
The importance of genetic factors in psychiatric 
disorders
Mental illness continues to incur negative attitudes, often 
characterized by fear, stigma and rejection, but the idea 
that it reflects a ‘weakness of character’ that can be over
come by sheer willpower is increasingly losing ground 
[1]. Most people now understand that psychiatric dis
orders are caused by a sick organ, just like heart disease, 
although in this case the organ happens to be the most 
complex organ we possess, the brain.

Appreciation of the importance of biological factors in 
psychiatric disorders has been strongly reinforced by 

evidence from twin and family studies that genetic 
variation between individuals has a key role in the risk 
for these disorders. Heritability estimates for cognitive 
disorders, such as schizophrenia, attention deficit 
hyperactivity disorder (ADHD) and autism, range from 
50% to 80% [26]. For affective disorders, such as major 
depres sion, anxiety disorders and substance abuse, 
estimates range from 40% to 65% [3,7,8]. However, pin
pointing the actual genetic variants responsible for this 
heritability has proven difficult. The most successful 
genefinding approach, genomewide association 
(GWA), has uncovered many genetic variants for 
conditions such as diabetes [9], Crohn’s disease [10] and 
atherosclerotic risk [11,12], but this method has, as yet, 
not been as successful for psychiatric disorders [13]. For 
schizo phrenia and autism only a handful of genetic 
variants have been identified [1416], and there are 
currently no confirmed genetic variants associated with 
ADHD and depression.
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Can endophenotypes help us to find genetic 
variants that influence psychiatric disease?

The difficulty in identifying actual genetic variants 
probably relates to the complexity of psychiatric pheno
types, which in turn reflects the complexity of the brain 
processes that underlie them. To reduce this complexity 
it has been proposed to focus genetic studies on socalled 
brain endophenotypes [2,1719]. The basic reasoning is 
that it may be easier to detect the effect of a genetic 
variant on a more elementary neurobiological trait 
because there may be fewer genetic variants with larger 
effect sizes involved in these traits. An important source 
of brain endophenotypes is electroencephalography 
(EEG). An EEG signal is recorded noninvasively from 
electrodes placed on the scalp and depicts the ongoing 
electrical activity of the brain. An eventrelated potential 
(ERP) is the brain’s electrical response to the occurrence 
of a specific event. The event is usually a stimulus  a 
word or picture presented on a display  but it can also be 
generated internally, for instance by the intention to 
move a limb. An example of an ERP is the P3, a positive 
wave that occurs about 300 ms after a motivationally 
significant stimulus. The P3 reflects the activity of the 
locuscoeruleusnorepinephrine system [20], which 
facilitates the behavioral and cognitive responses to 
motivationally significant events, and it may be the 
central nervous system component of the fightflight 
response [21].

Can EEG and ERP endophenotypes help identify and 
confirm novel genetic risk factors for psychiatric disease? 
To do so they must, first of all, be predictive of psychiatric 
disorders. There is a huge corpus of literature on the use 
of EEG or ERP endophenotypes as risk markers for 
psychiatric disorder. It is impossible to review this corpus 
in a few words here, but two examples may serve to 
illustrate it. First, frontal asymmetry of EEG α power (FA) 
has been studied extensively as a correlate of individual 
differences in emotional response. Greater left hemi
spheric activity has been associated with a tendency to 
approach things of interest, and greater right hemi
spheric activity with withdrawalrelated tendencies 
[22,23]. Disturbances in the emotional dimension of 
approach versus withdrawal have a key role in the liability 
to develop psychopathology such as depression and 
anxiety disorders [24,25], with which the FA has indeed 
been found to be associated [2,26,27]. Second, reduced 
amplitude of the P3 is found in a variety of psychiatric 
and behavioral disorders, but most notably schizophrenia 
[28] and alcohol abuse [29]. The reduction in P3 
amplitude reflects a genetic predisposition for these 
disorders rather than a mere functional consequence, 
because it does not normalize after successful treatment 
[28] and is also found in unaffected relatives [29]. The 
latter point is important. To tag a relevant part of the 

pathway from genetic variation to psychiatric disorder, 
the endophenotypes must be heritable traits and their 
heritability must arise partly from the genetic variants 
that also influence the psychiatric disorder [17].

In the Netherlands Twin Register, we have estimated 
the heritability of a variety of EEG and ERP endo
phenotypes, and similar work has been undertaken by 
colleagues from twin registries around the world [3043]; 
Table 1 illustrates the findings from these studies. A 
striking genetic contribution is found to almost all EEG 
and ERP traits. Resting EEG power is even among the 
most heritable traits in humans. This high heritability 
does not simply reflect ‘trivial’ heritable similarities in the 
composition of the skull or other tissue layers between 
electrode and brain. Almost identical heritability 

Table 1. Heritability estimates for EEG/ERP traits*

 Heritability 
EEG/ERP trait estimates References

Power α band 86-96% [30-32]

Power θ band 80-90% [30,32]

Power β band 70-82% [30,32]

Peak frequency α band 71-83% [33,34] 

Path length α band 48-68% [31]

Cluster coefficient β band 25-40% [31]

Path length β band 29-42% [31]

Cluster coefficient α band 37-45% [31]

Long range temporal correlations α band 47% [35]

Long range temporal correlations β band 42% [35]

Frontal EEG asymmetry α band  1-37% [36]

P50 amplitude attenuation  34% [47]

N1 amplitude attenuation  45% [47]

P2 amplitude attenuation  54% [47]

Mismatch negativity 58% [37]

Posterior N1 amplitude  50% [38]

Posterior N1 latency 45% [38]

Anterior N1 amplitude 22% [38]

Anterior N1 latency 43% [38]

Go/Nogo difference N2 amplitude 53% [39]

Error positivity 52% [40]

Error-related negativity 47% [40]

P3 amplitude  50-80% [37,41,42] 

P3 latency  38-50% [37,41,42]

Onset lateralized readiness potential 54-62% [43] 

Peak lateralized readiness potential latency 38-45% [43] 

*Data are from studies comparing the resemblance in monozygotic twins 
with that in dizygotic twins. If a measure was available at multiple electrodes, 
the electrodes with highest amplitude were selected. A range of heritabilities 
reflects either the variation in estimates across multiple studies or across 
multiple age groups within a single study.
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estimates are obtained when power is computed in 
signals from magnetoencephalography, which are almost 
undistorted by tissues covering the brain [44,45].

To return to the question of whether these heritable 
EEG and ERP endophenotypes can help to identify and 
confirm novel genetic risk factors for psychiatric 
disorders: GWA has been the most successful method for 
detecting novel potential genetic variants for complex 
traits. However, it has a limited ability to detect common 
variants with very small effect sizes and also rare variants 
with very low allele frequencies. Both limitations can be 
tackled by increasing the size of the (pooled) samples, 
although the second also needs increased depth of 
coverage of genomic variation, perhaps even by full 
sequen cing. Unfortunately, the clear need for very large 
sample sizes in GWA studies strongly limits the useful
ness of EEG/ERP measurements in the gene discovery 
phase. EEG/ERP measurements require controlled 
laboratory experiments with sophisticated and rather 
expensive equipment. They take up to at least 20 to 
30  minutes and this may increase up to hours if error 
measurement is to be contained using the more complex 
derived measures [31]. Measuring EEG/ERP, in short, is 
too hard to do on the tens of thousands of subjects 
needed in a GWA, particularly when contrasted with the 
use of existing patient records or questionnairebased 
assessment of psychiatric symptoms.

Endophenotypes can help us make sense of 
genetic variants influencing psychiatric disorders
The real value of brain endophenotypes may come after 
gene finding, when they help us confirm the biological 
meaning of the genetic variants that were detected using 
GWA on psychiatric symptoms and diagnoses. One of 
the lessons of successful GWA studies in other fields is 
that they point us to genetic pathways that were not 
previously known to be involved in the trait. Finding 
genetic variants for psychiatric symptoms and diagnoses 
needs, therefore, to be followed up by an understanding 
of what these ‘psychiatric’ genes do in the brain. Testing 
the association of the risk alleles with EEG and ERP 
endophenotypes can help us understand where in the 
brain, in which stage, and during what type of 
information processing the genetic variant has a role. 
Such testing can be done in more modest samples, which 
are more feasible for EEG research.

Could EEG and ERP endophenotypes be more widely 
applied, apart from helping us to understand how genetic 
variants cause psychiatric risk? The main system for 
classifying psychiatric disorders is the Diagnostic and 
Statistical Manual of Mental Disorders (DSMV). This 
system is based on a tally of symptoms and their impact 
on daily functioning reported by patients or their 
caregivers. The DSM currently is undergoing substantial 

revision [46], and a question that repeatedly surfaces is 
whether we can use the combination of genetic risk 
scores and brain endophenotypes to better classify psy
chiatric disorders. Progress in research on the genetics of 
brain endophenotypes may be key to the successful 
development of such a classification system. This system 
would base our diagnostic procedures more solidly on 
biology and reinforce the notion that psychiatric 
disorders are disorders of the brain.
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