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Severe bone injuries can result in disabilities and thus affect a person’s quality of life. Mesenchymal stem
cells (MSCs) can be an alternative for bone healing by growing them on nanopatterned substrates that
provide mechanical signals for differentiation. This review aims to highlight the role of nanopatterns in
directing or inducing MSC osteogenic differentiation, especially in bone tissue engineering. Nanopatterns
can upregulate the expression of osteogenic markers, which indicates a faster differentiation process.
Combined with growth factors, nanopatterns can further upregulate osteogenic markers, but with fewer
growth factors needed, thereby reducing the risks and costs involved. Nanopatterns can be applied in
scaffolds for tissue engineering for their lasting effects, even in vivo, thus having great potential for future
bone treatment.
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Bone fracture is one of the causes of disabilities that affect a person’s quality of life. Bone tissue has the ability to heal
by itself, but in some cases the healing process needs help from implants or scaffolds [1]. However, these methods
may pose some risks, such as infection, nerve damage or even rejection by the immune system [2]. Therefore, more
effective and less risky alternative methods are needed. Mesenchymal stem cells that can cause minimal rejection
responses is one such alternative.

Stem cells are a very rapidly developing topic in the biomedical field, especially related to their use in bio-
engineering of various tissues [3] such as vascular [4], neuronal [5], bone [6], skin [7] and brain [8] tissues. Stem cells
have the characteristics needed in tissue engineering: their abilities, first, to regenerate, and second, to differentiate
into different types of cells [9]. Mesenchymal stem cells (MSCs), in particular, are very widely used in regenerative
medicine because they are multipotent, easier to obtain because they originate from many tissues in the body and
have immunomodulating abilities [10]. The role of stem cells as a source of cells in tissue engineering applications
is important, including bone tissue engineering.

Regulation of differentiation, proliferation and regeneration of stem cells can occur intracellularly or extracellu-
larly (microenvironment/niche) in the form of the extracellular matrix (ECM), or neighboring cells. The ECM is
an important aspect because the cell must adhere to the ECM and receive signals from it [11]. The ECM can not
only provide biophysical signals but also provide biochemical signals for example through ECM composition for
guiding MSC’s osteogenic differentiation [12,13]. Biophysical signals from ECM to cells includes substrate topogra-
phy [14], matrix stiffness [15], mechanical forces [16] and also matrix viscoelasticity, which has recently been paid much
attention [17]. This mechanism is called mechanotransduction, which is a conversion mechanism from mechanical
signals into biochemical signals [18]. The rate of cell proliferation and attachment is influenced by the size of the
microenvironment and the layout of the other cells within it. Differentiation and cell signaling pathways are also
influenced by the biochemical and mechanical composition of the existing microenvironment and, in turn, affect
gene expression that occurs in cells [19]. How biophysical cues can direct the fate of the cell in tissue engineering
needs consideration in future applications.
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Besides the microenvironment, another aspect that influences stem cell development is the epigenetic aspect.
Epigenetic factors are intracellular processes that do not involve genetic factors. Epigenetic mechanisms usually
cause changes in gene expression without changing the DNA structure or sequence. Some examples of epigenetic
mechanisms include cytosine DNA methylation, histone modification by histone acetylation and methylation, and
gene expression regulatory activity of small noncoding RNA [20]. Mechanical forces can be transduced into the
cell through the cytoskeleton to the chromatin in the nucleus, thereby influencing epigenetic regulation. Nuclear
lamins can interact with DNA, chromatin, and histones in the lamina-associated domains (LADs). LADs play a
role in the regulation of histone modifications and also changes in chromatin structure through nucleoskeletal
reorganization. In LADs, there are heterochromatin markers such as H3K9me3 and H3K27me3 that play a
role in stem cell differentiation to prevent cell reprogramming and silencing certain line-specific genes with the
outcome that differentiated cells can maintain their identity. However, during cell reprogramming, H3K9me3
functions to maintain the undifferentiated state by suppressing the activation of transcription factors and arranging
chromatin into dense heterochromatin, while H3K27me3 plays a role in facultative heterochromatin silencing.
Thus, cytoskeleton and lamins rearrangements can regulate histone modifications and thereby influence MSC
differentiation. This rearrangement of the cytoskeleton and lamins can occur as a result of mechanical signals by
topography [21]. Therefore, substrate topography, in which the cells grow, plays an important role in the onset,
which then determines the next step of cell fate.

Stem cells can be administered directly through injection or by transplantation through a scaffold medium [22].
Scaffolds can serve as a place for cells to grow and differentiate in vitro in such a way that afterward they can be
transplanted into the body. In vitro differentiation in tissue culture is usually regulated by adding growth factors
to the growth medium. However, the use of growth factors has some limitations, especially in vivo. Proteolytic
activity or protein degradation by enzymes in the body causes growth factors to become unstable and degrade; as a
result, they have to be administered several times or in larger doses than normally found in the body to maintain
an effective concentration. Therefore, costs are higher and unwanted effects may also occur [23]. Developments in
topographic engineering methods to control cell behavior and differentiation can be a solution to these problems
and can increase our understanding of the interactions and signaling processes that occur during MSCs’ regulation
of differentiation and regeneration [3]. Wang et al. were one of the first who showed that topography can affect
MSC’s differentiation. In their work, they found that elongated topographies can result in neural differentiation
rather than osteogenic differentiation [24]. Besides neural proliferation, elongated topographies such as nanogrids
was also suitable for diffraction [25].

Micropatterning is a method to engineer substrate topographies that resemble the microenvironment suitable for
cells. The substrate is made with micron-sized patterns that define the adhesion of cells to the substrate [19]. Since its
discovery, microtopography of substrates has been extensively studied to see how these features interact with cells.
However, microenvironments also have nanoscale features. Nanopatterning, or the manufacture of nano motifs
on substrates, can now be accomplished due to ever-developing nanotechnology [16]. How far or big the role of
nanotechnology in creating microenvironments will greatly affect substrate-dependent osteogenic differentiation.

Nanopattern technology also has many challenges, such as difficulties in manufacturing and designing nanoscale
geometries, as well as high costs with relatively low yields [26]. The effect of nanopatterns on osteogenic differentiation
is evident through the upregulation of osteogenic markers on nanopattern surfaces compared with controls. Research
by Kim et al. showed that the expression of Col I, RUNX2, and OPN was higher on nanopattern surfaces. In
addition, their research also shows that nanopatterns can be combined with biochemical compounds to further
improve results [27]. Further, Amaral et al. proved that nanopatterns can be embedded into scaffolds and can induce
osteogenic differentiation even without osteogenic-inducing medium [28]. The role of nanopatterns in directing
osteogenic differentiation is intriguing and also important to understand in the endeavor to develop bone tissue
engineering applications.

Nanopatterns have great potential in tissue engineering because they can induce MSC differentiation in scaffolds
through biophysical signals, which have several advantages over biochemical compounds such as growth factors.
However, fabricating nanopatterns is quite difficult. Moreover, there are many types of nanopatterns, and pattern
selection can affect cell contractility, which ultimately affects cell differentiation. Many aspects need to be considered,
such as the required technology, the use of materials and the production costs [29]. These factors can be a challenge
in the development of nanopattern fabrication methods. This concise review highlights several uses of nanopattern
methods in inducing osteogenic differentiation, as well as the potential for their development in the future.
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MSC behavior in topography
MSC behaviors such as migration, adhesion, proliferation and differentiation can be regulated by biophysical
signals from the microenvironment/niche [16,30]. This mechanism is called mechanotransduction, which is a con-
version mechanism from mechanical into biochemical signals [18]. Mechanotransduction is caused by changes in
the cytoskeleton that interacts with the nucleus via the nucleoskeletal lamin [31]. The main receptors in mechan-
otransduction are integrins. Integrins will mediate cell adhesion to the substrate and form a focal adhesion (FA)
complex [32]. FA connects the substrate with cytoskeletal actin filaments (F-actin) [33]. Stress and cytoskeletal re-
modeling can affect the morphology of the nucleus so that it also has an impact on cell function and growth [16].
Therefore, different engineered patterns from the substrate will cause different cytoskeletal remodeling and in the
end, will direct different cell functions. Microenvironments provide both biochemical and biophysical cues which
the cells will integrate with their internal regulatory mechanism in order to meet their physiological needs [34]. This
phenomenon can be adopted in topography engineering to guide cell differentiation.

Integrin transmembrane receptor consists of α dan β subunits and binds to the RGD and GFOGER ligand
motifs found in the ECM’s collagen. Integrin-ligand binding causes clustering of cytoplasmic proteins that regulate
signaling cascades for several cellular processes such as proliferation and differentiation [16]. The role of integrins
in cell-matrix attachment occurs in three mechanical processes. First, the integrin-matrix binding force must pass
a certain threshold to be able to withstand the force exerted during adhesion. Second, integrins must link the
cytoskeleton with the ECM in order for signals to be transduced into the cell. Finally, biophysical signals need to
be translated into biochemical signals through mechanotransduction [33]. It is this mechanism that underlies how
nanotopography can play a role in directing MSC’s osteogenic differentiation.

When the scaffold is implanted into the body, plasma proteins are adsorbed to the surface of the scaffold in such
a manner that its topography and biochemical characteristics will affect the conformation and amount of proteins
adsorbed to the scaffold [16]. Cell adhesion to the matrix will cause clustering of integrins which will increase the
recruitment process of intracellular proteins that form FA complexes [32,35]. Talin is one of the intracellular proteins
that play a role in the formation of FA, and it binds to ß integrin and actin [35]. This binding between talin
and integrin plays a role in stabilizing clustering processes and also mediates crosslinking between integrins and
F-actin and between proteins attached to F-actin such as vinculin and α-actinin. Vinculin plays a role in stabilizing
stress-induced attachment [18]. Vinculin and paxillin share both function and binding sites. However, paxillin does
not bind directly to actin as is the case with vinculin [35]. Mature focal adhesion (FA) will usually have these three
proteins, namely talin, vinculin and paxillin. Integrin signaling pathways are mediated by a tyrosine kinase called
focal adhesion kinase (FAK). FAK plays a role in attachment and also acts as a scaffold for other FA components,
and it initiates several signaling cascades [33]. These signaling cascades play a very important role in determining
cell fate.

Mechanotransduction can occur directly or indirectly. Indirect mechanotransduction occurs through a series of
biochemical signaling from FA formation. Meanwhile, direct mechanotransduction occurs due to conformational
changes in the cytoskeleton that connects ECM to the nucleus via nucleoskeleton lamins [31]. Cytoskeletons play a
role in regulating various aspects of the cell such as cell shape, migration and also mechanical signal transmission
and transduction. Cytoskeleton components consist of F-actin and myosin [36]. Therefore, topography engineering
can determine mechanotransduction processes including signaling cascade.

Cytoskeleton stress can affect cell differentiation. Cells cultured on surfaces that allow for high cytoskeleton
stress will have greater FA than cells with looser cytoskeletons. High cytoskeleton stress plays an important role in
osteogenesis. Therefore, to direct MSC’s osteogenic differentiation, nanopatterns must be designed to produce high
cytoskeleton stress [31]. Intracellular tension causes deformation of the nuclear membrane, resulting in openings
in the nucleopore, which increases mRNA transport and protein translation [16]. This intracellular tension can
also affect lamin structures. Lamin itself is a nucleoskeletal intermediate filament that plays a role in providing
structure for the nucleus. It is also associated with chromosomes and thus has a role in DNA replication. Lamin is
linked to cytoskeletal proteins via the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Changes in
lamin organization can affect signaling pathways and compartmentalization in the nucleus such that the position of
nuclear components such as chromosomes may also change. This cellular remodeling provides stimulatory effects
on lamins and chromosomes with the result that it may also impact gene expression [31].

Topography induces many signaling pathways, one of the most studied of which is the YAP/TAZ pathway. These
two proteins are transcriptional coactivators that are homologous to each other. These proteins can translocate from
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Figure 1. Example of lithographic process.
Adapted with permission from [81] using Biorender.

the cytosol to the nucleus when activated by mechanical signals. A stiffer surface will increase integrin clustering
and FA formation such that F-actin polymerization and stress fiber formation increase. Cells will spread out more
and cover a larger area which will support YAP/TAZ translocation to the nucleus [37]. It is this balance between the
ration of YAP and TAZ in the cytoplasm and nucleus that plays a role in the regulation of cell differentiation [37–39].
The role of YAP protein itself in osteogenesis has yet to be determined because contradictory results are often
obtained. However, TAZ plays a role in osteogenesis by coactivating transcription by RUNX2 for osteogenesis as
well as inhibiting transcription by PPARγ for adipogenesis [37].

Another signaling pathway that plays a particular role in osteoblast maturation is the Wnt/β-catenin pathway.
Wnt proteins interact with frizzled (FZD) surface receptors such that the effector β-catenin is translocated to the
nucleus while at the same time inhibiting the complex that degrades β-catenin, namely AXIN1 [40,41]. The Wnt/β-
catenin signaling pathway is associated with calcification and osteogenic marker expression. It is also involved in a
mutually reinforcing crosstalk with integrins during differentiation. Integrins regulate differentiation via the Wnt
pathway, and Wnt increases integrin expression, resulting in further regulation of osteogenic differentiation [40,42].
The signaling pathways mentioned are involved in promoting osteogenic differentiation. Hence, the activity of
proteins involved in these pathways, such as YAP and Wnt, can become an indicator or marker of osteogenic
differentiation activity in cells [39,42]. Likewise, in nanotopographic engineering, markers from these signaling
pathways are used to determine the role of nanopatterns in osteogenesis.

Development of nanopattern fabrication method
Nanopattern is a substrate engineering method to produce nanoscale structures. The first cultured cells utilizing
topographic signals were reported in 1914 [43]. Developments in nanoscale fabrication technology made it possible
to create nanotopographic structures. Nanopatterns themselves are used not only in the biological field but also
in fields, for instance in electronics for electrochemical cells [44]. Nanopattern developments in the study of cell
behavior started about three decades ago [45]. Even now, research on nanopatterns to find the optimal method or
combination to direct cells according to needs is ongoing. Developments in this area are, of course, very dependent
on advancements in the field of nanotechnology.

Different methods have been used to produce nanopatterns, with the research is still underway because many
challenges in nanofabrication remain, such as difficulties in designing and producing nanoscale geometries as well
as high costs with low yields [26]. Nanofabrication methods continue to shift over time. Various methods have
been carried out through research to produce nanopatterns, such as sonication [46], sandblasting [47], solvothermal
method [48], plasma oxidation [49] and other methods. However, several methods that are found quite often
are lithography, etching and anodization. Lithography and its variations were used quite widely in the early
2010s [27,50,51], were continued with etching [52,53], and then were shifted to anodization during the end of the
decade [54–65]. Developments of various nanopattern fabrication methods, the resulting patterns and the materials
used can be seen in Table 1.

Lithography is a fabrication method that prints a pattern onto a target surface through a thin layer called resist.
After the resist pattern has been printed, a subtractive transfer is carried out, which etches the target surface but
only on the parts without the resist so that it forms a pattern (Figure 1). Resist acts as a barrier during etching.
Afterward, an additive transfer can also be carried out, which adds a layer of material to the opening that has
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Table 1. Various nanopattern fabrication methods used for osteogenic differentiation (2010–2021).
Materials Patterns used Methods Ref.

Ti Nanopores (10 nm diameter) on nano-dimples (120 nm) Electrochemical nanopattern
formation (anodization, sonication, chemical
etching)

[64]

Ti Mesoporous nanostructured coatings Sonication [46]

Ti Grids (micron, nano, micron/nano [hybrid]) Femtosecond laser irradiation [66]

Ti Hemisphere-like nanostructures (approx. 50, 100 and 200 nm) Colloidal lithography of glass substrate and
sputter-coating of Ti

[51]

Ti Nanostructured surface, microstructured surface, untreated surface Treatment with either HNO3-H2SO4-HCl to
produce MS, and H2SO4-H2O2 to produce NS

[67]

Ti Roughness (Ti coated with GO nanomaterial) Sandblasting and acid etching and ultrasonic
atomization spraying technique

[47]

Ti Nanotubes with modified Tanfloc (TA)-based polyelectrolyte multilayers using
heparin and hyaluronic acid

Anodization and layer-by-layer deposition [65]

Ti ATi nanotubes coated with GO (roughness) Anodization and anodic-electrophoretic
deposition

[62]

Ti Nanotubes (30–40 nm), nanograins (60–100 nm) with nanopore structure Anodization, etching, & anodization after etching [63]

Ti TiO2 Nanotubes (20, 50, 100 nm) Anodization [54]

Ti Nanotubes (potential: diameter: 30 V: 74 nm; 40 V: 92 nm; 50 V: 112 nm; 60 V:
128 nm; 70 V: 148 nm)

Anodization [55]

Ti Nanotubes (flat Ti, amorphous, and anatase crystallinity) Anodization [56]

Ti Nanotubes (average diameters ∼20 (NT1), ∼50 (NT2), & ∼90 nm (NT3), and
two-tiered HC surface composed of smaller nanotubes (s-HC) clustered within larger
domains (L-HC))

Anodization [57]

Ti Nanotubes loaded with strontium (Sr) and lanthanum (La) (nanotubes (TN),
Sr-containing TiO2 nanotube (STN), La-loaded SNT (LSTN))

Anodization [58]

Ti6Al4V Nanotubes (ground Ti6Al4V (Ti), nanostructured Ti6Al4V (N), Ti6Al4V incubated in
SBF (TiH), nanostructured Ti6Al4V incubated in SBF (NH)

Anodization [59]

Ti6Al4V Nanotubes (39 & 83 nm) Anodization [60]

Ti6Al4V Nanostructured biogenic apatite coatings (thickness 450 ± 20 nm) Ionized jet deposition technology [68]

TiNbTa Nanotubes (potential - diameter: 10 V - 18 nm, 20 V - 36 nm, 30 V - 46 nm) Anodization [61]

TiCaP Nanograins from coating (Ti thin film on glass substrate (Ti), CaP thin film on glass
substrate (CaP), CaP thin film on glass substrate with Ti interlayer (TiCaP)

Radio frequency magnetron sputter deposition [69]

Barium
titanate (BT)
NP/alginate

Porous nanocomposite scaffold Dispersion of BT NP in water and adding alginate [28]

HAP/Ti3C2Tx Nanocomposite membrane (ultralong HAP nanowires (UHAPNWs)/MXene (Ti3C2Tx)
film)

Solvothermal method and mixing and vacuum
drying

[48]

PCL Multi-walled carbon nanotubes (MWCNTs) and nano-hydroxyapatite (nHA) in
3D-printed porous scaffold (PCL/MWCNT, PCL/HA, PCL/HA/MWCNT)

Screw-assisted extrusion-based additive
manufacturing system and melt blending method

[70]

PCL Nanoparticles on nanofibers (PCL, PCL-ZnO, PCL-C-ZnO) Nanoparticles by carbonization and oxidation, PCL
fibers by electrospinning

[71]

HApN/PCL Nanoparticle hybrid Emulsification-solvent evaporation technique.
HAPN (hydroxyapatite nanoparticle) were
prepared using simple wet chemical precipitation
technique

[72]

PCL/F-
MWCNT

Composite nanofiber PCL/F-MWCNT (PCL nanofibers and functionalized multiwall
carbon nanotubes concentration of 0.5, 1, 2 & 3%)

Electrospinning [73]

PUA Nanogrooves (width 150 nm, periodicity 300 nm; & width 300 nm, periodicity
600 nm) and nanodots (hexagonal and square; diameter 460 nm, periodicity
600 nm)

Nanopatterned Si-master by photolithography
and coating by initiated chemical vapor
deposition technique

[27]

PUA Nanodots (150, 400, 600 nm diameter) and nanolines (150, 400, 600 nm width) Self-replication and UV-assisted capillary force
lithography

[50]

PDMS Wrinkled topography gradient (amplitude: 144–2854 nm; wavelength:
0.91–13.62 μm)

Shielded plasma oxidation and imprinting
lithography

[49]

PDMS Nanoparticle composite (AuNM/PDMS, SPION/PDMS, GO/PDMS, GQD/PDMS,
pristine PDMS)

Immersion of PDMS in 6 types of nanoparticles [74]

AuNW: Gold nanowire; BT NP: Barium titanate nanoparticle; C: Carbon; CaP: Calcium phosphate; CS: Chitosan; GaN: Gallium nitride; GO: Graphene oxide; GQD: Graphene
quantum dot; HAP: Hydroxyapatite; HC: Honeycomb; PCL: Polycaprolactone; PDMS: Polydimethylsiloxane; PS: Polystyrene; PS-b-P2VP: Polystyrene-block-poly)2-vinylpyridine;
PUA: Polyurethane acrylate; SBF: Simulated body fluid; Si: Silicone; SPION: Superparamagnetic iron oxide nanoparticle; TCP: Tricalcium phosphate; Ti: Titanium; TiNbTa: Ti-36Nb-
Ta alloy.
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Table 1. Various nanopattern fabrication methods used for osteogenic differentiation (2010–2021) (cont.).
Materials Patterns used Methods Ref.

PS Nanopits (average diameters of 200, 300, 400, 500, 600, 750 nm, pure SiO2 0 nm
(control) and flat TCP [blank control])

One-step self-assembly of PS nanospheres on SiO2

surface
[75]

Graphene Nanoparticles of low-oxygen graphene Commercially purchased [76]

�-TCP Roughness (from gelatin/reduced graphene oxide-magnesium-arginine hybrid
contents of 0, 0.25 and 0.75% wt)

3D printing and freeze drying [77]

GaN Nanopores (etching voltage-nanopore size: 10 V: 20 nm; 15 V: 30 nm; 20 V: 80 nm;
25 V: 95 nm)

Electrochemical etching [52]

Si Nanopillars (critical dimensions of 40–200 nm) Self-assembly block copolymer (spin-coating of
PS-b-P2VP reverse micelle solutions)

[78]

C Single and multi-walled nanotube-coated glass (nanostructures with height of
15–20 nm)

Coating and drying [79]

Chitosan Nanocomposite (CS scaffold with GO concentration of 2, 4 and 6% wt) Direct blending, freezing and freeze-drying
methods

[80]

Glass Roughness (Rq = 1, 100, 200 nm) Reactive-ion etching [53]

AuNW: Gold nanowire; BT NP: Barium titanate nanoparticle; C: Carbon; CaP: Calcium phosphate; CS: Chitosan; GaN: Gallium nitride; GO: Graphene oxide; GQD: Graphene
quantum dot; HAP: Hydroxyapatite; HC: Honeycomb; PCL: Polycaprolactone; PDMS: Polydimethylsiloxane; PS: Polystyrene; PS-b-P2VP: Polystyrene-block-poly)2-vinylpyridine;
PUA: Polyurethane acrylate; SBF: Simulated body fluid; Si: Silicone; SPION: Superparamagnetic iron oxide nanoparticle; TCP: Tricalcium phosphate; Ti: Titanium; TiNbTa: Ti-36Nb-
Ta alloy.

been formed. There are many types of lithography, such as photolithography, x-ray lithography, electron beam
lithography, nano-imprint lithography and others [81–83].

Etching is indeed part of the processes in lithography. It is the process of engraving on a surface and does not
require printing patterns on the resist. For example, Han et al. used the electrochemical etching method to form
nanopores on GaN films. The film was immersed in an electrolyte solution and then electrified with a certain
voltage such that pores formed on the film randomly [52]. Several etching methods are wet etching, dry etching and
reactive ion etching (RIE). Wet etching is a chemical etching process that uses chemical solutions; dry etching is
an etching method using high-energy ions fired onto surfaces under airtight conditions; and RIE is a combination
of chemical and physical etching via radiofrequency plasma [81].

The anodization method has been widely used in recent years. Patterns formed by this method are usually
nanotubes using titanium and its alloys as the substrate material. Titanium has advantages as a biomaterial,
specifically, that is light, strong, biocompatible and rust-resistant. However, titanium’s Young’s modulus is often
not enough to be used as a biomaterial, and therefore titanium is usually replaced with its alloy Ti6Al4V [84,85].
Anodization is the most popular method used for titanium material. This method is also relatively easy to do and
does not require sophisticated tools. As the diameter of the resulting nanotubes can be customized by adjusting the
applied voltage, the cost is not excessive. Tong et al. proved that western blot results in several osteogenic marker
genes have higher relative mRNA expression on surfaces with nanotubes than those in flat surface controls [55].

Based on the three types of methods previously discussed, the most widely used type of nanopattern in the last 2
years is nanotubes produced through anodization. This method is commonly used for titanium material, which does
have good performance in bone tissue engineering both in vitro and in vivo [86]. Among the three methods discussed,
anodization is a relatively simple and easy to perform and regulate because it uses the principle of electrochemical
oxidation with voltage variations. Although this method generally forms nanotubes, it can also be combined with
other methods to form other types of nanopatterns. One example is nanopores by electrochemical nanopattern
formation (ENF) which consists of anodization, sonication and chemical etching [64]. Considering anodization’s
simplicity, flexibility regarding customization, suitability of the material, and osteogenic differentiation ability, it
has the potential for further developments in bone tissue engineering.

Role of nanopatterns in osteogenic differentiation induction
Nanopatterns were developed in the field of stem cell culture mainly to direct cell differentiation to the cell line
that suits specific needs. Generally, cell differentiation is induced by chemical compounds such as growth factors.
However, the use of chemical compounds for induction has its limitations. Growth factors need to be used in large
doses to achieve the appropriate phenotype. Consequently, the costs can be great. In addition, maintenance of
hMSCs in vivo after they are administered to patients is also very difficult [87].
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Research on nanopatterns is driven by the knowledge that small changes in topography can have a significant
influence in directing stem cell development [69]. For example, Kim et al. used several types of nanopatterns
functionalized by BMP-2 (bone morphogenetic protein-2). They investigated how stem cells respond when grown
on functionalized (compared with nonfunctionalized) nanopatterns, and with the addition (compared with lack)
of osteogenic induction. qRT-PCR results of osteogenic markers expression (Col I, RUNX2, OPN) showed that
surfaces with nanopatterns could upregulate osteogenic markers expression when compared with flat surfaces and
further increased with BMP-2 functionalization [27].

Besides the presence of nanopatterns, the shapes and sizes of nanopatterns can also affect differentiation. Kim
et al. showed that different patterns further increase different osteogenic markers expression. Col I and RUNX2 were
expressed mainly in hexagonal dot patterns in substrates without functionalization and without induction medium.
On substrates with induction medium, Col I expression was enhanced on substrates with BMP-2 functionalization
and was more visible on groove-patterned substrates than dot-patterned substrates [27]. Li et al. demonstrated that
differences in nanotubes diameter can affect differentiation. Fluorescence staining results showed that the levels
of osteocalcin (OC), osteopontin (OP), and xylenol orange (calcification) were higher on substrates with 39 nm
(20 V) diameter than 83 nm (40 V) [60].

Although nanopatterns can induce osteogenic differentiation, studies have shown that nanopatterns alone are
not effective enough compared with using a combination of osteogenic induction medium with nanopattern. You
et al. showed that ALP and Cbfa1 were expressed both in nanopattern with osteogenic medium and with growth
medium only. However, OP and OC were significantly lower in nanopatterns with growth medium compared
with those using the osteogenic medium. These results show that early-stage differentiation can be initiated
using nanopatterns and growth medium only because there are no significant differences with when an osteogenic
medium is used. However, for later-stage osteogenic differentiation, stronger induction from the osteogenic medium
is required [50].

Further, Watari et al. conducted a study that was slightly similar to You et al. They used nanopatterns without
osteogenic medium and nanopatterns with an added osteogenic medium. Nanopatterns with pitch sizes of 400 nm
can significantly increase the expression of RUNX2, BGLAP and calcification compared with controls with or
without an added osteogenic medium. The combination of nanopatterns with the osteogenic medium can provide
additional effects that may be beneficial for people with serious conditions. Its effects as a biophysical signal on
osteogenic differentiation can also last up to 2 weeks, whereas those from the biochemical medium usually last only
8 days or fewer [88]. The increase in expression on nanopatterns compared with control was higher in the non-
osteogenic medium compared with the osteogenic medium. This result was observed on RUNX2 on day 3, BGLAP
on day 10, and calcification on day 14. Thus, although nanopatterns cannot completely replace osteogenic medium,
nanopatterns themselves can increase the expression of osteogenic markers compared with the control. Additional
osteogenic medium is then beneficial to further increase the expression, if more is needed. Further research is
needed to confirm whether using nanopattern alone for early differentiation and using induction medium for
late differentiation generates consistent results, how this approach compares to using nanopatterns alone or using
osteogenic medium from the beginning, and also what is the underlying mechanism.

Although nanopatterns can enhance osteogenic differentiation, as shown through osteogenic markers expression,
the process still requires the addition of osteogenic mediums. Therefore, when using nanopatterns to achieve a
certain level of differentiation, the required biochemical compounds for the osteogenic medium is reduced. Qian
et al. used substrates with a roughness level of 1 and 200 nm with five types of mediums, namely control medium,
complete osteogenic induction medium, induction medium without dexamethasone, induction medium without
ascorbic acid, and induction medium without β-glycerophosphate. His research showed that the level of ALP
expression was higher in the induction medium without dexamethasone compared with control, medium without
ascorbic acid, and medium without β-glycerophosphate. Expression of RUNX2, ALP, and OPN on nanorough
along with induction medium without dexamethasone was higher compared with the flat surface with complete
osteogenic induction medium [53]. Another study, by Thiagarajan et al., stated that dexamethasone, which is
commonly used for osteogenic differentiation, can trigger pleiotropic effects, which means it can cause adverse
effects on the body. Two other compounds commonly used in inducing osteogenic differentiation, ascorbic acid and
β-glycerophosphate, function to promote collagen production and supply inorganic phosphate for mineralization
in vitro. Because these two compounds are naturally available in vivo, inducing agents aren’t necessarily needed [89].
If nanopatterns can indeed replace dexamethasone’s role, the number of induction compounds needed and also the
risk of unwanted effects are also reduced. Nanopatterns with the addition of ascorbic acid and β-glycerophosphate
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alone may be sufficient during in vitro conditions, and during in vivo, induction effects can be maintained by the
presence of nanopatterns.

These studies prove that nanopatterns can enhance osteogenic differentiation either alone or in combination
with osteogenic media. The findings indicate that nanopatterns can also reduce the costs required for biochem-
ical compounds, either by reducing their use or by increasing the expression of osteogenic markers, and hence
make their use more efficient. Higher marker expressions on surfaces with nanopatterns indicate that stem cells’
development into bone cells occurs faster than on surfaces without nanopatterns. Further, mechanical signals from
nanotopography have the advantage of being more stable, controlled, and more quickly transmitted to the nucleus
than chemical signals [90]. With the right size, nanopatterns can also form stable focal adhesion [91]. Focal adhesion
stability can keep cytoskeletal tension stable in order for signals from nanopatterns to reach the nucleus properly.
Initial cell attachment to the surface can affect osteogenic differentiation and the long-term stability of scaffolds after
transplantation. Rapid and stable osseointegration, which is recognized through the cell’s osteogenic differentiation
rate, can reduce the risks of failure after implantation [65]. Thus, nanopatterns can be a very important first step in
directing osteogenic differentiation and maintaining the stability of the differentiation process.

One of the important aspects to consider in tissue engineering implementation, besides biology and security, is
the cost. As discussed, nanopatterns are generally able to show higher expression of osteogenic markers compared
with controls. This expression is even higher when nanopatterns are combined with an osteogenic induction
medium. Therefore, nanopatterns can accelerate the process of osteogenic differentiation and also reduce the use
of growth factors. Nanopatterns can also provide more stable signaling compared with biochemical compounds.
With these considerations, nanopatterns are economical and worth further development. Research in this area is
still very wide open, including further comprehensive research on the financial aspect to see whether nanopatterns
can reduce the use of growth factors, and thus be not only safer but also even more economical.

Nanopatterns potential in bone tissue engineering
The use of nanopatterns is currently still in the research stage. However, the ultimate goal of nanopattern research
is for application, specifically in bone treatment by either injecting differentiated stem cells or transplanting them
together with the scaffolds into the body. If transplanted, the nanopatterns must already be embedded in the
scaffold, and the scaffold must be biocompatible in order to be transplanted into the body and to facilitate bone
cells growth. In general, scaffolds for bone tissue engineering must meet several criteria. Biological criteria of
scaffolds include biocompatibility, nontoxicity and biodegradability. In addition to biological criteria, there are
also mechanical criteria. Scaffolds must be mechanically designed according to natural bone tissues to prevent
complications. Finally, there are structural criteria, which include having certain levels of porosity to improve
osseointegration and also being harnessed with nanotopography [92].

Nanotopographic structures of the scaffold play an important role in osteoinduction and also osteointegration
(ability to integrate with bone). Nanopatterns provide biophysical signals and are transmitted through mechan-
otransduction into the nucleus with the help of integrins and protein complexes in the cell. Integrin will bind
to proteins such as FAK, talin, vinculin and paxillin which will indirectly be connected to actin cytoskeletal
components and subsequently will affect gene expression via signaling cascades. However, under conditions with
nanopatterns, the FA formed is larger so that F-actin will undergo crosslinking to form stress fibers. Cell shape
becomes tenser so that it can facilitate osteogenesis better [34]. Thus, biophysical signals from nanopatterns can
regulate the expression of genes related to proliferation as well as differentiation of MSCs into osteoblasts.

Scaffolds can be transplanted into damaged bones when cells have reached the osteoblast stage. Osteoblasts
can interact with other osteoblasts as well as with osteocytes. Osteoblasts can secrete matrixes that are beneficial
for the mineralization process of osteoblasts themselves. Then, osteocytes present in bones can provide paracrine
stimulation of osteoblasts to form more osteocytes and also inhibit osteoclast formation [93]. A functional scaffold
that has a good degree of osseointegration will have a density similar to the natural bones with which it is integrated.
Nanopatterns can affect the conformation of adsorbed proteins and increase attachment by integrins and ultimately
promote osseointegration (Figure 2) [93,94]. Of course, the entire process requires support from plenty of research
because the mechanisms involved are very complex.

Nanopatterns on scaffolds will be able to maintain osteogenic induction effects after being transplanted because
nanopatterns are already part of the scaffold, in contrast to biochemical compounds whose effects can decrease
if not continuously supplemented. Notably, after transplantation, administrations of induction compounds pose
some risks to the person. Negative effects that may be caused by biochemical compounds, such as the pleiotropic
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Figure 2. A simple diagram of the mechanism of nanopatterns mechanotransduction pathway on scaffolds and
their application in transplantation.
Created using Biorender.
ECM: Extracellular matrix; MSCs: Mesenchymal stem cells.

effect of dexamethasone, can be avoided by utilizing nanopatterns [89]. In this case, nanopatterns have benefits
compared with adding growth factors.

Materials for scaffolds, as previously discussed, are very important and have certain criteria. Different types of
materials have been used for nanopattern research in inducing osteogenic differentiation, such as barium titanate
ceramics [28], PDMS [74] and PS [75] polymers, graphene [76], silicones [78], carbon nanotubes [79], chitosan [95]

and many others. Akhavan et al. showed one of the first works relating to the effect of surface nanotopography
from graphene (surface coated by graphene nanoribbons in the form of nanogrids) on MSC’s proliferation and
differentiation [96]. Recently, graphene has been used in combination with nanostructures to create substrates
that can enhance osteogenesis. Therefore, graphene are also highly promising because of its biocompatibility and
cost–effectiveness [97,98]. However, titanium and its alloys are the most commonly used according to literatures [57–

60,62–66,68]. Titanium has been mentioned as an advantageous material and can be fabricated into nanotubes by
anodizing. However, the main disadvantage of using titanium as a material for scaffolds is that titanium is a
non-biodegradable metal. Therefore, during the process of bone healing, a further operation is needed to remove
the scaffold because there is the possibility of problems emerging in the long term. To address this issue, research on
biodegradable metals has been carried out, for example magnesium alloys. However, the degradation of magnesium
implant material in the body occurs through corrosion, raising concerns about its effects on the body [92]. Other
biodegradable materials have also been widely used as scaffolds in nanopattern research. Some examples are
polymers such as PCL [70–73], bioceramics such as calcium phosphate (CP) and β-TCP [69,77], and natural polymers
such as chitosan [80]. Cellulose nanofibers with specific morphologies have also been used and may serve as a
greener option [99]. It is known as a very effective, useful and biocompatible material for osteogenic differentiation.
Composite nanofiber scaffolds from nano-sized demineralized bone powders (DBP) and biodegradable poly(L-
lactide) (PLA) have also been used for in vivo bone formation. The osteoconductive effect of PLA/DBP scaffolds
showed greater results compared with PLA scaffolds and the composite scaffolds in vitro [100]. Further research on
suitable scaffold materials is still needed, especially materials that can facilitate the differentiation process toward
osteogenicity.

Conclusion & future perspective
Nanopattern as a method to induce osteogenic differentiation of MSCs has been widely studied. Various methods
to produce nanopatterns have been and are being developed, and their development is highly dependent on the
advancement of nanotechnology. Anodization has been researched widely in the last 2 years and has the potential
to be further developed because it is quite simple and flexible regarding being varied. This method is usually used
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to create nanotube patterns that have been shown to increase osteogenic markers expression, which also indicates a
faster differentiation process when compared with a flat surface.

However, the use of nanopatterns does not mean that growth factors do not need to be used. Combinations
of nanopattern and growth factors can increase the effectiveness of osteogenic differentiation compared with
nanopatterns alone. Nanopatterns can reduce the use of growth factors, which is beneficial for reducing costs and
risks of side effects that can be caused by growth factors. In addition, mechanical signals provided by nanopatterns
can provide a more stable, controlled, and faster signal that is transmitted to the nucleus.

In tissue engineering, nanopatterns can be applied in scaffolds such that their induced effects can persist even in
vivo. The material used for scaffolds is also important. Titanium is one of the widely materials for bone implants
because of its suitable characteristics. However, the use of metal has drawbacks because it is not biodegradable.
Therefore, the development of biomaterials for nanopatterned scaffolds is wide open for exploration in the future
for bone tissue engineering applications.

This short review has discussed a little about the nanopattern fabrication method and its role in inducing
osteogenic differentiation, especially for tissue engineering. It provides a perspective regarding the potential use
of nanopattern and recent advances in nanopattern function toward osteogenic differentiation of MSC for bone
tissue engineering. Nanopatterns have great potential, especially in bone treatment, that further research and
development may shed light on. It provides a perspective regarding the potential use of nanopattern and recent
advances in nanopattern function toward osteogenic differentiation of MSC for bone tissue engineering.

Executive summary

• Nanopatterns have great potential in tissue engineering because they can induce mesenchymal stem cell
differentiation in scaffolds via biophysical signals.

• Regulation of mesenchymal stem cell behavior by biophysical signals occurs through mechanotransduction.
• Anodization can be a method with great potential for further development in bone tissue engineering.
• Nanopatterns can increase osteogenic markers expression and reduce costs of production and maintenance.
• A combination of nanopatterns and growth factors can further increase the effectivity of osteogenic

differentiation induction; hence biochemical compounds are not required in large quantities.
• Nanopatterned scaffolds made of suitable materials can improve osseointegration in bone tissue treatment.
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