
MOTOR NETWORKS

The Goldilocks zone in neural
circuits
How do networks of neurons remain both stable and sensitive to new

inputs?

MARK D HUMPHRIES

N
etworks of neurons are tough beasts

to control. If too many of the connec-

tions between the neurons are excit-

atory, the network becomes hyperactive, driven

by feedback from neuron to neuron. But if too

many of the connections are inhibitory, the net-

work goes silent, save for a few blips of activity,

mercilessly crushed by inhibition. So how do real

neuronal networks stay in the Goldilocks zone

between too quiet and too loud? How do they

maintain stable activity yet remain sensitive to

new inputs?

One clue comes from the long-tailed distribu-

tions of spiking rates that are seen throughout

the cortex: a small number of neurons respond

strongly to a specific input, but most spike only

weakly, and thus remain ready to spike again in

response to a new input (Wohrer et al., 2013;

Buzsáki and Mizuseki, 2014). Another clue

comes from the balanced network model:

according to this model the excitatory and inhib-

itory inputs to cortical neurons cancel on aver-

age, so the neurons can maintain stable,

irregular activity (van Vreeswijk and Sompolin-

sky, 1996; Renart et al., 2010; see Figure 1A,

B). However, we don’t know how these two

clues fit together to explain how neuronal

networks reach the Goldilocks zone: in particu-

lar, can balanced networks produce long-tailed

distributions of spiking rates?

Now, in eLife, Peter Petersen and Rune Berg

of the University of Copenhagen report compel-

ling experimental evidence that they can

(Petersen and Berg, 2016; Figure 1C). They did

this by testing a theoretical model that was pub-

lished in 2011 (Roxin et al., 2011). The experi-

ments were performed on the spinal network in

turtles and combined intracellular and large-

scale extracellular recordings of neural activity.

The recordings were made during periods of

evoked motor behaviour (that is, when the turtle

was scratching itself).

Petersen and Berg first showed that the spi-

nal network was balanced. They identified indi-

vidual neurons in the spinal cord that existed in

a regime called the "fluctuation-driven" regime

that is characteristic of balanced networks. The

membrane voltages of these neurons fluctuated

widely between spikes, as expected from neu-

rons receiving the same inhibitory and excitatory

input on average (Figure 1B). They also identi-

fied neurons that existed in the "mean-driven"

regime (Figure 1A): in these neurons the mem-

brane voltages moved from low values to high

values rapidly and directly following each spike.

Petersen and Berg then showed that it was pos-

sible to switch between the fluctuation-driven

and mean-driven regimes by changing the bal-

ance between the excitatory and inhibitory

inputs to the neurons.

Next they tested a slightly off-the-wall predic-

tion made by Alex Roxin and co-workers for neu-

rons in the fluctuation-driven regime

(Roxin et al., 2011). This work predicted that if
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these neurons have an expansive output curve –

that is, if the output increases faster than linear

as the input increases – then their output spike-

rate will have a long-tailed distribution

(Figure 1C). Unexpectedly, Petersen and Berg

showed that their fluctuation-driven neurons all

had such an expansive output curve.

Petersen and Berg then used large-scale pop-

ulation recordings to address the key question:

do these expansive output curves give rise to

the predicted long-tailed distribution of firing

rates across a network? The answer was a

resounding yes. The populations they recorded

had lognormal distributions of firing rates, and

the neurons within each population sat on a con-

tinuum between the fluctuation- and mean-

driven regimes. Intriguingly, their data suggest

that these regimes bore no relation to whether

the neurons were inter- or motor-neurons.

Petersen and Berg’s work is a rarity in systems

neuroscience, an experimental study that tests a

computational theory directly, and exhaustively.

They have provided compelling evidence that a

combination of balanced input and expansive

Figure 1. Long-tailed distributions and balanced networks. (A) When a single neuron receives more excitatory

input (red) than inhibitory input (blue), its membrane voltage (black line) spikes regularly. In this "mean-driven"

model the membrane voltage spends much of its time at or near the spiking threshold (see histogram on right),

and spiking is driven by the difference between the means of the excitatory and inhibitory inputs. However, most

neurons do not spike as rapidly or regularly as predicted by the "mean-driven" model. (B) The theory of balanced

networks proposes that the inhibitory and excitatory inputs to a neuron have approximately the same mean and

the same variance. Consequently, spiking is driven by random fluctuations in the inputs, when the excitatory input

briefly exceeds the inhibitory input. A signature of this “fluctuation-driven” regime is that the distribution of the

membrane voltage is approximately Gaussian (histogram). Fluctuation-driven neurons spike slowly and irregularly,

similar to the majority of the neurons in the cortex. (C) The relationship between the input to a neuron (blue curve

below the x-axis) and its spiking or firing rate (blue curve to the left of the y-axis) is described by a firing rate

versus input (f–i) curve. In 2011 Roxin et al. predicted that an expansive f–i curve (see main text) would convert a

Gaussian input into a long-tailed distribution of firing rates in the fluctuation-driven regime. Moreover, according

to this theory, if each neuron has a Gaussian input, then the overall population of neurons will also have a

Gaussian input, and if each neuron has an expansive f–i curve in the fluctuation-driven regime, then the output of

the population will be long-tailed.

Humphries. eLife 2016;5:e22735. DOI: 10.7554/eLife.22735 2 of 3

Insight Motor networks The Goldilocks zone in neural circuits

http://dx.doi.org/10.7554/eLife.22735


output can hold a network in the Goldilocks

zones (that is, keep it both stable and respon-

sive). And by working in the spinal cord networks

of the turtle, they were able to show that all these

properties exist during ongoing behaviour, and

not just during spontaneous neuronal activity.

Moreover, they remind us there is nothing privi-

leged about the dynamics of cortical circuits, or

the dynamics of neuronal circuits in mammals.

The work also opens up a number of exciting

challenges for theory and experiment. Like many

behaviours, scratching is a rhythmic action,

driven by repeated bursts of spikes. Petersen

and Berg focused on the spikes within bursts,

but there is silence between bursts. This silence

means there must be two timescales for the con-

trol of neural activity in the spinal network.

Spikes within the bursts arise from fast changes

to a neuron’s inputs, whether in the fluctuation-

driven regime or the mean-driven regime. And

the silence between bursts means that the net-

work is able to slowly switch in and out of the

driven regimes; that is, it can periodically turn its

balanced state on and then off. Clearly we have

just started to unpack how neuronal networks

control their own activity.
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