Landscape genomics

Our IBR and IBE analyses produced mixed results. Overall,

IBR and IBE modeling indicated that urbanization drives

genetic differentiation to a greater degree than geographic

distance alone. Although the relative influence of IBE to

IBD was modest in the BEDASSLE analyses, urban popula-

tions deviated to a much greater degree from global allele

frequencies than suburban or rural populations. The most

likely explanation for this deviation is substantial drift due

to inbreeding or bottlenecks in isolated urban habitats.

This scenario generally conforms to the strong structure

observed among some of the urban populations. However,

other factors that caused these populations to deviate from

the BEDASSLE model cannot be ruled out, such as unsam-

pled environmental variables (Bradburd et al. 2013).

IBR modeling in Circuitscape confirmed that variation

in percent impervious surface is highly associated with vari-

ation in pairwise FST, even after factoring out IBD. Partial

Mantel tests have several known issues with false positives

(Legendre and Fortin 2010), but we previously found that

vegetation cover (typically the inverse of impervious sur-

face in NYC) successfully described migration between

populations using similar approaches (Munshi-South

2012). The IBE models did not identify the same clear asso-

ciation between impervious surface and genetic differentia-

tion. As above, the strong deviation of urban populations

from the global mean allele frequencies indicated that the

IBE model may have underperformed. Resistance distances

from Circuitscape are integrated over all possible paths

between points on the landscape, and thus, BEDASSLE also

counts geographic distance twice with unknown conse-

quences when using resistance distances (G. Bradburd, per-

sonal communication).

IBE is an active area of inquiry that holds great promise

for understanding the processes that generate genetic varia-

tion. However, currently available approaches are relatively

new, and several caveats apply to their application (Wang

and Bradburd 2014). This study is the first use of BEDAS-

SLE to model the relationship between genetic differentia-

tion and human modification of the environment. In

addition to the model adequacy issues raised above, some

of the populations analyzed here may not have reached

migration–drift equilibrium, or were dominated by

idiosyncratic environmental processes. Previous BEDAS-

SLE analyses that detected stronger IBE patterns were con-

ducted over much larger geographic scales among much

more strongly differentiated populations, such as sky island

birds (Manthey and Moyle 2015), lizards occupying a SE

Asian archipelago separated by deep ocean trenches (Barley

et al. 2015), and a widespread bird occupying much of the

Amazon basin (Harvey and Brumfield 2015). These results

suggest that the IBE model in BEDASSLE may currently be

best suited to populations that are deeply diverged in both

time and space.

Conclusions & future research

The results presented here demonstrate for the first time

that urbanization is associated with a pervasive reduction

in genomewide variation among animal populations. Pero-

myscus spp. Are increasingly important models for investi-

gating natural variation (Bedford and Hoekstra 2015).

Given unchecked urbanization, particularly in the eastern

United States, it is likely that many white-footed mouse

populations in metropolitan areas have experienced similar

declines in standing genetic variation. This study examined

only a single urbanization gradient. Replicate analyses on

white-footed mice in other metropolitan areas, and studies

on additional taxa that may be isolated in urban fragments,

are necessary to robustly establish a pattern of declining

genomewide variation in urbanizing landscapes.

Preliminary evidence indicates that some loci have expe-

rienced selective sweeps in urban white-footed mice (Harris

et al. 2013), but the relative impacts of urbanization on his-

torical demography and natural selection have not been

fully disentangled for these populations. Using an

expanded transcriptome dataset (Harris et al. 2015a), we

recently identified signatures of selection in NYC popula-

tions using an approach that accounts for historical demo-

graphic patterns (S. E. Harris & J. Munshi-South,

unpublished manuscript). We identified dozens of candi-

date loci under selection that are associated with metabolic

and immune processes. These patterns may reflect changes

in diet and biotic pressures (i.e., disease and inflammation)

in cities. Thus, the loss of genomewide diversity docu-

mented here does not necessarily preclude local adaptation

to highly altered, stressful urban environments.

Evolutionary potential of urban populations could be

improved by restoring connectivity between urban forest

patches. Enhanced gene flow between urban forests, as well

as between urban and suburban areas, would increase over-

all genomewide diversity (although may simultaneously

break up local adaptation). Habitat networks that promote

gene flow in cities can be constructed from even small

gardens and green spaces not explicitly dedicated to biodi-

versity (Goddard et al. 2010; Vergnes et al. 2012).

Microevolutionary processes are rarely integrated into

urban conservation due to their perceived complex nature

and variation between taxa, but could be useful metrics for

assessing landscape connectivity (Stockwell et al. 2003;

Kinnison et al. 2007). Converting ‘gray’ infrastructure into

‘green’ networks could also simultaneously address conser-
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vation goals while delivering co-benefits to humans in the

form of biodiversity experiences (Tanner et al. 2014). A

rich literature indicates that humans benefit in myriad ways

from access to nature (Fuller et al. 2007), but integrative

approaches to urban wildlife conservation are a major area

for future growth (Shwartz et al. 2014).
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Supporting Information

Additional Supporting Information may be found in the online version

of this article:

Table S1. Correlation coefficients calculated between % impervious

surface and human population sizes calculated at buffers around study

sites of 500 m, 1 km, 1.5 km, and 2 km.

Table S2. Summary population genomic statistics calculated for all

nucleotide positions (variant and fixed).

Table S3. Matrix of pairwise FST (above diagonal) and great-circle

geographic distance (km; below diagonal) calculated between all pairs of

23 populations.

Figure S1. Cross-validation (i.e., a-score optimization) to identify the

optimal number of principal components to retain for DAPC without

overfitting4.

Figure S2. Compoplot/bar plot result from DAPC analysis on all 23

populations.

Figure S3. Scatterplot of first two discriminant functions from DAPC

for populations on Long Island.

Figure S4. Cross-validation of results from ADMIXTURE for K = 1 –

12.

Figure S5. Cumulative current map from isolation by resistance (IBR)

modeling in Circuitscape. Lighter areas represent landscape cells with

higher cumulative predicted current (i.e., higher movement).
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