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Abstract

Obesity has reached a global epidemic and it predisposes to the development of insulin resistance, 

type 2 diabetes and related metabolic diseases. Current interventions against obesity and/or type 2 

diabetes such as calorie restriction, exercise, genetic manipulations or established pharmacological 

treatments have not been successful for many patients with obesity and/or type 2 diabetes. There 

is an urgent need for new strategies to treat insulin resistance, T2D and obesity. Increased activity 

of stress-responsive pathways has been linked to the pathogenesis of insulin resistance in obesity. 

In this commentary, we argue that chronic upregulation of MKP-1 in skeletal muscle is part 

of a stress response that contributes to the development of insulin resistance, T2D and obesity. 

Therefore, inhibition of MKP-1 in skeletal muscle is a potential strategy for the treatment of T2D 

and obesity. We highlight therapeutic strategies for potential targeting of MKP-1 in skeletal muscle 

for the treatment of metabolic diseases as well as other diseases of skeletal muscle.
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Introduction

Obesity is a major public health problem globally. It develops as a result of an imbalance 

between energy intake and expenditure, and predisposes to the development of multiple 

diseases including insulin resistance, type 2 diabetes (T2D), nonalcoholic fatty liver 

disease (NAFLD), cardiovascular disease and some types of cancers [1–4]. Skeletal muscle 

constitutes about 30–40% of total body mass in healthy humans. Skeletal muscle is the 

major tissue involved in the control of energy balance and glucose metabolism. The 

generation, maintenance, composition and repair of skeletal muscle is considered to be 

an important aspect of metabolic homeostasis [5,6]. Dysfunctional energy metabolism 

in skeletal muscle has been attributed to the development of insulin resistance, glucose 

intolerance, T2D and obesity [7,8]. Myokines, are muscle-derived secretory molecules that 

mediate crosstalk between skeletal muscle and other organs/systems including the liver, 

adipose tissue, bone, pancreas and cardiovascular system [9]. Thus, maintenance of healthy 

skeletal muscle impacts virtually all organ systems in the body. Disruption of skeletal 

muscle function leads to numerous types of diseases including muscular dystrophy, loss 

of muscle mass (atrophy), and muscular hypertrophy [10–12]. Skeletal muscle is the main 

source of animal protein for human consumption, and the growth and development of 

skeletal muscle directly impacts animal meat quality and quantity [13]. Exercise has been 

the main benefit used by space agencies in order to protect skeletal muscle health while in 

space for prolonged periods of time [14,15]. Because skeletal muscle plays such a major role 

in metabolism the benefits of exercise have been shown to promote the actions of insulin and 

improve overall metabolic indicators. Thus, targeting skeletal muscle in cases of correcting 

metabolic dysfunction such as T2D could be considered a rational strategy.

The signal transduction pathways that govern metabolic regulation in skeletal muscle are 

extremely complex. Here we will focus on the regulation of the mitogen-activated protein 

kinase (MAPK) pathway in skeletal muscle. The MAPKs are a family of serine/threonine 

kinases that have been shown to be directly involved in skeletal muscle metabolism. The 

MAPKs are activated by direct phosphorylation by their upstream MAPK kinases (MKKs). 

In contrast, the inactivation of the MAPKs is achieved by direct dephosphorylation on 

both regulatory threonine and tyrosine residues by the MAPK phosphatases (MKPs) (16). 

The MKPs are a sub-family of enzymes known as dual-specificity phosphatases (DUSPs) 

that belong to a larger superfamily known as protein tyrosine phosphatases (PTPs). The 

archetypal MKP, MKP-1 has been studied extensively in a variety of cellular and biological 

systems. MKP-1 is abundantly expressed in skeletal muscle and is a critical negative 

regulator of p38 MAPK, c-Jun NH2 terminal kinase (JNK) and to a lesser extent, ERK 

activities [12,17,18]. We previously showed that MKP-1 is an important regulator of MAPK-

dependent regulation of lipid homeostasis, energy metabolism, and mitochondrial biogenesis 

[16,18]. Work from this group using skeletal muscle-specific deletion of MKP-1 uncovered 

an important role of MKP-1 in this tissue. We demonstrated a major contribution of skeletal 

muscle MKP-1 in the regulation of glucose metabolism and energy homeostasis [18]. One of 

the most interesting observations of this work was the observation that MKP-1 is increased 

in its level of expression in skeletal muscle of obese humans [18]. These results, along with 

others that will be discussed here suggested that MKP-1 forms part of an important stress 
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response that leads to reduced energy expenditure in skeletal muscle thereby contributing 

to weight gain. A paradigm consistent with the idea that stress positively correlates with 

obesity. Furthermore, it was discovered that MKP-1 participates through MAPK in crosstalk 

mechanisms with other tissues such as the liver to promote abnormalities in glucose 

metabolism and hepatic steatosis associated with metabolic disease [18]. Although MKP-1 

expression has not been well studied in human obesity there is one study that reported 

increased MKP-1 expression in adipose tissue and macrophages in obese humans [19]. Our 

data is the first study that reported increased expression of MKP-1 in skeletal muscle of 

obese humans with concomitant dephosphorylation of p38 MAPK [18]. These findings are 

of significance because it implies that targeting skeletal muscle MKP-1 could be beneficial 

to the treatment of insulin resistance, T2D and obesity.

Role of MKP-1 in Biological Processes and Disease Development

Contribution of skeletal muscle MKP-1 in obesity and insulin resistance

MAPK signaling is necessary for the maintenance of skeletal muscle mass, regenerative 

myogenesis and muscle atrophy [12,20,21] and promotion of obesity-induced insulin 

resistance [22]. Overexpression of MKP-1 inhibits the expression and activity of PGC1a, 

a master regulator of mitochondrial biogenesis and energy expenditure, by impairing 

p38 MAPK-mediated PGC1a phosphorylation [17,18] (Figure 1). Further studies showed 

impaired muscle regeneration, reduced body weight, muscle mass, muscle cross-sectional 

area and exacerbated myopathy in MKP-1-deficient mice [12].

We showed that MKP-1 when deleted specifically in skeletal muscle relieves the inhibition 

of both JNK and p38 MAPK. Remarkably, instead of enhanced JNK/p38 MAPK activity 

driving obesity and insulin resistance as previous studies suggested [23], these mice are 

resistant to diet-induced obesity and are insulin sensitive [18]. Significantly, MKP-1 is 

upregulated in high-fat diet feeding in mice [17] and in obese in human subjects [18]. These 

data suggest that MKP-1 upregulation contributes to the development of obesity and insulin 

resistance by antagonizing the JNK/p38 MAPK signaling module. We found that enhanced 

p38 MAPK/JNK activities increased miR-21 expression in skeletal muscle lacking MKP-1, 

leading to reduced PTEN expression, thereby upregulating Akt activity. These results 

indicate that inhibition of MKP-1 in skeletal muscle could promote insulin sensitivity in part 

by MKP-1 mediated upregulation of Akt through a MAPK/miR-21/PTEN pathway (Figure 

1). Further work is needed to substantiate the human data and definitively prove whether 

these findings in mice are recapitulated in humans. Here, using tissue-specific approaches 

the interpretation that the negative effects of skeletal muscle MKP-1 ultimately prevail in 

the development of obesity and insulin resistance has been established. This work shifts 

the entire idea that progression of obesity and insulin resistance as it pertains to JNK/p38 

MAPK is simply a consequence of enhanced activity of these MAPKs. These findings raise 

the possibility that targeting MKP-1 in skeletal muscle may provide therapeutic potential for 

the treatment of obesity, insulin resistance and T2D.
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Skeletal muscle MKP-1 and its contribution in liver diseases

There is a growing body of literature that focuses on the role of skeletal muscle in the 

development of liver disease. Studies have shown impaired skeletal muscle function in 

NAFLD patients [24] and in chronic liver diseases including cirrhosis [25,26]. Whether the 

damage of skeletal muscle tissue is causal, a provoking factor or an effect of the chronic 

liver disease remains to be established. Also, the mechanism by which skeletal muscle 

affects liver diseases or whether alterations in skeletal muscle function contribute to the 

progression of liver disease is not known. We previously showed that mice lacking MKP-1 

in the liver (MKP1-LKO) results in altered expression of hormones and cytokines along 

with resistance to hepatic steatosis [27]. Additionally, MKP1-LKO mice exhibit reduced 

mitochondrial function suggesting that deleting MKP-1 in the liver might inhibit skeletal 

muscle function possibly as a result of crosstalk that occurs between the liver and skeletal 

muscle tissue through a hepatic MKP-1-dependent pathway. Conversely, showed resistance 

to hepatic steatosis in mice lacking expression of MKP-1 in skeletal muscle. One potential 

mechanism for this crosstalk is the effect of myokines secreted from the skeletal muscle that 

mediate hepatic lipid metabolism. The exact molecular mechanism for this relationship has 

yet to be investigated.

Skeletal muscle MKP-1 in mitochondrial function, sarcopenia and aging

Sarcopenia is defined by the gradual and extensive loss of skeletal muscle mass, strength 

and function [28]. It is a common complication observed in about 70% of liver cirrhosis 

patients [29,30] and it affects almost all elderly people [31]. The underlying mechanisms 

for the development of sarcopenia and the effective treatment for sarcopenia have not been 

discovered. Exercise is known to slow the progression of sarcopenia where it partially 

improves mitochondrial biogenesis and protein turnover. Sarcopenia is associated with 

increased obesity in the elderly. A decline in the proportion of type I myofibers, which 

are mitochondria rich, is observed in obese patients and the proportion of type I myofibers 

positively correlates with overall metabolic health [7–11,32]. Thus, the predominant view 

reflects the notion that the levels of oxidative myofiber composition negatively correlates 

with the development of metabolic syndrome. Indeed, this is consistent with the concept 

proposed here suggesting that skeletal muscle MKP-1 overexpression promotes insulin 

resistance and obesity by reducing oxidative myofiber composition (Figure 1).

The stress-responsive MAPKs control processes such as insulin signaling, glucose 

homeostasis, fatty acid metabolism and energy expenditure [33,34]. Mice with skeletal 

muscle-specific deletion of JNK1 are unaffected by diet-induced obesity but are insulin 

sensitive [35]. p38 MAPK has been shown to stimulate glucose uptake in muscle cells [36] 

and constitutive p38 MAPK activation in skeletal muscle promotes mitochondrial biogenesis 

[37]. Although it is realized that metabolic stressors such as inflammation and nutrient 

excess activate both p38 MAPK and JNK [38,39], the results of these studies reflect the 

individual actions of these MAPKs on metabolism. The studies described here on MKP-1 

in skeletal muscle represent the integrated response of antagonizing these stress-responsive 

MAPKs on metabolism which has revealed the importance of MKP-1 as a crucial regulator 

in the progression of metabolic disease.
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One of the main reasons for the actions of MKP-1/MAPK in skeletal muscle metabolism 

relates to the fact that this pathway regulates energy expenditure through controlling the 

composition of oxidative and glycolytic muscle fibers. By examining the composition 

of skeletal muscle myofibers we found that there was an increase in the proportion of 

slow oxidative myofibers and reduction in the proportion of fast glycolytic myofibers in 

skeletal muscle derived from mice lacking MKP-1 expression in this tissue [18]. Thus, 

our results imply that changes in myofiber type composition could contribute to the 

enhanced oxidative capacity and reduced glycolytic capacity of skeletal muscles in mice 

lacking skeletal muscle MKP-1. Mitochondrial oxidation, ATP synthesis, and myofiber type 

composition contribute to the control of skeletal muscle endurance [40,41]. Skeletal muscle-

specific MKP-1-deficient mice were observed to exhibit significantly increased levels of 

endurance which, further supports the interpretation that the oxidative myofiber composition 

of these skeletal muscles is improved. These observations provide an explanation for the 

increased levels of mitochondrial efficiency and increased whole-body energy expenditure in 

skeletal muscle-specific MKP-1-deficient mice and thus, resistance to diet-induced obesity. 

These results suggest that skeletal muscle MKP-1 through a MAPK dependent pathway(s) 

modulates mitochondrial biogenesis and subsequently influences whole body energetics. 

Impaired mitochondrial biogenesis and protein turnover has been reported to promote the 

development of sarcopenia [30]. Therefore, overexpression of skeletal muscle MKP-1 would 

be anticipated to promote age- and diet-induced stresses on mitochondrial dysfunction and 

contribute to the progression of sarcopenia.

MKP-1 in Cardioprotection

Heart disease and its associated complications including heart failure, atrial fibrillation 

and myocardial ischemia and infarction are leading causes of death and disability globally 

[42,43]. The molecular basis for the development and progression of cardiac diseases are 

not completely clear. Reperfusion is critical in rescuing the ischemic myocardium from 

infarction and cardiomyocyte death [43,44]. Insulin protects cardiac myocytes [45,46] while 

oxidative stress [44] has been implicated in ischemia-reperfusion induced cardiomyocyte 

apoptosis [44]. In cardiac myocytes, insulin resistance affects the cytoprotective effects 

of insulin that is mediated by induction of MKP-1 expression [47]. In a rat model of 

ischemia-reperfusion, dexamethasone-induced cardiomyocyte protection has been shown 

to be mediated by upregulation of MKP-1 expression [48]. In contrast, MKP-1 down-

regulation by parathyroid hormone-related peptide has been shown to be cardioprotective 

[51]. It has been demonstrated that cardiac myocytes derived from MKP-1 knockout 

mice were protected from oxidative injury [49]. These studies demonstrate that the 

cardioprotective effects of MKP-1 are controversial. However, inhibition of MKP-1 protects 

against oxidative stress-induced myocytes apoptosis and modulation of the activity of 

MKP-1 during myocardial ischemia-reperfusion might be beneficial for cardiac function.
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MKP-1 as a Potential Therapeutic Target

Rationale

There is significant interest in the role and implication of phosphatases in metabolic 

diseases. The ability to selectively target these signaling pathways holds tremendous 

therapeutic potential for the treatment of obesity and insulin resistance. Many studies have 

shown that MKP-1 may have important functions in health and disease [18,50–52]. Some 

of the roles for MKP-1 in obesity, energy homeostasis, insulin resistance, hepatic steatosis, 

diabetes and cardioprotection have been uncovered [17,27,50,53]. In the following section 

we will discuss the potential for targeting of MKP-1 as a potential strategy for the treatment 

of insulin resistance, T2D and obesity.

Inhibition of MKP-1 in muscle

Several DUSPs have been implicated in human diseases including cancer, neurological 

and muscle disorders, metabolic disorders, inflammatory and cardiovascular diseases [52]. 

To date a combination of structural, biochemical, and genetic data unequivocally supports 

the conclusion that DUSPs exhibit overwhelming specificity towards the MAPKs [54,55]. 

MKP-1 is the prototypical member of this family of enzymes. Despite the fact MKP-1 

has been extensively studied compared with other members of this family of enzymes, 

only recently has the crystal structure of the human MKP-1 catalytic domain been reported 

[56]. The absence of information about the crystal structure of this enzyme has hindered 

development of inhibitors to target MKP-1. Inhibitors of MKP-1 have been identified 

through the efforts of high-throughput screens [57]. The fact that the PTP domain of MKPs 

are all highly similar presents a challenge towards the development of potent and specific 

MKP-1 inhibitors. Since the crystal structure of MKP-1 has been solved, structure-based 

drug design is now possible.

Considering the contribution of MKP-1 in metabolic homeostasis, the ability to selectively 

target MKP-1 could be of great therapeutic potential for the treatment of metabolic diseases. 

In the last two decades kinases have appeared as a major class of druggable targets for 

the treatment of cancers and other diseases. Many drugs targeted against protein-tyrosine 

kinases (PTKs) [58] have had a significant impact on the treatment of various cancers [59]. 

However, many challenges exist with drugs targeted against PTKs for example, certain 

cancers treated with PTK inhibitors succumb to either intrinsic or acquired resistance to 

such treatments. Therefore, other targets and approaches are needed. Investigators both in 

industry and academia are working to find small molecule therapeutics targeting PTPs. 

However, these efforts to generate small molecules targeting the active site of PTPs 

have encountered challenges because of the polar nature of the active site [60,61]. New 

approaches such as allosteric inhibitors are being developed to target PTPs [58]. One such 

effort is in the development of allosteric inhibitors for PTP1B for the treatment of diabetes 

and obesity [62]. This strategy avoids formation of the active conformation of the enzyme by 

obstructing mobility of the catalytic center. Similarly, small molecule allosteric inhibitors of 

MKP-1 would be highly attractive target for therapeutic intervention in metabolic diseases 

including, insulin resistance, T2D and obesity.
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There are other MKP inhibitors that have been developed but are poor [57]. However, recent 

work on the development of MKP-5 inhibitors has opened the door to novel strategies of 

allosteric modulation of the MKPs, in general, that can potentially be applied to MKP-1 

[63]. The first co-crystal structure of a small molecule inhibitor with MKP-5 revealed an 

unknown allosteric site that resides within the catalytic domain of MKP-5. This allosteric 

site is conserved in many other MKPs, including MKP-1. It was demonstrated that key 

residues within the MKP-5 allosteric site are critical for defining compound binding and 

mutation of these residues in MKP-5 to those found in MKP-1 abrogates the ability of 

the compound to inhibit MKP-5. The catalytic domains of the DUSPs are between 36 

and 57% identical to that of MKP-5 suggesting that sufficient differences exist in which 

specificity can be achieved. These results pave the way for the development of a new class 

of MKP-specific allosteric inhibitors. Given the renewed interest in the development of 

allosteric PTP inhibitors and its emerging success in other PTPs such as SHP-2 and PTP-1B, 

the development of MKP-1 allosteric inhibitors is an exciting therapeutic strategy.

In unstressed conditions MKP-1 is expressed at relatively low levels. However, in obese 

states and type 2 diabetes, MKP-1 is upregulated. Skeletal muscle MKP-1 is overexpressed 

in obese humans [18]. Thus, MKP-1 would be a good target for therapeutic intervention 

only in those diseased tissues where its expression is aberrantly increased. It is important 

to perform a systematic survey of human tissue-specific MKP-1 gene expression and 

splicing to unravel new opportunities for therapeutic target identification and evaluation. 

Development of a metabolic disease-targeted tissue-specific promoter system would be 

a desirable tool. This approach is already in use in the treatment of certain types of 

cancers [64]. To target skeletal muscle MKP-1 to treat metabolic diseases, there is need to 

design a dual promoter technology in which a skeletal muscle-specific transcription system 

under the control of a human alpha skeletal actin promoter antisense-based therapeutics 

against MKP-1. Recent studies have demonstrated tissue-specific oligonucleotide delivery 

that utilizes both viral and nonviral delivery vectors [65]. Strategies such as blocking 

expression of MKP-1 in skeletal muscle with antisense oligonucleotides could be beneficial 

in improving insulin sensitivity and prevent the development of obesity. Using the antisense-

based therapeutics against PTP1B has shown efficacy in clinical trials [66,67].

Considering the fact that studies on cardioprotective effects of MKP-1 [45,47–49] including 

stress-responsive MAPK [68] are controversial, more studies are needed to elucidate how 

modulation of MKP-1 could be beneficial in the treatment of cardiac diseases. Future work 

will require cardioprotective analysis of MKP-1 in tissue-specific mouse models.

The encouraging message here is that inhibition of MKP-1 would be expected to provide 

a positive therapeutic value in the area of treating myocardial injury resulting from ischemic-

reperfusion insults.

Challenges

One of the challenges towards inhibiting MKPs are concerns about toxicity and/or adverse 

side-effects because it means removing a widely expressed MAPK antagonist. However, this 

is unlikely to be a major cause of concern since whole body deletion of MKP-1 [17,50] 

or specifically MKP-1 deletion in skeletal muscle [18] does not result in overt effects in 
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unstressed animals. Furthermore, specific inhibition of MKP-1 causes distinct upregulation 

of the nuclear pool of MAPKs. Major side effects due solely to increased nuclear MAPK 

activation are anticipated to be greatly lessened because of the restricted effects on the 

nuclear pool of MAPKs. Inhibition of MKP-1 pharmacologically in skeletal muscle, 

possibly through the development of drugs that can be targeted selectively to this tissue, 

will result in the activation of the nuclear pool of MAPKs causing upregulation of genes that 

promote energy expenditure without affecting the cytosolic pool of MAPKs that interfere 

with insulin sensitivity. Collectively, these mechanisms due to their spatiotemporally 

restricted effects, could afford highly favorable and tolerable long-term side-effects. The 

validity of these ideas will need to be rigorously tested in an assortment of mouse models of 

metabolic disease.

Conclusion

After over a decade of study of the physiological function of MKP-1 in the regulation of 

metabolic homeostasis in mice and more recently in humans, these data collectively point to 

the notion that chronic upregulation of MKP-1 in skeletal muscle is part of a stress response 

mediated by p38 MAPK and JNK activities and this may play an important contributing 

role in the development of insulin resistance, T2D and obesity. Despite MKP-1 being a 

challenging, target there are potential strategies that if successfully executed could lead to 

inhibiting MKP-1 as a treatment of metabolic disease.
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Figure 1: 
Model for MKP-1 regulation of MAPK pathway in obese skeletal muscle. MKP-1 regulate 

the activities of p38 MAPK/JNK pathway. In obesity, MKP-1 is upregulated, which inhibit 

p38 MAPK thereby impairing PGC1a activity leading to decreased Mitochondrial function 

and reduced energy expenditure. Overexpression of MKP-1 also leads to development of 

insulin resistance by controlling the activation of p38 MAPK/JNK through the miR-21/

PTEN/Akt pathway.
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