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Abstract: During the process of electroslag remelting (ESR) of steel containing titanium and alu-
minum, the activity ratio between titania and alumina in CaF2-CaO-MgO-Al2O3-TiO2 slag must be
fixed in order to guarantee the titanium and aluminum contents in the ESR ingots. Under the condi-
tion of fixed activity ratio between titania and alumina in the slag, the melting temperature of slag
should be investigated to improve the surface quality of ESR ingots. Therefore, this paper focuses on
finding a kind of slag with low melting temperature that can be used for producing steel containing
titanium. In the current study, the thermodynamic equilibrium of 3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2)
between SUS321 steel and the two slag systems (CaF2:MgO:CaO:Al2O3:TiO2 = 46:4:25:(25 − x):x
and CaF2:MgO:CaO:Al2O3:TiO2 = 46:4:(25 − 0.5 x):(25 − 0.5 x):x) are studied in an electrical resis-
tance furnace based on Factsage software. After obtaining the equilibrium slag with fixed activity
ratio between titania and alumina, the melting temperatures of the two slag systems are studied
using slag melting experimental measurements and phase diagrams. The results show that the
slag systems CaF2:MgO:CaO:Al2O3:TiO2 = 46:4:25:(25 − x):x, which consists of pre-melted slag S0
(CaF2:MgO:CaO:Al2O3 = 46:4:25:25) and pre-melted slag F1 (CaF2:MgO:CaO:TiO2 = 46:4:25:25), can
not only control the aluminum and titanium contents in steel, but also have the desired low melting
temperature property.

Keywords: electroslag remelting; melting temperature of slag; steel containing titanium;
thermodynamics; phase diagram

1. Introduction

Electroslag remelting (ESR) [1,2] is one of the processes used to produce high quality
special steels. During ESR process, the slag plays important roles in chemical composition
and surface quality of ingot. On the one hand, the slag CaF2-CaO-MgO-Al2O3-TiO2
should have the fixed activity ratio of lg(a3

TiO2
/a2

Al2O3
) to guarantee the thermodynamic

equilibrium of 3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) and the ratio of lg(w3
[Ti]/w4

[Al]) in steel.
On the other hand, the slag should also have a low melting temperature to improve
the surface quality of the ESR ingots. Especially for superalloy or stainless steel with a
melting temperature lower than 1370 ◦C (1643 K), the melting point of the slag used for
ESR of superalloy and stainless steel should be lower than 1270 ◦C (1543 K). Therefore,
it is essential to investigate the melting temperature of CaF2-CaO-MgO-Al2O3-TiO2 slag
under the condition of fixing activity ratio of titania and alumina in the slag during the
ESR process.

The studies on CaF2-CaO-MgO-Al2O3-TiO2 slag used for steel containing titanium
are mainly divided into two categories: one is about the effect of TiO2 on the physical
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property of slag, and the other is about the effect of each slag component on the activities
of TiO2 and Al2O3. Shi [3–5] studied the effect of TiO2 on the crystallization behavior of
CaF2-CaO-Al2O3-MgO-TiO2 slag and pointed out that TiO2 has large effect on the physical
property of the slag. Duan [6,7] studied the effect of each slag component on the activities
of Al2O2 and TiO2, and determined an appropriate slag to be used for ESR of superalloys
based on experiments and thermodynamics. Jiang [8–16] investigated the thermodynamic
equilibrium of 3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) and the effect of slag components on
activities of Al2O2 and TiO2 in CaF2-CaO-MgO-Al2O3-TiO2 slag system, and then TiO2 in
slag was calculated to control the titanium and aluminum contents in ESR ingot. However,
the above researches [17–21] did not comprehensively consider the physical properties and
thermodynamic equilibrium of 3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2). Under the condition
of controlling the titanium and aluminum contents in steel, the optimized slag with low
melting temperature cannot be acquired according to the studies above.

To the best of the authors’ knowledge, under the condition of fixing activity ratio
between titania and alumina in slag, investigation on the melting temperature of slag
has not been reported so far. In the present work, the thermodynamic equilibrium of
3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) was studied by the slag-metal reaction in a resistence
furnace and the Factsage software. After obtaining the equilibrium slag with fixed activity
ratio between titania and alumina, the melting temperature of CaF2-CaO-Al2O3-MgO-TiO2
slag was studied by slag melting experimental measurements and phase diagram. At last,
the slag design diagram consisting of lg(a3

TiO2
/a2

Al2O3
) isoactivity lines and slag phase

diagram (CaF2:MgO:CaO:Al2O3:TiO2 = 46:4:x:y:z, x + y + z = 50) was made for acquiring
the optimized CaF2-CaO-Al2O3-MgO-TiO2 slag with low melting temperature.

2. Experimental
2.1. Slag-Metal Reaction Experiments in Resistance Furnace

SUS321 stainless steel produced by Dongbei special steel group Co. Ltd, Dalian, China
was used in current study. Its chemical composition is listed in Table 1. The chemical
compositions of Slag S0F1-82, S0F1-64, S0F2-82 and S0F2-64 are listed in Table 2, and the
chemical compositions of pre-melted slag S0, F1 and F2 are listed in Table 3. Each slag-metal
reaction experiment is carried out with 80 g slag and 50 g steel by using a resistance furnace,
as shown in Figure 1. The heating unit is made of molybdenum disilicide. The temperature
of the liquid metal is continuously measured by means of a B-type reference thermocouple
produced by Kejing material technology Co. Ltd, Hefei, China. Argon is used to protect
the slag-metal reaction system from top and bottom of the furnace at the rate of 2 Nl/min.

Table 1. Chemical composition of the SUS321 (Mass pct).

C Si Mn Cr Ni Ti Al P S

0.09 0.64 1.06 18.32 9.76 0.47 0.068 0.021 0.0017

Table 2. Chemical composition of slag consisting of S0 and F1(F2) used in slag-metal reaction
experiments.

Exp. Slag CaF2 CaO MgO Al2O3 TiO2

S0F1-82 S0:F1 = 8:2 46 25 4 20 5
S0F2-82 S0:F2 = 8:2 46 22.5 4 22.5 5
S0F1-64 S0:F1 = 6:4 46 25 4 15 10
S0F2-64 S0:F2 = 6:4 46 20 4 20 10
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Table 3. The results of melting temperature of each slag consisting of S0 and F1(F2).

Slag Slag Ratio CaF2 CaO Al2O3 MgO TiO2
Halfsphere

Temperature, K
Flowing

Temperature, K

S0 – 46 25 25 4 0 1560 1570
F1 – 46 25 0 4 25 1605 1614
F2 – 46 12.5 12.5 4 25 1618 1629

S0F1-1 S0:F1 = 88:12 46 25 22 4 3 1543 1554
S0F1-2 S0:F1 = 76:24 46 25 19 4 6 1534 1546
S0F1-3 S0:F1 = 64:36 46 25 16 4 9 1533 1539
S0F1-4 S0:F1 = 60:40 46 25 15 4 10 1535 1542
S0F2-1 S0:F2 = 88:12 46 23.5 23.5 4 3 1548 1559
S0F2-2 S0:F2 = 79:21 46 22.375 22.375 4 5.25 1550 1559
S0F2-3 S0:F2 = 76:24 46 22 22 4 6 1549 1560
S0F2-4 S0:F2 = 67:33 46 20.875 20.875 4 8.25 1566 1576
S0F2-5 S0:F2 = 64:36 46 20.5 20.5 4 9 1572 1581
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Figure 1. Schematic diagram of resistance furnace with function of dropping crucible from bottom.

The experimental procedures can be described as follows. Firstly, 50 g of steel and 80 g
of slag are placed into a MgO crucible with 30 mm in inner diameter and 70 mm in depth.
Then the crucible is placed in a graphite crucible with molybdenum wire for suspension.
After the whole crucible is placed in the chamber, the power is switched on and the furnace
is heated to the experimental temperature (1823 K (1550 ◦C)) at a rate of 8 K/min.

After the furnace temperature was held for 60 min at 1823 K (1550 ◦C) [8,9], the
crucible was dropped into liquid water quickly. The contents of Si, Al and Ti in each
steel sample are analyzed by the inductively coupled plasma-mass spectroscopy (ICP-MS)
technique and the concentrations of Al2O3, TiO2 and MgO in slag samples are analyzed
by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results are
listed in Table 4.

Table 4. The chemical composition of steel and slag after slag-metal reaction experiments (Mass pct).

Exp. Si Ti Al Al2O3 TiO2 MgO lg
f4
Al·γ3

TiO2
f3
Ti·γ2

Al2O3

S0F1-82 0.68 0.33 0.058 18.91 4.75 9.84 −3.57
S0F2-82 0.69 0.35 0.053 21.28 4.64 10.69 −3.21
S0F1-64 0.66 0.40 0.032 14.39 9.51 9.61 −3.42
S0F2-64 0.68 0.42 0.028 18.91 9.37 10.93 −2.89
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2.2. Slag Melting Temperature Tests

During industrial ESR of steel containing different titanium and aluminum contents
process, the TiO2 powder combined with pre-melted slag CaF2-CaO-Al2O3-MgO are added
into the water cooling molds of the ESR furnace. In order to prevent the TiO2 powder from
volatilizing with the air flow during the slag addition process, a new pre-melted slag S0
without TiO2 and a pre-melted slag F1(F2) with high TiO2 are designed. Their compositions
are listed in Table 3. By mixing S0 and F1 in the ratio of 88:12, the slag S0F1-1 in Table 3
was acquired. Slag S0F1-2 and S0F1-3 can be acquired when the ratios of S0:F1 are 76:24
and 64:36, respectively. Slag S0F2-1, S0F2-2 and S0F2-3 can be acquired when the ratios of
S0:F2 are 88:12, 76:24 and 64:36, respectively.

Slag melting experiments were carried out by using a high temperature specimen
deformation method. A diagram of the test system is shown in Figure 2. In order to evaluate
the melting behavior, the pre-melted slag powders were compressed into cylindrical
samples of 3 mm diameter and 3 mm high. For each test, the slag sample was placed
at the centre of a corundum substrate which was then located within the hot zone of a
molybdenum wire furnace. The furnace was heated at 10 ◦C/min up to the slag melting
temperature, which is defined as the temperature at which the cylindrical specimen attained
a hemispherical shape. The melting temperature of slag was measured using a high
temperature microscope, and the results are listed in Table 3.
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Figure 2. Test facility for determination of slag melting behavior.

3. Results and Discussion
3.1. Slag-Metal Reaction Experiments Results

The results of slag-metal reaction experiments in resistance furnace are shown in
Table 4. Due to the existence of unstable oxides SiO2 and FeO, both aluminum and titanium
are lower than them in the steel before experiments. If assuming that the slag-metal reaction
of 3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) in Table 4 reaches thermodynamic equilibrium [8,9],
the activity coefficients of alloy element in steel and oxide component in slag can be
experimental measured based on thermodynamics. At the slag-metal interface under
1550 ◦C, the following Reaction (1) will take place [22,23]. After substituting Ti, Al, Al2O3
and TiO2 of Table 4 into Equation (2), the activity coefficient value of Equation (2) in
Exp.S0F1-82, Exp.S0F2-82, Exp.S0F1-64 and Exp.S0F1-64 are experimental measured as
−3.57, −3.21, −3.42 and −2.89, as shown in Table 4.

3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) (1)
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lgK = lg
a4

Al·a
3
TiO2

a3
Ti·a2

Al2O3

= lg
w4
[Al]·X

3
TiO2

w3
[Ti]·X

2
Al2O3

+ lg
f 4
Al·γ

3
TiO2

f 3
Ti·γ2

Al2O3

= −35300
T

+ 9.94 (2)

where aTiO2 and aAl2O3 are the activities of TiO2 and Al2O3 in the slag; XTiO2 and XAl2O3 are
the mole fraction of TiO2 and Al2O3 in slag; γTiO2 and γAl2O3 are the activity coefficients of

TiO2 and Al2O3 in slag; f Al and f Ti are the activity coefficients of Al and Ti; lg
f 4
Al·γ

3
TiO2

f 3
Ti·γ

2
Al2O3

is

the activity coefficient of Equation (2).
During the slag-metal reaction experiments, the MgO in slag after experiments was

increased to 10% because of MgO crucible being eroded by slag. In order to investigate
the thermodynamic equilibrium of SUS321 steel and slag S0-F1(F2) further, the activity
coefficients of Ti and Al in steel are calculated by Equation (3) and the value of lg( f 3

[Ti]/ f 4
[Al])

is considered as −0.12. The interaction parameters [24–26] used in present study are listed
in Table 5. The activity coefficients of TiO2 and Al2O2 in slag are calculated based on
Factsage 7.3-FToxid FactPS. The change of activity coefficient of Equation (2) with MgO
in Exp.S0F1-82, Exp.S0F2-82, Exp.S0F1-64 and Exp.S0F1-64 are calculated, as shown in
Figure 3a. It is clear that the calculated results in Figure 3a are in good agreement with
measured results listed in Table 4.

lg fi = ∑ ej
iw[%j] (3)

Table 5. Activity interaction coefficient ej
i of the constituent in the present work.

ej
i

C Si Mn P S Al Ti Cr Ni

Al 0.091 0.056 0.035 0.033 0.035 0.08 0.004 0.03 -
Ti −0.19 −0.025 −0.043 −0.0064 −0.27 0.0037 0.013 0.055 0.009
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Figure 3a shows that the activity coefficient values of Equation (2) under slag S0:F1 = 8:2,
S0:F1 = 6:4, S0:F2 = 8:2 and S0:F2 = 6:4 can be calculated as −3.33, −3.20, −2.95 and −2.52,
as listed in Table 6. After obtained the activity coefficient value of Equation (2) in each slag,
the slag S0:F1 = 8:2, S0:F1 = 6:4, S0:F2 = 8:2, S0:F2 = 6:4 and corresponding lg(w3

[Ti]/w4
[Al])

are calculated in Table 6, which will be used as points in Figure 4.
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Table 6. The relationship between lg(w3
[Ti]/w4

[Al]) and slag listed in Table 2 determined by experiments.

Slag CaF2 CaO MgO Al2O3 TiO2 lg
f4
Al·γ3

TiO2
f3
Ti·γ2

Al2O3

lg(w3
[Ti]/w

4
[Al])

S0:F1 = 8:2 46 25 4 20 5 −3.33 3.76
S0:F2 = 8:2 46 22.5 4 22.5 5 −2.95 4.04
S0:F1 = 6:4 46 25 4 15 10 −3.20 5.03
S0:F2 = 6:4 46 20 4 20 10 −2.52 5.49
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[Ti]/w

4
[Al]) lg(a3
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Al2O3
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5.03 −4.51 S0F1-4 S0:F1 = 60:40 46 25 4 15 10
5.03 −4.51 S0F2-4 S0:F2 = 67:33 46 20.875 4 20.875 8.25
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Then the melting temperatures of thermodynamic equlibrium slag systems in Table 7
are measured in slag melting experiments, and the results are listed in Table 3.

3.2. Slag Melting Temperature Results

The halfsphere melting temperature and flowing melting temperature results for the
slag listed in Table 3 are shown in Figure 5. It is clear that: (i) with a CaO/(Al2O3 + TiO2) ra-
tio = 1, the melting temperature of the slag S0-F1 is lower than slag S0-F2 with a CaO/Al2O3
ratio = 1 under the condition of increasing TiO2 content in slag; (ii) when the TiO2 con-
tent reaches more than 9%, the melting temperatures of slag S0F1-3 and S0F1-4 are much
lower than that of slag S0F2-4 and S0F2-5; (iii) the melting temperatures of slag S0F1-4
is much lower than that of slag S0F2-4 in Table 7 under the condition of fixing steel with
lg(w3

[Ti]/w4
[Al])5.03; (iv) the melting temperature of the slag S0-F2 system (CaO/Al2O3

ratio = 1) decreases first and then increases with the increase of TiO2 content, which has
been described in detail based on SHTT, SEM and XRD in [3]. As the description of con-
clusion in [3], TiO2 addition from 0 to 6.43 mass% inhibited crystallisation behaviour of
CaF2-CaO-MgO-Al2O3 ESR type slag, whereas the further TiO2 addition up to 9.73 mass%
greatly enhanced the crystallisation tendency.
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The phenomena whereby ‘the melting temperature of the slag S0F2 system decreases
first and then increases with the increase of TiO2 content’ and ‘the melting temperature of
the slag S0F1 system decreases with the increase of TiO2 content’ is further explained ac-
cording to the phase diagram of CaF2-CaO-MgO-Al2O3-TiO2 (CaF2 = 46% and MgO = 4%)
calculated by Factsage, as shown in Figure 6. It can be seen that slag S0-F1 is closer to
the low melting point region with the increase of F1:S0 ratio. TiO2 addition from 0 to
6 mass% promotes S0-F2 to approach the low melting point region, whereas the further
TiO2 addition up to 9 mass% makes S0-F2 away from the low melting point region.

3.3. The Optimized Low Melting Temperature Slag Used for Steel Containing Ti and Al

It is final goals to acquire the optimized slag with low melting temperature under
the condition of fixing lg(w3

[Ti]/w4
[Al]) ratio between Ti and Al contents in steel. During

ESR of steel containing lg(w3
[Ti]/w4

[Al]) = 5.03 and 4.10, the lg(a3
TiO2

/a2
Al2O3

) in slag can be
calculated as −4.51 and −5.44 according to Equations (2) and (3). Then the corresponding
isoactivity lines of lg(a3

TiO2
/a2

Al2O3
) = −4.51 and −5.44 are calculated by Factsage soft-

ware, as shown in Figure 7. It can be seen that slag mixtures consisting of pre-melted
S0 and F1, which component is CaF2:CaO:MgO:Al2O3:TiO2 = 46:25:4:(25 − x):x, have
the low melting temperature property while satisfying the lg(w3

[Ti]/w4
[Al]) in steel. The
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melting temperature of CaF2-CaO-MgO-Al2O3-TiO2 slag systems would increase with the
decrease of CaO content. In addition, with the increase of CaO in slag due to the reac-
tion of 3CaF2 + Al2O3 = 2AlF3 (g) + 3CaO during long term ESR process [27], the melting
temperature of slag S0-F1 would be decreased further according to Figure 7.
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4. Conclusions

The melting temperature of two slag systems and thermodynamic equilibrium of
3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) in resistance furnace have been experimentally carried
out based on phase diagram, Factsage, and thermodynamic calculation. The results are
as follows:

(1) The calculated results of thermodynamic analysis based on Factsage are in good
agreement with the slag-metal reaction experimental results in resistance furnace.
The changes of S0:F1 and S0:F2 ratios in slag mixtures with different titanium and
aluminum contents in steel are determined. The slag S0-F1 containing high CaO
needs large ratio of TiO2/Al2O3 to guarantee the thermodynamic equilibrium of
3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) and the ratio of Ti/Al in steel.
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(2) The melting temperature of slag S0-F1 with a CaO/(Al2O3 + TiO2) ratio = 1 is
lower than that of slag S0-F2 with a CaO/Al2O3 ratio = 1. Especially for thermo-
dynamic equilibrium slag containing high TiO2, the melting temperature of S0-F1
slag CaF2:CaO:MgO:Al2O3:TiO2 = 46:25:4:15:10 is much lower than that of S0-F2 slag
CaF2:CaO:MgO:Al2O3:TiO2 = 46:20.875:4:20.875:8.25.

(3) The slag mixtures consisting of pre-melted slag S0 (CaF2:MgO:CaO:Al2O3 = 46:4:25:25)
and pre-melted slag F1 (CaF2:MgO:CaO:TiO2 = 46:4:25:25), which component is
CaF2:CaO:MgO:Al2O3:TiO2 = 46:25:4:(25 − x):x, have the desired low melting temper-
ature property while satisfying the concentrations of Ti and Al in steel.
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