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Prognostic biomarkers dedicating to treat cancer are very difficult to identify. Although
high-throughput sequencing technology allows us to mine prognostic biomarkers
much deeper by analyzing omics data, there is lack of effective methods to
comprehensively utilize multi-omics data. In this work, we integrated multi-omics data
[DNA methylation (DM), gene expression (GE), somatic copy number alternation, and
microRNA expression (ME)] and proposed a method to rank genes by desiring a “Score.”
Applying the method, cancer-specific prognostic biomarkers for 13 cancers were
obtained. The prognostic powers of the biomarkers were further assessed by C-indexes
(ranged from 0.76 to 0.96). Moreover, by comparing the 13 survival-related gene lists,
seven genes (SLK, API5, BTBD2, PTAR1, VPS37A, EIF2B1, and ZRANB1) were found
to be associated with prognosis in a variety of cancers. In particular, SLK was more
likely to be cancer-related due to its high missense mutation rate and associated with
cell adhesion. Furthermore, after network analysis, EPRS, HNRNPA2B1, BPTF, LRRK1,
and PUM1 were demonstrated to have a broad correlation with cancers. In summary,
our method has a better integration of multi-omics data that can be extended to the
researches of other diseases. And the prognostic biomarkers had a better prognostic
power than previous methods. Our results could provide a reference for translational
medicine researchers and clinicians.

Keywords: multi-omics, pan-cancer, survival, biomarker, prognosis

INTRODUCTION

Cancer is a major public health problem worldwide (Siegel et al., 2020) and the occurrence of cancer
is caused by many factors. It is not only controlled by genetics and epigenetics, but also influenced
by many other regulatory factors, such as miRNAs. A variety of regulatory factors contribute to the
heterogeneity of cancer (Marusyk et al., 2012; Swanton, 2012; Burrell et al., 2013), which leads to a
low cure rate and poor prognosis. Survival prediction provided a crucial evidence for the process of
cancer diagnosis and treatment. Prognostic biomarkers are used to predict likelihood of recurrence
or progression in patients with cancer (Cagney et al., 2018). However, it is still hard to identify the
prognostic biomarkers of cancer accurately.
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Omics data play a key role in predicting prognostic
biomarkers. At present, many researchers have identified
prognostic biomarkers based on differential analysis of DNA
methylation (DM) or other omics data, involving gene expression
(GE), somatic copy-number alteration (SCNA) and microRNA
expression (ME). Dalerba et al. (2016) found that CDX2 was a
prognostic biomarker in stage II and stage III colon cancer by
analyzing GE data. Zhao et al. (2017) identified eight differentially
methylated CpGs as new prognostic biomarkers for prostate
cancer by analyzing DM data. Morikawa et al. (2018) discovered
that SCNAs in 8p11.21-22, 12p13.31, 20q13.2, 3q26.1, 4q13.2,
and 22q11.23 were critical for the development and survival of
ovarian clear cell carcinoma. Lindahl et al. (2018) developed a
prognostic 3-miRNA classifier (miR-106b-5p, miR-148a-3p, and
miR-338-3p) in early-stage mycosis fungoides. The advantage of
omics data for identifying cancer-related prognostic biomarkers
can be clearly seen in the studies mentioned above. However, each
of these studies used only one type of omics data, which did not
make full use of omics data.

The regulation of GE is a complex process. Generally,
the DNA hypermethylation in promoter region of genes
could cause transcriptional silencing (Baylin, 2005) and DNA
hypomethylation was associated with the activation of GE
(Berdasco and Esteller, 2010). Besides, the copy number
correlated positively with expression levels for genes (Fehrmann
et al., 2015). Moreover, miRNAs complementary bound to
messenger RNAs (mRNAs) and formed RNA-induced silencing
complex (RISC) to downregulate GE levels (Bartel, 2004).
The researches of cancer focusing on one-dimensional omics
data may only provide limited information for the etiology
of oncogenesis and tumor progression. In the past few years,
more and more researches applied multi-omics data. Xu et al.
(2019) proposed a method, named high-order path elucidated
similarity (HOPES), to identify cancer subtypes by simultaneous
interrogation multi-omics data. They utilized their method on
GE, DM, and ME data of five TCGA cancers to identify
subtypes and further validated reliability and clinical role of them.
Vasaikar et al. (2018) developed a powerful database, named
LinkedOmics, for analysis of omics data in cancer. LinkedOmics
contained multi-omics data of 32 cancer types and allowed
for flexible exploration and comparison of associations between
multiple types of attributes within and across tumor types. The
positive results of these researches confirmed the feasibility of
integrating multi-omics data. Both of these work used multi-
omics data for cancer research. However, they did not focus
on prognostic markers, so we cannot further compare them
numerically with our method.

Similarly, integrating omics data indicated the potential
benefits for discovering underlying prognostic markers in cancer
(Huang et al., 2017). Using multi-omics data acquiring from
the same set of samples has the potential capacity to expose
more accurate biomarkers for patients’ survival than examining
by one single-omics data (Rappoport and Shamir, 2018). Yuan
et al. (2014) used somatic copy-number alteration (SCNA),
DM, GE, ME, and protein expression data to predict survival
status of patients. They found that incorporating molecular
data with clinical variables improved the accuracy of survival

prediction for cancers. This work provided a starting point and
resources for the subsequent researches. Zhang et al. (2016)
utilized GE, SCNA, ME, and DM data to uncover protein–protein
subnetworks associated with prognosis. This work built a multi-
dimensional subnetwork atlas for cancer prognosis to investigate
the potential impact of multiple genetics and epigenetics better.
Chaudhary et al. (2018) presented a deep learning based model on
liver hepatocellular carcinoma (LIHC) that robustly differentiates
survival subpopulations of patients using GE, DM, and ME
data. They validated this multi-omics model on five external
datasets of various omics types and all have good performance.
Zhu et al. (2017) presented a kernel machine learning method
to systematically quantify the prognostic values of clinical
information, GE, SCNA, DM, and ME across 14 cancer types.
This study aimed to compare the advantages and disadvantages
of using different omics data to evaluate patients’ survival. Based
on their result, GE and ME data were demonstrated to be the
best data for the prognosis of cancers. Mishra et al. (2019) used
DM, GE, ME, and long non-coding RNA (lncRNA) expression
data to identify potential prognostic markers of pancreatic ductal
adenocarcinoma. They identified several genes, miRNA, lncRNA,
and CpG sites as probable prognostic biomarkers. All methods
mentioned above used multi-omics data to perform prediction of
patients’ survival. However, most of them did not integrate multi-
omics data comprehensively but only utilized multi-omics data to
explore mechanism of cancer separately. Moreover most of them
they did not provide specifically prognostic biomarkers for other
clinical researches or just aimed at limited kinds of cancers.

The Cancer Genome Atlas (TCGA) provides multiple omics
data for different cancers (Cancer Genome Atlas Research
Network, 2011, 2012, 2013; Cancer Genome Atlas Research
Network et al., 2016), which allows for analyzing multi-omics
data coming from the same samples. So far, there already exist
a variety of methods for predicting patients’ survival status using
TCGA omics data.

In this work, we put forward our own method to identify
prognostic biomarkers and identified prognostic gene lists for 13
types of cancers. This work provided theoretical foundation and
reliably prognostic biomarkers for other researches focusing on
diagnosis, prognosis, and treatment of cancers.

MATERIALS AND METHODS

Data
Multi-omics data were downloaded from TCGA. The scale and
platform of each cancer data are shown in Table 1. We selected
the cancers which had HM450K DM data, RNA-seq data (GE),
miRNA-seq data (ME), and SNP 6.0 copy number data (SCNA)
simultaneously and whose sample size was greater than 200.
Samples with sample type codes of “01” were retained, which
represented “Primary Solid Tumor.” After being filtered, there
were 13 types of cancers available. For SCNA data, a matrix was
obtained after being processed by Gistic 2.0 (Mermel et al., 2011).
Next, all omics data matrixes except ME were converted into
gene matrixes based on the annotation information from TCGA.
Genes with missing values in > 5% of the samples were removed
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TABLE 1 | The sample size of 13 types of cancers.

Cancer Clinical DM
(450K)

SCNA
(nocnv)

GE
(FPKM-UQ)

ME
(isoform)

Total
size

Bladder urothelial carcinoma [BLCA] 291 412 410 408 409 283

Breast invasive carcinoma [BRCA] 735 783 1092 1091 1078 497

Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC] 177 307 295 304 307 166

Colon adenocarcinoma [COAD] 186 296 452 456 444 164

Head and neck squamous cell carcinoma [HNSC] 416 528 522 500 523 380

Kidney renal clear cell carcinoma [KIRC] 452 319 532 530 516 251

Kidney renal papillary cell carcinoma [KIRP] 183 275 289 288 291 172

Brain lower grade glioma [LGG] 347 516 515 511 512 340

Liver hepatocellular carcinoma [LIHC] 259 377 375 371 372 250

Lung adenocarcinoma [LUAD] 292 460 520 515 515 229

Lung squamous cell carcinoma [LUSC] 299 370 503 501 478 190

Sarcoma [SARC] 204 261 260 259 259 200

Stomach adenocarcinoma [STAD] 201 395 441 375 436 157

The sample size of clinical, DNA methylation (DM), somatic copy-number alteration (SCNA), gene expression (GE), and microRNA expression(ME) of 13 types of
cancers. The platforms for each data were written in the parentheses below. Abbreviations for cancer names were written in square brackets. The total size of each
cancer was the number of samples which have all the five types of data simultaneously.

in each matrix. Moreover, for GE and ME data, we retained the
genes or miRNAs with values greater than 0 in > 50% of the
samples and with values greater than 1 in > 10% of the samples,
respectively. After converting if one gene had multiple signals
in one sample, we calculated the average of the values as the
final signal. For ME, miRNAs were specifically bound to mRNAs
by complementary base pairing, therefore the corresponding
relationships between miRNAs and genes were obtained through
the miRNA–mRNA interactions which were downloaded from
the Starbase database (Yang et al., 2011). Interactions with no less
than five supporting experiments and anti-correlation in no less
than one cancer type were selected. Since multiple miRNAs were
bound to the same gene, the average value of the miRNAs was
assigned to the gene.

Because of different scales for the omics data, the data were
normalized based on the following rules. First, each omics
data were organized into a matrix of the same genes and
samples, separately. Second, the method z-score was used to
transform a matrix into standardized one with the mean and
standard deviation of 0 and 1, respectively. Finally, we uniformly
kept the fourth decimal place for better integration of the
standardized data.

Screening of Candidate Survival-Related
Genes
Univariate Cox proportional hazards regression model (Cox,
1986) was used to identify candidate survival-related genes from
each omics data through the formula:

h(X, t) = h0(t)exp(βX) (1)

where the explanatory variable X was the omics data (DM, GE,
copy number variation, or miRNA expression) of a gene, and
the response variable t was the survival time (Aalen, 1989). The
proportional hazards regression model was calculated through
the R package “survival.” β greater than zero meant the gene

was a risk factor base on the corresponding omics data. Then
using voting strategy, if a gene had a p-value of likelihood ratio
test less than 0.05 (Yuan et al., 2014), the gene was denoted as
“1”. Otherwise, it was denoted as “0.” Finally, a gene defined as
a candidate survival-related gene should be marked as “1” in no
less than two of the four omics data types (Figure 1A).

Identification of Prognostic Biomarkers
As shown in Figure 1B, prognostic biomarkers were further
identified in the set of candidate survival-related genes. For each
gene, a matrix M = [OmicsGE, OmicsSCNA, OmicsDM, OmicsME]

merged by the vectors of the four omics data of the gene was
obtained. Then, the multivariate Cox proportional hazards model
was applied on it. Briefly, the model assumed that a patient
with covariate values has a cumulative hazard rate related to an
unspecified baseline hazard rate seen in the equation:

h (t, M) = h0(t)exp(β1OmicsGE + β2OmicsSCNA

+ β3OmicsDM + β4OmicsME) (2)

where h(t, M) was the patient’s hazard of death at time t, h0(t) was
the baseline hazard rate, and B = [β1, β2, β3, β4]was a regression
coefficient that gives the effect of each M covariate on the hazard
rate (Alamartine et al., 1991). Each β could be interpreted as a
risk coefficient (Collett, 2015). If the p-values of Cox fitting in
all three overall tests (likelihood, Wald, and log-rank) were less
than 0.05, the model was thought to be significant (Rodriguez-
Martin et al., 2020). Therefore, we only kept genes whose all three
p-values were less than 0.05.

For the retained genes, each gene had a vector including
the value of four types of omics data in each sample V =
[v1, v2, v3, v4]. The risk score (RS) for the gene in each sample
was then calculated:

RS = B · V (3)

The RS score could be used to predict the patients’ risk.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 April 2020 | Volume 8 | Article 268

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00268 March 31, 2020 Time: 18:10 # 4

Zhao et al. Multi-Omics Pan-Cancer Prognostic Biomarkers

FIGURE 1 | The workflow of survival-related genes identification. (A) Candidate survival-related gene screening. DNA methylation, gene expression, somatic
copy-number alteration, and microRNA (miRNA) expression profiles of TCGA for the same samples were extracted. miRNA expression data were corresponding to
genes according to miRNA–mRNA interactions. Then, we got four types of data in the same samples and the same genes. On each omics data, univariate Cox
proportional hazards model was utilized to identify survival-related genes. Only the genes associated with survival in more than two types of data were considered to
be candidate genes. (B) Prognostic biomarker identifying. For the selected candidate genes, the multivariate Cox proportional hazards model was then applied to
get risk scores (RS). Further, scores for ranking genes were obtained by calculating GS scores. In which, A, B, C, and D were binary variables indicating whether the
gene was survival-related at the four omics data or not (“1” for related and “0” for not), respectively. The high ranked genes were identified survival-related.

Thereafter, RS scores of the genes were used to calculate each
gene’s score (GS):

GS =

∑m
j=1 RSj

m
(4)

where m was the number of samples. At last, the scores of
univariate and multivariate Cox proportional hazards model
were combined to calculate the survival-related score of each gene
(Score):

Score = A+ B+ C + D+ GS (5)

where A, B, C, and D represented whether the gene was survival-
related at the GE level, copy number level, DM level, and
miRNA level, respectively (“1” meant related and “0” meant not).
The higher the score, the more relevant between the gene and
patients’ survival. Therefore, high score genes were identified as
prognostic biomarkers.

Functional Analysis
Cumulative hypergeometric inspection was applied to
enrichment analysis of Gene Ontology (GO) functions (Gene

Ontology, 2015) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Kanehisa and Goto, 2000):

P = 1−
m−1∑
i=0

(
M
i

)(
N −M
n− 1

)
(

N
n

) (6)

where N was the whole number of genes. M was the number of
genes on a term or a pathway. n was the intersection of interested
gene set and N. i was the intersection of M and n. Significant
threshold of hypergeometric test was set to P < 0.05 (Liu et al.,
2018). For the enrichment analysis of GO, we only investigated
the biological process (BP) terms.

Different Expression
In order to identify differentially expressed genes, the
corresponding normal samples of LUSC and KIRC were
downloaded from TCGA. There were 49 LUSC normal samples
and 72 KIRC normal samples. After organized into the same
gene set, the differentially expressed genes between tumor and
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normal samples were identified using the R package “samr” with
the threshold value q-value < 0.05 and |log2(fold change)| > 1
(Group et al., 2020). The package was based on significance
analysis of microarrays (SAM). SAM was developed based on
t-test and adjusted the p-value to assess the statistically significant
changes for genes (Tusher et al., 2001).

Predictive Model Validation
For each cancer type, in order to evaluate the prognostic power
of the biomarker fairly and accurately, the concordance index (C-
index) (Harrell et al., 1996) was applied to assess the prognostic
power of the classifier. The C-index was a non-parametric
measure to quantify the discriminatory power of a predictive
model with the value ranging from 0.5 to 1. A C-index of 1
represented perfect prediction accuracy, while C-index of 0.5
indicated a bad prediction like a random guess.

First, we randomly selected 90% of the samples. Second, the
Cox regression model was used to calculate the RS score for
each sample by multi-omics data of the identified biomarker

genes. Based on the RS score, samples were classified into high
and low risk groups. Patients in the high risk group were more
likely to have poor prognosis while patients in the low risk group
were more likely to have good prognosis. Finally, the predicted
outcomes for patients were compared with the real status to
calculate the C-indexes.

The procedure above was repeated 100 times to generate
100 C-indexes. If the median value of C-index was significantly
higher than 0.5, indicating that the model had substantially
prognostic power.

Decision Curve Analysis
Decision curve analysis was performed through the multi-omics
data and every single omics data, respectively. The method was
based on the principle that the relative harms of false positives
(e.g., unnecessary biopsy) and false negatives (e.g., missed cancer)
could be expressed in terms of a probability threshold (Vickers
et al., 2008). Therefore, this threshold probability could be used
to determine both whether a patient was defined as test-positive

FIGURE 2 | The information of pan-cancer samples. (A) The sample set intersections of the multi-omics data. Only the intersecting samples were chosen. We
selected 3279 samples in this study. (B) The proportion of each cancer. (C) The clinical features distribution of the 3279 samples.
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TABLE 2 | The prognostic biomarkers of each cancer.

Cancers Genes

BLCA NCBP1, RP9, UBP1, AURKB, ARL6IP5, LEMD3, HSPBP1,
TMEM214, MCMBP, FAM107B

BRCA LIMS1, NDUFA3, NKTR, SRP68, ARPC3, TMEM138, DDIT4,
OCIAD1, MAF1, DPY19L4

CESC HNRNPA2B1, MYO9B, EIF3B, MTX2, MON1B, SUN1, SSH1,
SLC35E3, MAP7D1, PGAM5

COAD SRP72, TAF10, USP1, USP8, JKAMP, YTHDF1, BRIX1, ATG101,
VPS37A, TMED4

HNSC DAGLA, DNAJA3, PTER, NUDT5, FAM168A, GTPBP4, PTCD3,
MINDY3, NCALD, STEAP2

KIRC BPTF, IMPA1, RPS6KA4, TSFM, CEPT1, PRKD3, PPME1, SPIRE1,
NUDCD1, NHLRC2

KIRP DAPK3, EPRS, IARS, SYMPK, PCSK7, APBB3, MSANTD2,
TBC1D17, DOHH, CMSS1

LGG FDXR, VPS4B, WASHC5, CITED2, BRD8, MON2, TSPAN13,
MIOS, OGFOD3, PIGO

LIHC BCL2L1, SELENOW, HIST1H2BN, MMADHC, PNPO, ZDHHC11,
ULBP2, CSRNP2, SPC24, RPL7L1

LUAD FGFR3, LTBP3, SLC6A4, PUM1, ARHGAP44, SLC39A1, NAGPA,
BTBD2, LRRK1, ZFC3H1

LUSC HSF2, BCLAF1, UHRF1BP1L, CHORDC1, CREBZF, FBXO30,
PCGF6, PLCD3, HINT3, SLC35E2B

SARC BMP1, NCAM2, PBX1, RAD17, ARHGEF10, PSD3, MRPL17,
FAM160B2, CHMP7, VPS37A

STAD ANK3, GNAI2, MARCKS, NEDD4, PRKAA1, UGP2, TAF1C,
INO80D, USP37, FAM126B

or negative and to model the clinical consequences of true and
false positives using a clinical net benefit function:

net benefit =
True positives

n
−

False positives
n

(
pt

1− pt
) (7)

where n was the total number of patients in the study and pt
was the threshold probability. Net benefit was weighted by the
relative harm of forgoing treatment compared with the negative
consequences of an unnecessary treatment. In the decision curve,
the thin oblique line represented the assumption that all patients
have been treated. The black line represented the assumption that
no patients have been treated.

RESULTS

Pan-Cancer Prognostic Biomarker
Identification
We integrated GE, SCNA, DM, and miRNA expression data
of 13 cancers from TCGA: bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC),
colon adenocarcinoma (COAD), head and neck squamous cell
carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP), brain lower
grade glioma (LGG), LIHC, lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), sarcoma (SARC), and stomach
adenocarcinoma (STAD). After data preprocessing, samples with
all the four omics data were kept. Whereupon, we collected
the DM, GE, copy number, and miRNA expression of 3279
samples (Figure 2A). The percentage of each cancer is shown
in Figure 2B. We then summarized the clinical characteristics
of the 3279 samples. As shown in Figure 2C, the majority
of these patients were 60–79 years old. And the number of
men and women was basically equal. Hence, the sample set
could be used to study cancer without gender and age bias.
In addition, most of the patients were white people. The

FIGURE 3 | The Kaplan–Meier curves of top-10 survival-related genes for each cancer. The green lines represented the low risk groups and the red lines represented
the high risk groups. “ + ” indicated the censored follow-ups. (A) BLCA. (B) BRCA. (C) CESC. (D) COAD. (E) HNSC. (F) KIRC. (G) KIRP. (H) LGG. (I) LIHC.
(J) LUAD. (K) LUSC. (L) SARC. (M) STAD.
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FIGURE 4 | The C-index comparison of the prognostic power of our prognostic biomarkers in 13 cancers.

FIGURE 5 | Pan-cancer functional comparison of survival-related genes. (A) The representative KEGG pathways and GO functions enriched by the top-10
prognostic genes of each cancer. (B) The distribution of cancers enriched to each function. The size of the dots represented the number of enriched genes. The
color of the dots represented the p-values.
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FIGURE 6 | The intersection of pan-cancer genes. (A) The intersections of the lists of survival-related genes (left bottom) and the intersection of associated functions
(top right corner) of cancers. The total numbers of genes associated with survival of each cancer were on the left, and the total associated functions were on the
right. The color blocks represented the number of intersecting samples of each two cancers. The darker the color, the greater the intersection was. (B) The
pan-cancer survival-related genes. The red blocks indicated that the gene was survival-associated with the cancer.

complete clinical information for each sample is provided in
Supplementary Table S1.

The survival-related gene list of each cancer is shown in
Supplementary Table S2. We took top-10 genes as a prognostic
biomarker of each cancer (Table 2) to draw Kaplan–Meier (KM)
curves and calculated their log-rank p-values. As shown in
Figure 3, the prognostic markers for each cancer significantly
distinguished the high and low risk groups, except for SARC.

For each cancer type, we calculated the C-index which was a
non-parametric measure to quantify the discriminatory power
of a predictive model. Figure 4 shows the C-indexes of each
cancer. All of the cancers had a C-index significantly higher
than 0.5. BRCA had the highest C-index (0.96) while LUSC had
the lowest (0.76).

In order to discover the relationship among different cancers
based on function, we used the prognostic biomarker genes
to perform functional enrichment analysis of GO and KEGG

(Supplementary Table S3). The most significantly enriched
functions and pathways of each cancer are displayed in
Figure 5A. Among them, COAD, LGG, and SARC were enriched
in “endocytosis.” BLCA was enriched in “RNA splicing” and
CESC was enriched in “mitophagy.” The prognostic biomarker
genes were enriched in closely cancer-related functions. Then,
we calculated the counts of each function enriched by cancers.
As shown in Figure 5B, “Mitophagy” was enriched by the
most cancers. Mitophagy was a tumor suppression mechanism
(Bernardini et al., 2017). Besides, we had some interesting
findings. First, the most significantly enriched functions of
each cancer were their specific functions, while the common
functions of cancers were not highly significant generally. For
example, “cytoskeleton-dependent cytokinesis” was the common
enriched function of STAD, KIRC, COAD, and BLCA, and they
had p-values about 0.03 which was less significant than their
most significantly enriched functions (p-values < 0.003). And
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TABLE 3 | The seven pan-cancer survival-related genes.

Genes Functions PubMed IDs

SLK Cell adhesion, regulation of
cell cycle

26676752, 27849608, 22057237,
27247392, 22699621

ZRANB1 Protein catabolic process 26676752, 27790711, 25559195,
27006499, 24316982, 27178121,
23685747, 22421440

BTBD2 Protein catabolic process 26676752, 22057237

PTAR1 Cellular protein modification
process

26676752

VPS37A Viral process 27849608, 24316982, 23045694

EIF2B1 Glial cell development 22057237

API5 Regulation of cell death 27790711, 27178121

The most relevant functions of each gene were listed. The references supporting
the association of gene with cancer were given in the form of PubMed IDs.

their most significant functions were all their specific functions.
Second, even if different cancers were enriched in a same
function, the enrichment of function in different cancers was
caused by different gene sets. For instance, “Mitophagy” was
the common function of LIHC, LGG, KIRP, COAD, and CESC,
but the function was hit by different genes (BCL2L1 of LIHC,
CITED2 of LGG, TBC1D17 of KIRP, USP8 of COAD, and PGAM5
of CESC). Whereafter, we sought the intersection of associated
functions for the 13 cancers (Figure 6A top right corner). The
result showed that the intersection of LGG and SARC was the
largest, followed by BLCA and CESC.

In order to discover the relationship among different
cancers based on survival-related genes, we first compared the
intersection of the survival-related gene lists between each two
cancers. We found there was always an overlap between each
two gene lists (Figure 6A left bottom). The intersection of KIRP
and KIRC was the largest. All of the intersections among KIRC,
KIRP, and BLCA were large, which might be due to the reason
that the three cancers had the largest number of genes. The

intersections with other cancers were roughly proportional to
the size of the gene list. Second, we compared the gene lists
among the 13 types of cancers. We found that seven genes were
associated with survival in three kinds of cancers (Figure 6B).
Subsequently, we downloaded the list of cancer-related genes
from the Candidate Cancer Gene Database (CCGD) (Abbott
et al., 2015), and retained the human genes that appeared in
at least one of the COSMIC and CGC (Sondka et al., 2018).
A total of 9265 genes were retained. All of the seven pan-cancer
survival-related genes were in the list, and have been verified
cancer-related in no less than one literature (Table 3). In addition,
we investigated the functions of the seven genes (Supplementary
Table S4) and conducted UCSC Genome Browser (Tyner et al.,
2017) analysis on the seven genes. We found that SLK had
an unconservative exon region, which containing four missense
variants (Figure 7A).

In order to further verify the close relationship of SLK and
cancer, we checked the mutation of SLK in the COSMIC database
(Tate et al., 2019), and found that missense substitution occurred
in 36.93% of the samples (Figure 7B). Next, enrichment analysis
in GO terms (BP) was performed by Enrichr (Kuleshov et al.,
2016) and found SLK was mainly associated with cell adhesion
(Figure 7C). Finally, we used STRING database (Szklarczyk et al.,
2019) to check the interacted proteins of SLK. Figure 7D shows
there were 10 genes interacting with SLK. Half of the interactions
have been demonstrated through more than one method, and
the genes interacting with SLK also had strong relationship
between each other.

In order to explore the correlation among prognostic
biomarkers of different cancers, we checked the genomic
locations of these 130 genes (Figure 8A). There were many
prognosis-related genes located in chr 6, chr 7, chr 8, chr 11,
chr 12, and chr 17, while few genes in chr 13, chr 14, chr 18,
chr 20, and chr 21. In addition, we constructed a protein–protein
interaction network of these genes based on the STRING database
(Figure 8B). As shown in the network, the prognosis-related

FIGURE 7 | The characteristics of SLK. (A)The results of UCSC Genome Browser. (B) Distribution of mutations on SLK. (C) The functions of SLK. (D) The
protein–protein interactions of SLK.
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FIGURE 8 | Pan-cancer survival-related gene networks. (A) The chromosome distribution of the genes. The blue, green, red, and purple blocks represented the
survival correlation of the genes in each omics data, respectively. The links in the middle represented the interaction of the genes. (B) The interaction network among
the top-10 survival-related genes. Different colors represented prognostic genes of different cancers. Red nodes represented genes prognosis-related in multiple
cancers. (C) The degree distribution of the prognostic-related gene network. (D) The betweeness centrality of the prognostic-related gene network.

genes of different cancers were connected to each other. The
degree distribution (Figure 8C) and the betweeness centrality
(Figure 8D) of the network satisfied the condition of scale-free
network and were conformed as the general characteristics of
biological network. In the network, the degree of EPRS had the
highest degree of 33. The degrees of HNRNPA2B1, BPTF, LRRK1,
and PUM1 were all greater than 20. These genes mentioned above
were widely mutated in many cancers.

Based on the COSMIC database, we found extensive
mutations occurred in EPRS, and 70% of them were missense
mutation. EPRS has been shown to be associated with a wide
range of cancers by 80 articles. The other four genes also had
widespread mutations. In the COSMIC database, 78, 114, 113,
and 83 studies confirmed the correlation between HNRNPA2B1,
BPTF, LRRK1, and PUM1 with cancer, respectively.

The Predictive Performance of Our
Method
In order to demonstrate the effectiveness of our method, we
compared our prognostic biomarkers with previous works. The
works using TCGA data were chosen to compare with our work.
Chaudhary et al. (2018) used LIHC data of TCGA in their work.
Their C-indexs of training and testing set were 0.70(±0.04) and

0.69(±0.08), while our median C-index of LIHC was 0.82. The
prognostic power of our method was stronger than theirs. Next,
both Yuan et al. (2014) and Zhang et al. (2016) used KIRC and
LUSC data of TCGA in their works, so we compared our results
of these two cancers with their studies. The comparisons of the
C-indexes are shown in Figures 9A,B, which showed the higher
prognostic power of our 10-gene biomarkers. For KIRC, the
median C-index of our work was 0.91. The median C-index of the
best performing data (clinical+miRNA) in Yuan’s work and the
best performing subnetwork (subnetwork K1) of Zhang’s study
were about 0.76 and 0.74, respectively. For LUSC, the median
C-index of our work was 0.76. The median C-index of the best
performing data (clinical + protein) in Yuan’s work and the
best performing subnetwork (subnetwork L1) of Zhang’s study
were about 0.66 and 0.62, respectively. Therefore, the biomarkers
identified by our method could display the better prediction for
the patients’ survival.

To further confirm reliability of the genes, we downloaded
GE data of the corresponding normal samples and used the
prognostic biomarkers to cluster the samples. The results showed
that the prognostic biomarkers could distinguish the tumor and
normal samples (Figures 9C,D).

Furthermore, we screened the differentially expressed genes
between tumor and normal samples of LUSC and KIRC. After
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FIGURE 9 | The prognostic biomarkers of KIRC and LUSC. (A,B) The C-index comparison of the prognostic power of our 10-gene prognostic biomarkers and other
work. (C,D) The heatmap of samples hierarchical clustering by the expression of the 10-gene prognostic biomarkers. The bar on the top of the heatmap indicated
the group the samples really belong to. Red represented tumor and green represented normal.

comparing them with the list of survival-associated genes, there
were 12 differentially expressed genes in LUSC list (Figure 10A)
and 49 differentially expressed genes in KIRC list (Figure 10D).
Subsequently, we examined the copy number variation and
chromosome location of both the differentially expressed genes
and the top-10 biomarker genes (Figures 10B,C,E,F). It turned
out that among the 22 LUSC genes, six were located in chr 6q,
three were in chr 10q, three were in chr 11q, and three were in
chr 15q. Of the 59 KIRC genes, 10 were located in chr 8, eight
were located in chr 17, and seven were in chr 1. These locations
were the peak regions of copy number alternation, suggesting a
relationship between these genes and cancer. Moreover, it could
be seen that the driver genes of the two cancers were located
in different chromosomes, which supported the uniqueness of
different cancer-related genes.

Moreover, in the process of univariate Cox regression model,
we separately calculated the survival correlation of a gene in
four different omics data and then counted them. We also
tried the result of considering the same gene in different omics
data as different features, and merged the four omics data into
one matrix then performed multivariate Cox regression model
on it. Only the genes identified as survival-related features
more than twice were retained. Finally, the obtained genes

were all involved in the gene lists identified through our
method and had an incomplete coverage compared with our
gene lists. Interestingly, most of these genes were related to
survival in GE or SCNA.

In addition, in the process of multivariate Cox regression
model, we involved all of the four types of omics data for
each candidate gene to perform analysis. Actually, the genes
were not survival-related at all of the four omics data in the
univariate Cox regression model. To prove the validity of this
process, we recalculated the Score of each gene by only using
the types of omics data at which the gene was determined to
be related to survival in univariate Cox regression model. The
results showed that neither the Scores nor the ranks of the
genes changed much after recalculation. In consequence, it could
suggest the high predictive performance of our multivariable Cox
regression model.

The Necessity of Multi-Omics Data
Integration
In the process of univariate Cox regression analysis, we found that
a gene appeared to be survival-related in one omics dataset, while
it might appear to be unrelated to survival on another omics data
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FIGURE 10 | The comparison of survival-related genes and differentially expressed genes. (A) The differentially expressed genes of LUSC. Red represented high
expression and green represented low expression. Differentially expressed survival-related genes were marked. (B) The copy number variation peaks of LUSC.
(C) Chromosomal positions and interactions of prognostic biomarkers and differentially expressed genes of LUSC. (D) The differentially expressed genes of KIRC.
Red represented high expression and green represented low expression. Differentially expressed survival-related genes were marked. (E) The copy number variation
peaks of KIRC. (F) Chromosomal positions and interactions of prognostic biomarkers and differentially expressed genes of KIRC.

even under the same model, selection criteria and set of samples.
Although this phenomenon might be caused by the error of the
data or the imprecision of the experiment, it implied the necessity
of multi-omics data integration.

To verify the superiority of integrating multi-omics data,
we compared the results of integrating multi-omics data with
the results of single omics data in LUSC and KIRC. As shown
in Figure 11, the results of integrating multi-omics data were
significantly higher than those of applying single omics data in
decision curve analysis and C-index. The decision curve showed
that compared with single omics data, the curve of multi-omics
data was further apart from the two extreme curves, which had
the greater application value.

DISCUSSION

The recognition of prognostic biomarkers in cancers could
predict the prognostic status of each individual patient. This
could help to achieve personalized medicine for cancer (Nalejska
et al., 2014). Prior work has utilized omics data to predict

prognostic status of cancer patients. However, multi-omics data
were not used comprehensively.

In this work, we proposed a method to integrate multi-omics
data and predict the prognostic status of patients. And gene lists
associated with survival were identified in 13 types of cancers.
Based on this foundation, the prognostic biomarkers of the
cancers were obtained.

Compared with previous studies, this work took a more
comprehensive integration of multi-omics data. To verify the
reliability and reproducibility of our approach, we confirmed
the relationship between our prognostic genes and cancer
from multiple perspectives, and the results were stable when
changing feature selection strategies. And this method was
easy to implement because of its light calculation burden.
We obtained candidate survival-related gene lists for 13 types
of cancers, and compared the differences and similarities
of the lists. The genes associated with survival in multiple
cancers were found.

Not only have we successfully verified that genes like EPRS
were indeed related to various cancers, but also we found that
genes such as SLK were related to survival of multiple cancers.
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FIGURE 11 | The comparison of the results for multi-omics data and single omics data. (A) The decision curve of multi-omics data and each omics data in KIRC.
The thin oblique line represented the assumption that all patients have been treated. The black line represented the assumption that no patients have been treated.
(B) The C-indexes of multi-omics data and each omics data in KIRC. (C) The decision curve of multi-omics data and each omics data in LUSC. The thin oblique line
represented the assumption that all patients have been treated. The black line represented the assumption that no patients have been treated. (D) The C-indexes of
multi-omics data and each omics data in LUSC.

SLK has been reported to associate with blood cancer, breast
cancer, colorectal cancer, liver cancer, and pancreatic cancer.
In our work, we found that it was participated in the BP of
patients’ survival of bladder cancer, lung cancer, and renal cancer.
SLK mainly associated with cell adhesion. Cell adhesion plays
an important role in the maintenance of tissue structure, whose
abnormality results in tumor invasion and metastasis.

However, we also got some confused results in comparing
different cancers. As different cancer subtypes of the same
tissue, the overlap of gene lists between LUAD and LUSC was
small, which was different from the expected outcome. We
suspected that this might be due to their different pathogenesis.
LUSC commonly occurred in older men and was strongly
associated with smoking, but LUAD was more common in
women and non-smokers (Kenfield et al., 2008). The differences
in the pathogenesis might lead to differences in the genetic
mechanisms and the list of related genes. Moreover, the

prognostic markers for SARC did not significantly distinguish
the high and low risk groups. This might be due to the subtypes
of SARC (leiomyosarcoma, liposarcoma, myxofibrosarcoma,
synovial SARC, etc.). The subtypes of SARC ought to be
considered as different cancer types.

In addition, this might be caused by the bias of data.
TCGA patient samples were selected from multiple sources, and
were characterized at multiple centers, which might introduce
heterogeneity and bias. And the clinical annotations of the
patients might not be sufficiently rigorous and comprehensive
(Yuan et al., 2014). Even though we only selected the
basic information such as age and gender, there were still
some missing values.

Till now, only a few molecular prognostic biomarkers based
on multi-omics data have been applied to clinic (Yuan et al.,
2014). The presence of publication bias and incompletion in the
literatures is a major reason why the identified tumor biomarkers
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have not been applied in clinic (Mcshane and Hayes, 2012).
Further, translational medicine researchers have no access to the
results of these studies. Our work clearly provided gene lists
related to the survival of various cancers, which could be easily
obtained and searched, and help to transform biological data into
clinical experiments.

Even so, our work remains inadequate. First of all, overfitting
and collinearity of biological data make it technically challenging
to effective integration of multi-omics data. Our work did not
solve the problem. Although LASSO can well select the most
important features to overcome the overfitting problem, it will
lose many equally important features at the same time when high
pairwise correlations occurred (Zhang et al., 2016). And the intra-
tumor heterogeneities of cancer make it almost impossible to
find prognostic biomarkers 100% suitable for each patient. Future
efforts are still needed to address these problems.

In addition, since the data were downloaded from TCGA
which was a program of the National Cancer Institute
(NCI) of the United States, most of the patients were white
people. The results of this study may be only appropriate
for the whites. Although Chaudhary et al. (2018) have
validated their model, which was built by TCGA data, on
Japanese and Chinese datasets, further validation of other
cancer should be done and data of black population should
be included in future studies. Furthermore, some studies
have suggested a non-linear relationship between miRNA
expression and clinical outcomes (Fuchs et al., 2013; Lee
et al., 2013). Therefore, some non-parametric algorithms
can be applied to the analysis of the prognosis of miRNA
in future studies.
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