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ABSTRACT: We describe new synthetic routes developed
toward a range of substituted analogues of bromo and extra-
terminal (BET) bromodomain inhibitors I-BET762/JQ1 based
on the triazolo-benzodiazepine scaffold. These new routes
allow for the derivatization of the methoxyphenyl and
chlorophenyl rings, in addition to the diazepine ternary center
and the side chain methylene moiety. Substitution at the level
of the side chain methylene afforded compounds targeting
specifically and potently engineered BET bromodomains
designed as part of a bump and hole approach. We further demonstrate that marked selectivity for the second over the first
bromodomain can be achieved with an indole derivative that exploits differential interaction with an aspartate/histidine
conservative substitution on the BC loop of BET bromodomains.

■ INTRODUCTION

The 1,4-benzodiazepine scaffold occupies a place of choice in
the toolbox of medicinal chemists and is often referred to as a
“privileged scaffold” in drug discovery. A large number of
biologically active small molecules containing a 1,4-benzodia-
zepine scaffold have been approved by the FDA for the
treatment of various disease states, although most of them are
well-known for their psychotropic effects.1 Well known
examples include diazepam, alprazolam or prazepam. The
therapeutic potential of 1,4-benzodiazepines has fueled the
interest of synthetic chemists in developing new routes to a
range of substituted analogues for biological evaluation.2−4

Recently, this scaffold has attracted particular attention in the
field of epigenetics, with the discovery of a class of potent small
molecule inhibitors of the interaction between Bromo and
Extra-Terminal (BET) bromodomain proteins and their
acetylated histone substrates. BET proteins Brd2, Brd3, Brd4,
and Brdt are key transcriptional co-regulators. Crucial to their
activity are paired and highly homologous bromodomains
located in their amino-terminal regions. The individual function
of the first bromodomain (e.g., Brd2(1)) versus second
bromodomain (e.g., Brd2(2)) of BET proteins is however
unclear. A number of BET bromodomain inhibitors are
currently in clinical trials for the treatment of cancer,5 including
representative molecules I-BET762 (1),6 JQ1 (2),7

GW841819X (3),8 OTX015 (4),9 and RVX-208 (5)10 (Figure
1A). In particular, compounds 1−4 are based on a triazolo-
aryldiazepine scaffold (aryl = methoxyphenyl or dimethylth-

iophene) and bind to the acetyl-lysine (KAc) pocket of BET
bromodomains with high affinity (Kd of 1 = 50−370 nM).11

These compounds display activity in vivo12 against a number of
disease states, including NUT-midline carcinoma,13 multiple
myeloma,14 mixed-lineage leukemia,15 and acute myeloid
leukemia.16,17 Despite selectively targeting the BET bromodo-
main family with high potency over other bromodomains, these
compounds are pan-BET selective thus do not significantly
discriminate between individual bromodomains of the four
BET members. This lack of selectivity within the BET
subfamily so far has prevented accurate deconvolution of the
biological function of individual BET proteins and of their
tandem bromodomains. To address this problem, we recently
developed a chemical genetics approach to engineer the
selectivity of the BET bromodomain inhibitor I-BET762/JQ1
within the BET proteins family.11 This so-called “bump and
hole” approach is based on the generation of orthogonal and
high-affinity protein/ligand pairs and involves introducing a
single point mutation (large to smaller amino acid, that is, the
“hole”) onto the BET bromodomain of interest together with
making a synthetic modification (bulky substituent, that is, the
“bump”) onto the parent BET bromodomain binder to
complement the newly created protein subpocket (Figure
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1B). As a result, the bulky ligand is expected to bind with high
affinity to the mutated BET protein, while exhibiting weak to
no binding to wild-type (WT) proteins due to a steric clash
occurring between the “bump” and the naturally occurring
residue (Figure 1B). This approach was previously shown to aid
selective targeting of protein kinases through engineering of the
ATP binding site and ATP cofactor as well as ATP-competitive
inhibitors.18,19 In our study, we demonstrated for the first time
that the bump and hole approach can be used to selectively
disrupt protein−protein interactions within the BET family of
proteins.11 Compound ET (6) (Figure 1C,D), a derivative of I-
BET762/JQ1 bearing an ethyl functional group at the level of

the side chain methylene moiety, bound to leucine/alanine
mutant BET bromodomains with low nanomolar affinity and
displayed up to 540-fold and no less than 40-fold (160-fold on
average) selectivity relative to WT BET bromodomains across
the entire subfamily. This orthogonal bromodomain/ligand pair
was used within cancer cells to show that selective blockade of
the first bromodomain of a given BET protein, Brd4, is
sufficient to displace it from chromatin.11 The exquisite
selectivity provided by ET for engineered bromodomains is
currently exploited in our laboratory to probe the biology of
individual BET proteins through selective modulation of their
interaction with their histone substrates. Selective modulation

Figure 1. (A) Structures of BET bromodomain probes I-BET762 (1), JQ1 (2), GW841819X (3), OTX-015 (4), and RVX-208 (5), currently in
clinical trials, (B) bump and hole approach to engineer the selectivity of BET bromodomain probes against individual BET bromodomains, (C)
structure of ET (6), and (D) cocrystal structure of Brd2(2)L383A (blue, surface representation) in complex with ET (6) (stick representation, yellow
carbons), PDB code 4QEW.11 The L/A mutation is shown in red.

Figure 2. (A) Crystal structure of I-BET762 (1, yellow carbons) bound to Brd4(1) (PDB code 3P5O,2 surface representation; red indicates negative
and blue positive electrostatic potential). W81, V87, and L94 are highlighted. (B, C) I-BET762 chemical structure and positions selected for
derivatization to target the corresponding mutations.
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of individual BET bromodomains is important for accurate and
reliable target validation in the different disease states that are
associated with unbalanced activity of BET proteins.
The ET−L/A orthogonal inhibitor−protein pair was

discovered and optimized within the framework of an extended
study in which we explored several mutations (“holes”) and I-
BET762 substitution patterns (“bumps”). In the current
manuscript, we report the full journey that led to that
discovery. In doing so, we also describe our synthetic efforts
toward 6 and other novel analogues aimed at targeting the
mutant proteins. In particular, we report new synthetic routes
that we developed toward this aim, including I-BET762
analogues bearing substitution patterns at the level of the
methoxyphenyl and chlorophenyl rings, in addition to the side
chain methylene. Finally, we present biophysical evaluation of
the compounds within the context of our bump-and-hole
project, and highlight useful isoform selectivity criteria for the
design of the next generation of BET bromodomain inhibitors.

■ RESULTS AND DISCUSSION

Design of Engineered BET Bromodomain−Ligand
Pairs and Synthetic Targets. Analyses of sequence align-
ments (Figure S1) and inhibitor-bound crystal structures11

guided us to focus on 11 residues that are strictly conserved
within the BET subfamily and are in close contact with the
ligand. Keeping in mind that the introduced mutations should
not significantly disrupt protein stability and substrate binding,
residues Y97, C136, Y139, and N140 (Brd4(1) numbering)
were discarded, because they are known to be important for
KAc recognition20−25 and for preserving a key network of
bound water molecules.26 Buried residues P82 and F83 from
the bottom of the so-called WPF shelf were also discarded
because their mutation was predicted to destabilize the integrity
of the hydrophobic core.21 Residues L92 and M149 looked
promising but were not pursued further due to a lack of suitable
vectors arising from the inhibitor scaffold that could be
exploited to complement potential mutations. The remaining
three residues, that is, the more peripheral hydrophobic W81
from the top of the WPF shelf and V87 and L94 from the ZA
loop, were selected for site directed mutagenesis (Figure 2A).
Mutants W/F, W/H, V/A, L/I, and L/A were constructed
within Brd2(1), recombinantly expressed, purified from
Escherichia coli and biophysically characterized in order to
assess their stability and histone binding capacity (Table S1).
All mutants maintained melting temperatures (Tm) above 37
°C, and most had comparable stabilities to the WT proteins, as
assessed by differential scanning fluorimetry (DSF). Impor-

tantly, all mutants retained competence to bind a tetra-
acetylated H4 derived peptide27 as assessed by ITC albeit to
varying degrees (Table S1). Most mutants exhibited com-
parable peptide binding affinities relative to WT, while the V/A
proved the most disruptive mutation.
With three positions identified and corresponding mutants

characterized, I-BET762 (1) was selected as the starting
scaffold because it is more synthetically tractable and better
suited to all required vectors than JQ1. Molecular modeling
studies suggested that (i) a “bump” R1 originating from the
methoxyphenyl ring could target the hole introduced by the
V87A mutation, (ii) R2 functionalization at the level of the side
chain methylene, in an (R) configuration, could target L94
mutations, and (iii) the p-chlorophenyl ring could provide
suitable vectors for R3 substituents to explore W81 mutations
(Figure 2B,C). A methyl group was elected as the bump of
choice to explore the engineered holes because it represents the
smallest hydrophobic functional group that at the same time
introduces minimal alteration of the ligand scaffold in terms of
electronics, conformation, and physicochemical properties. We
therefore performed a “methyl scan” around the I-BET762
scaffold by synthesizing analogues functionalized with methyl
groups at R1−R3 (Figure 2C) to target mutations at the
respective positions.

Chemical Strategies To Target the V87A Mutation: R1
= Me. The ester derivative of I-BET762 was chosen as the
parent scaffold for efficient enolate generation and substitution
of the methylene side chain (R2, see later). Compound 14 was
prepared as previously described, with significant yield
improvement (55% overall) compared with those reported by
Chung et al. (22% overall) (Scheme 1).8 Chlorination of
protected acid 728 and N-acylation of the appropriate amino-
benzophenones 8 and 9, followed by Fmoc deprotection and
subsequent cyclization afforded 10 and 11 in excellent yields in
a four-step, one-pot sequence. Further thionation afforded
thioamide derivatives 12 and 13. Treatment of thioamides 12
and 13 with hydrazine monohydrate, followed by acetylation
and further cyclization in acidic conditions afforded triazoles 14
and 15 in high yield in a three-step, one-pot procedure. Starting
from benzophenone derivative 9 allowed us to ultimately
introduce the R1 methyl group (Figure 2C). While yields for
the condensation and thionation reactions were excellent, the
triazole formation toward 15 proceeded in only 38% yield,
much lower than in the case of 14. This reflects the lower yield
for the final cyclization (Scheme 1, step h), which only
proceeded under reflux conditions, along with significant
degradation. We attributed the latter to the steric demand

Scheme 1. Synthesis of 14 and Its Methylated Derivative 15a

aConditions: (a) SOCl2, CH2Cl2, reflux, 2.5 h; (b) benzophenone, CHCl3, reflux, 3 h; (c) Et3N, CHCl3, reflux, 16 h; (d) AcOH, 1,2-DCE, 60 °C, 3
h; (e) Lawesson’s reagent, toluene, reflux, 4 h; (f) hydrazine·H2O, THF, 0 °C, 5 h; (g) AcCl, Et3N, 0 °C to rt, 16 h; (h) AcOH, rt, 2 days (R = H) or
reflux, 3 h (R = Me).
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imposed by the R1 methyl group and the triazole methyl group
in the cyclization process.
Chemical Strategies To Target the L94 Mutations: R2

= Me. We envisaged that introduction of alkyl substituents on
the methylene side chain would be achievable through the
generation of the enolate of 14 followed by reaction with an
alkyl halide (Scheme 2). Among the various bases explored for
enolate generation, including LDA, NaH, and KHMDS, the
latter proved the most efficient and provided the cleanest
reaction and best yields. Treatment of (±)-14 with 1.2 equiv of
KHMDS at −78 °C, followed by addition of methyl iodide,
afforded a diastereomeric mixture of (±)-(1S,2S)-16 and
(±)-(1S,2R)-16 (Scheme 2A). The reaction provided
(±)-(1S,2S)-16 as the major alkylation product and proved
to be highly diastereoselective, for example, up to 25:1 with
MeI. Such selectivity was strongly dependent on the temper-
ature gradient, in certain cases down to 3:1. The structure of
the major diastereomer resulting from the alkylation of (±)-14
with MeI could be unambiguously assigned as (±)-(1S,2S)-16
on the basis of previous crystallographic studies.11 We refer to
the active stereomer (±)-(1S,2R)-16 as ME for clarity.11 The
reason for this observed diastereoselectivity is unclear. The
potassium countercation might provide conformational re-
striction to the (Z)-enolate in a six-membered ring transition
state via coordination to the sp2 nitrogen of the diazepine ring
(Scheme 2C). However, in such a transition state the observed
preference for the attack on the pro-S face is not evident simply
based on sterics, suggesting that other factors come into play.
Further mechanistic studies will be needed to address this
point. Nevertheless, when a high diastereomeric ratio did not
allow for the isolation of reasonable amounts of the desired
active (±)-(1S,2R)-16 diastereomer in pure form, the
diastereomeric mixture could be readily epimerized with
sodium methoxide under microwave irradiation to afford a
1:1 mixture of diastereomers, which could then be separated by
flash column chromatography.

Along with alkylation of the side chain, we observed minor
albeit observable alkylation of the ternary C1 carbon of the
diazepine ring, affording derivative (±)-17. This suggests that
the C1 position of (±)-14 is deprotonated, at least partially,
during addition of KHMDS at −78 °C. This is consistent with
the intense dark color observed following addition of KHMDS,
potentially reflecting the generation of a highly delocalized
anionic species. During their study of the memory of chirality in
related 1,4-benzodiazepin-2-one systems, the Carlier group
documented the installment of quaternary centers at C1 using
enolate alkylation chemistry.29−31 Notably, they also observed
superior results when using KHMDS as a base for enolate
generation. Due to the “privileged” status attributed to the 1,4-
benzodiazepin-2-one scaffold in drug discovery, this repre-
sented an important finding because it offered the first short
and robust route toward novel, conformationally restricted 1,4-
benzodiazepin-2-one analogues.29−31 We here show that
installment of a quaternary center at C1 on a triazolo-
benzodiazepine scaffold can indeed be achieved, although in
low yield. This can be particularly attractive if one wants to
develop structure−activity relationships of BET bromodomain
binders (e.g., 1−4) through double functionalization at C1. In
particular, this would represent a real advantage to the use of
quaternary amino acid precursors, which are sterically hindered
and likely to reduce the overall yield, in addition to being
expensive and providing a narrow scope for substitution.
Moreover, this would offer a late state divergent synthetic
strategy toward library analogues. However, the usefulness and
general applicability of such a strategy will be contingent on
more robust reaction conditions and improved yields. Further
optimization studies are ongoing in our laboratories in order to
tune the regioselectivity, reaction times, and yields of this key
reaction. Of note, the 1H NMR spectrum of (±)-17 showed
two species in a ca. 2:1 ratio. This is reflective of the slow
conformational equilibrium imposed by the steric demand at
C1, in line with Carlier’s results.29

Scheme 2. (A) Alkylation of (±)-14 Providing a Mixture of Diastereomers and Alkylation at C1, (B) Proposed Overall
Mechanism for the Observed Results, and (C) Proposed Transition State for the Enolate Alkylation
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Chemical Strategies To Target the W81 Mutations:
Derivatization of the Chlorophenyl Ring. We envisaged
that developing new synthetic routes toward the I-BET scaffold
would be of particular interest to gain rapid access to libraries of
analogues to address other mutational positions in the binding
pocket. Specifically, we next explored the possibility to access I-
BET762 analogues with diverse substitution patterns at the
level of the chlorophenyl ring (Figure 2C). While this should
be potentially achievable through previously reported routes
(Scheme 1), the early stage introduction of the chlorophenyl
ring makes this linear sequence very impractical for analogue
generation. We therefore considered that a new route allowing
the late stage introduction of the substituted phenyl moiety
would be valuable. We hypothesized that such analogues would
be obtained by Suzuki−Miyaura cross coupling of an imidoyl
chloride with an appropriate phenylboronic acid derivative32

(Scheme 3). A wide variety of phenylboronic acid derivatives
are commercially available, readily accessible, and affordable.
The imidoyl chloride would be obtained by chlorination of the
corresponding amide. The triazole moiety would in turn be
introduced from the corresponding amide, through a
thionation/condensation/cyclization sequence. The diamide
would be obtained through condensation of inexpensive 5-
methoxyisatoic anhydride33 and aspartic acid dimethyl ester.
The synthesis of our library of analogues is shown in Scheme

4. 2-Amino-5-methoxybenzoic acid 18 was converted to 5-
methoxyisatoic anhydride 19 in quantitative yield.33 Con-
densation of 19 with aspartic acid dimethylester afforded the
bicyclic precursor 20 in 42% yield. Selective thionation could be
achieved by treatment with Lawesson’s reagent in refluxing

pyridine, affording thioamide 21 in 48% yield. We envisaged
that a one-step procedure for the installment of the triazole
would be particularly convenient compared with the three-step
procedure employed previously (Scheme 1). A representative
set of conditions used for the installment of the triazole moiety
is shown in Table 1. Reaction outcome was assessed by NMR
of crude mixtures. Thioamide 21 was poorly soluble in a variety
of solvents but was soluble in refluxing pyridine. Treatment of
21 with 2.5 equiv of acethydrazide for 1 day at reflux led to the
formation of product 22, along with remaining unreacted 21
and significant formation of the exocyclized product arising
from condensation of the intermediate acylhydrazone with the

Scheme 3. Proposed retrosynthetic Analysis for the Functionalization of the Chlorophenyl Ring

Scheme 4. Racemic Synthesis of Analogues 24−28a

aConditions: (a) triphosgene, THF, rt, quant; (b) Asp-(OMe)2, pyridine, reflux, 24 h, 42%; (c) Lawesson’s reagent, pyridine, reflux, 1.25 h, 48%; (d)
AcNHNH2, Hg(OAc)2, THF/AcOH, rt, 24 h, 91%; (e) P(O)Cl3, N,N-dimethylaniline, 125 °C, 1 h, 39%; (f) ArB(OH)2, Et3N, Pd(PPh3)4, DMF,
100 °C, 27−31%.

Table 1. Representative Conditions for Triazole Formation
(Conversion of 21 to 22)a

entry conditions outcome

1 2.5 equiv of AcNHNH2, pyridine, reflux
∼1 d

mix. 21 (32%) + 22 (43%)
+ exocyclization (25%)

2 6 equiv of AcNHNH2, pyridine, reflux
∼1 d

mix. 21 (22%) + 22 (29%)
+ exocyclization (49%)

3 3 equiv of AcNHNH2, pyridine, rt, 1 d 21 insoluble
4 3 equiv of AcNHNH2, 1.5 equiv of

Hg(OAc)2, pyridine, rt, 1 d
acylhydrazone (>95%) + 22
(<5%)

5 3 equiv of AcNHNH2, 1.5 equiv of
Hg(OAc)2, MeCN, rt, 6 d

acylhydrazone (87%) + 22
(13%)

6 3 equiv of AcNHNH2, 1.5 equiv of
Hg(OAc)2, THF/AcOH, rt, 24 h

91% 22

aYields for entries 1−5 were determined based on NMR spectra of
crude samples. The yield for entry 6 is for the isolated, purified
material.
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side chain ester (Table 1, entry 1). Increasing the number of
equivalents of acethydrazide resulted in low formation of 22
and afforded the exocyclized byproduct as the major
component of the reaction (Table 1, entry 2). We envisaged
that exocyclization could be prevented by lowering the reaction
temperature. However, the reaction did not proceed due to the
poor solubility of 21 in pyridine at rt (Table 1, entry 3).
Despite its poor solubility, activation of the thioamide with
thiophilic mercury diacetate34 allowed for rapid and quantita-
tive consumption of 21 at rt and afforded the intermediate
acylhydrazone almost quantitatively along with trace amount of
product 22 (Table 1, entry 4). Switching the solvent to
acetonitrile led to similar results, even after reaction times up to
6 days (Table 1, entry 5). Pleasingly, changing the solvent to
THF/AcOH afforded the desired product 22 in 91% yield after
24 h reaction. Other methods involving chlorophosphate
reagents have been previously reported for the installment of
the triazole unit of JQ1, although in those cases the amide
derivatization step required cooling to −78 °C and the
subsequent cyclization step required heating up to 90 °C.7,35

Despite the toxicity of the mercury reagent, our one-step
procedure is particularly convenient because it is milder, lowers
the reaction time by ca. 3-fold compared with previously
reported routes, does not require intermediate workup, and
proceeds smoothly at rt (and even at 0 °C), while displaying
similar yields. Of note, this procedure could also be applied for
the conversion of 12 to 14 (Scheme 1) with a 91% yield. The
amide of 22 was subsequently converted to the corresponding
imidoyl chloride 23 in 39% yield. In particular 23 proved to be
moisture and nucleophile (e.g., MeOH) sensitive, which
translates into the only moderate yield obtained for its
formation. Finally, Suzuki−Miyaura cross-coupling of imidoyl
chloride 23 with a set of representative phenylboronic acids32

afforded the final substituted I-BET analogues 24−28. As a
control, coupling of 23 with 4-chlorophenylboronic acid
afforded the parent molecule 12, as compared by 1H NMR
with a reference sample. This synthetic route proved to be
robust and reasonably scalable, allowing preparation of imidoyl
chloride precursor 23 on a 2 mmol scale after five steps. Of
interest, no chromatographic step was required prior to
obtaining triazole 22. The poor solubility of 20 and 21 in a
variety of solvents allowed them to be isolated in pure form by
simple trituration and filtration. Of note, the synthetic routes
described here are purposely racemic in order to provide
maximum stereochemical diversity. However, nonracemizing

conditions should in theory be applicable to this route. In
particular, the use of chlorophosphate reagents instead of
Lawesson’s reagent or P2S5 for triazole formation has been
previously shown to significantly reduce epimerization at the
level of the ternary center (final dr 9:1).7,35

Biophysical Evaluation. In order to determine which
position and substitution combination would provide the best
selectivity profile, binding of I-BET762 and analogues 15,
(±)-(1S,2S)-16, ME, and 24−28 against WT and mutant
Brd2(1) and Brd2(2) proteins was assessed initially by
differential scanning fluorimetry (Table 2). Brd2(1) and
Brd2(2) were chosen as representatives of the first and second
bromodomains of BET proteins, respectively. Introduction of
methyl “bumps” at R1 and R3 (methoxyphenyl and
chlorophenyl rings, respectively, cpds 15 and 24−28) did not
provide noticeable thermal stabilization of the targeted Brd2
mutants compared with WT. In contrast, the methyl bump at
R2 in a 2-R configuration (ME) provided the first evidence of
selective stabilization in our engineered system.11 Compound
ME induced ΔTm of 5.7 and 9.6 °C on Brd2(1)L110I and
Brd2(2)L383I, respectively, while stabilizing the WT proteins by
only 3.2 and 5.6 °C. This selective thermal stabilization was
even more pronounced in the case of the L/A mutations, with
ΔTm of 7.9 and 9.3 °C against Brd2(1)L110A and Brd2(2)L383A,
respectively. This selectivity profile was validated by measuring
dissociation constants (Kd) using ITC (Table 3). ME was

highly potent against both leucine mutants, displaying Kd’s of
17 and 22 nM against Brd2(1)L110A and Brd2(2)L383A and Kd’s
of 260 and 27 nM against Brd2(1)L110I and Brd2(2)L383I,
respectively. Crucially,ME showed between 11-fold and 86-fold
weaker affinities to WT compared with the leucine mutant
proteins. As we anticipated, the diastereoisomer (±)-(1S,2S)-

Table 2. “Methyl Scan”a

bromodomain protein I-BET762 (1) 15 16b MEc 24 25 26 27 28

Brd2(1) 5.4 ± 0.5 0.7 ± 0.2 −0.3 ± 0.2 3.2 ± 0.2 6.3 ± 0.1 1.5 ± 0.2 1.8 ± 0.2 1.2 ± 0.2 6.8 ± 0.6
Brd2(1)V103A 0.1 ± 0.6 0.5 ± 0.3
Brd2(1)L110I 6.7 ± 0.4 0.0 ± 0.5 5.7 ± 0.7
Brd2(1)L110A 3.1 ± 0.4 1.6 ± 0.2 7.9 ± 0.2
Brd2(1)W097F 0.4 ± 0.2 1.4 ± 0.2 −0.1 ± 0.2 0.1 ± 0.2 0.0 ± 0.2 1.9 ± 0.5
Brd2(1)W097H 0.7 ± 0.2 0.9 ± 0.3 0.2 ± 0.2 −0.4 ± 0.3 −0.4 ± 0.2 0.6 ± 0.3
Brd2(2) 8.3 ± 0.3 4.0 ± 0.1 0.2 ± 0.2 5.6 ± 0.1 6.6 ± 0.2 3.2 ± 0.1 3.5 ± 0.1 2.5 ± 0.2 7.7 ± 0.2
Brd2(2)V376A 1.1 ± 0.0 1.2 ± 0.1
Brd2(2)L383I 9.3 ± 0.3 0.3 ± 0.2 9.6 ± 0.1
Brd2(2)L383A 6.4 ± 0.2 0.8 ± 0.6 9.3 ± 0.2
Brd2(2)W370F 2.1 ± 0.0 2.8 ± 0.1 1.5 ± 0.0 0.6 ± 0.1 0.3 ± 0.0 5.2 ± 0.1
Brd2(2)W370H 1.7 ± 0.2 1.1 ± 0.2 1.0 ± 0.3 −0.1 ± 0.1 −0.4 ± 0.2 2.7 ± 0.4

aThermal stabilization (°C) of wild-type and mutant Brd2 bromodomains by I-BET derivatives 15, 16, 24−28, as assessed by DSF. b(±)-(1S,2S)-16.
c(±)-(1S,2R)-16 (ME).

Table 3. Affinities (Kd’s) and Binding Enthalpies (ΔH)
Obtained by ITC for ME against Wild-Type and L/A and L/
I Mutant Brd2 Bromodomains at 25 °C

bromodomain protein Kd (nM) ΔH (kcal/mol)

Brd2(1) 1470 ± 180 −8.6 ± 0.2
Brd2(1)L110I 260 ± 40 −8.5 ± 0.1
Brd2(1)L110A 17 ± 4 −16.8 ± 0.2
Brd2(2) 300 ± 80 −5.4 ± 0.1
Brd2(2)L383I 27 ± 12 −9.8 ± 0.1
Brd2(2)L383A 22 ± 4 −12.6 ± 0.1
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16 did not induce a significant stabilization of mutant or WT
proteins (Table 2).
Synthetic optimization ofME led to the highly potent and L/

A mutant selective compound ET (6) (Figure 1C), data that
we have reported elsewhere.11 A complete binding selectivity
profiling by DSF and ITC against all eight WT BET
bromodomains and their L/A mutant counterparts showed
that ET binds up to 540-fold more strongly and not less than
30-fold (average 160-fold) to L/A mutants compared with WT
proteins, therefore validating our design strategy.11 Importantly,
selective targeting of engineered L/A mutants could be
achieved in a cellular context, as demonstrated using a
fluorescence recovery after photobleaching assay.11

While indole derivative 28 could only induce moderate
stabilization of W/F and W/H mutants, we noted that 28
greatly stabilized WT Brd2(1) and Brd2(2) (Table 2). We
therefore decided to further characterize 28 and determined its
binding affinity to Brd2(1) and Brd2(2) by ITC (Table 4).

Compound 28 exhibited Kd’s of 800 and 40 nM against
Brd2(1) and Brd2(2), respectively, corresponding to ca. 20-fold
selectivity for the second over the first bromodomain. The
same trend in selectivity was observed with the two
bromodomains of Brd4 (Table 4). This selectivity of 28 for
the second BET bromodomain could result at least in part from
amino acid changes in the BC loop flanking the inhibitor
binding site. In particular, an aspartate residue in the BC loop
(Asp160 in Brd2(1)) is conserved among all first BET
bromodomains and conservatively replaced by a histidine
residue in the second BET bromodomains (His433 in Brd2(2),
highlighted in Figure S1). To test this hypothesis, we solved the
X-ray crystal structures of Brd2(2)W370F in its apo form and
with both 28 and the parent I-BET762 (1) bound (Figure 3,
see Table S2 for X-ray crystallographic data collection and
refinement statistics and Figure S2 for electron density map
around the bound ligands). The binding modes of 28 and 1 to
Brd2(2)W370F were found to be identical, with all atoms of the
triazolo-benzodiazepine scaffold superposing very well, and the
aromatic indole ring of 28 being almost coplanar with the para-
chloro-phenyl ring of 1 (Figure 3A). The observed binding
mode recapitulates that of I-BET762/JQ1 bound to WT BET
bromodomains, suggesting that it is not altered by the W/F
mutation (Figure 3B). Importantly, the side chain of His433
switches from an “open” conformation observed in the crystal
structure of Brd2(2)W370F with 1 bound, pointing away from
the ligand, to a “closed” conformation when 28 is bound to
form an edge-to-face π stacking with the indole ring of 28
(Figure 3A). Both these “open” and “closed” histidine side
chain conformers are observed in other crystal structures of
wild-type C-terminal BET bromodomain, as in Brd2 (PDB
codes 2E3K and 5BT5) and Brd3 (His395, PDB codes 2OO1

and 3S92). His433 in Brd2(2) is substituted by Asp160 in
Brd2(1) (Figure 3B), which cannot engage in such an
interaction in a closed conformation, potentially explaining
the decreased potency of 28 against Brd2(1). Discrimination
between first and second bromodomains of BET protein has
been observed to varying degrees with small molecules RVX-
208 (5),10 MS436,36 and olinone37 (Table 4), none of which
are based on the triazolo-benzodiazepine scaffold. For example,
RVX-208 (5) displayed up to 23-fold selectivity for Brd2(2)
(Kd ca. 250 nM) compared with Brd2(1) (Kd ca. 5800 nM),
which could also be explained by the flexibility of His433.38 Our
data highlight that such isoform selectivity can be achieved with
the I-BET762/JQ1 scaffold via careful substitution of the parent
chlorophenyl ring. This adds a useful isoform selectivity
criterion that can be exploited for the design of next generation
triazolo-benzodiazepine probes targeting BET proteins.

Table 4. Binding Affinities (Kd’s, nM) of 28 Measured by
ITC against Wild-Type First and Second Bromodomains of
Brd2 and Brd4 and Compared with the Kd’s Reported for I-
BET762 (1),11 RVX-208 (5),10,38 MS436,36 and Olinone37

bromodomain
protein

I-BET762
(1)11 28

RVX-208
(5)10,38 MS43636 olinone37

Brd2(1) 230 780 5800/16900 8600
Brd2(2) 100 45 250/206 >300000
Brd4(1) 95 520 1100/8930 85 3400
Brd4(2) 65 50 140/303 340 >300000

Figure 3. (A) Co-crystal structure of Brd2(2)W370F (transparent
surface representation) in complex with 28 (PDB code 5DFD, stick
representation, orange carbons) superimposed with the cocrystal
structure of Brd2(2)W370F in complex with I-BET762 (1) (PDB code
5DFC, stick representation, yellow carbons). The side chain of His433
switches from an “open” conformation when bound to 1 to a “closed”
conformation when bound to 28, engaging in an edge-to-face
interaction with 28. (B) Co-crystal structure of Brd2(2)W370F in
complex with 28 (PDB code 5DFD, stick representation, orange
carbons) superimposed with the cocrystal structure of Brd2(1)
(transparent surface representation) in complex with I-BET762 (1)
(PDB code 2YEK,8 stick representation, pink carbons). All structures
show a conserved scaffold binding mode in the K(Ac) pocket.
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■ CONCLUSIONS

Here, we have described novel synthetic analogues of the
triazolo-aryldiazepine-based bromodomain inhibitor I-BET762.
We were able to introduce substitutions at the level of the
methoxyphenyl ring, the ternary carbon center, the side chain
methylene, and the chlorophenyl moiety. The design and
development of the analogue series was aimed at targeting a
number of specific BET bromodomain mutants with high
selectivity compared with wild-type via a bump-and-hole
approach. Among the “bumped” compounds reported, ME
and ET achieved the highest selectivity levels targeting
mutations at the Leu94 position.11 Several interesting
chemistries were developed in the process that will potentially
see useful applications. For example, we showed that alkylation
at the ternary center and the side chain methylene could be
achieved, and that a high level of stereocontrol could be
achieved during enolate alkylation. We also developed a new
route allowing late stage diversity introduction at the level of
the chlorophenyl ring. An indole analogue (28) was highly
potent and displayed a marked BD2 selectivity profile by
exploiting the aspartate/histidine substitution in the bromodo-
main BC loop. Taken together, we anticipate that our findings
should be of broad interest, not only to other researchers
working in the field of epigenetics and bromodomain inhibition
but also to medicinal chemists focusing on related benzodia-
zepine systems.
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