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Abstract: A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed
for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload
resistance capacity. The design, fabrication, and test of the sensor are presented in this paper.
By analyzing the stress distribution of sensitive elements using the finite element method, a novel
structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed
structure proved to be advantageous in terms of high sensitivity and high overload resistance
compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of
surface stress and deflection based on ANSYS simulation results are performed to establish the sensor
equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to
a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics
are tested and discussed. Experimental results show that the sensor has a sensitivity as high as
17.339 µV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of
200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring
micro-pressure lower than 500 Pa.
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1. Introduction

Most equipment requires the use of sensor technology to monitor its working status in terms
of collecting spindle vibration, cutting force, working temperatures [1–5], etc. In particular, with the
development of aviation engineering technology a number of piezoresistive pressure sensors are
desired for micro-pressure measurements [6–9].

In the field of aviation, the altitude location of a vehicle can be determined through the
measurement of pressure, due to the relationship between pressure and height. Therefore, high
sensitivity is the most important factor for any employed pressure sensor to ensure the accuracy of
orbital correction of a vehicle in the upper air. Besides, high overload resistance is also needed in case
of complicated and severe weather conditions. Apparently, a pressure sensor with high sensitivity and
strong anti-overload ability is necessary for the rapid development of the aviation field.

Since the first silicon piezoresistive pressure sensor was developed in 1962 [10], MEMS pressure
sensors have been widely used in various industries, stimulated by the advantages offered by bulk
and surface micromachining techniques, low power consumption and miniaturization. Because of
its excellent linearity and fine sensitivity as well as simple and direct signal transduction mechanism
between the mechanical and the electrical domains, the pressure sensor based on MEMS has satisfied
the demand of the aviation field.
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There have been diverse configurations since the piezoresistive pressure sensor was put into wide
use. The pressure sensor’s performance was improved by eliminating the bonding and replacing the
metal diaphragm with single crystal silicon for the first time [10]. The performances were further
improved by using piezoresistive pressure sensors. Then Kurtz et al. [11] developed a micro-pressure
sensor based on the bossed diaphragm structure featuring relatively better sensitivity and linearity.
After the 1980s, continued improvements in sensing configuration design led to further reductions
in size, increases sensitivity, higher yield, and better performance. Shimazoe and Matsuoka [12]
developed a sensor with a center boss on the diaphragm and an annular groove formed on the back
surface of the diaphragm. Although the accuracy of the sensor was 0.17% full scale (FS), the variation of
stress distribution was evident, and thus the high precision placement of piezoresistors was demanded
to ensure the piezoresistors were in the appropriate locations. Moreover, the sensor was unfavorable
to miniaturization and batch production. Bao et al. [13] proposed a beam-diaphragm structure by
introducing beams on the flat membrane of twin isles structure and forming a shape like a dumbbell.
The sensitivity was 0.699 µV/V/Pa, slightly lower for the operating range of 1 kPa, although the
overload resistance was enhanced to 140 times overpressure and the nonlinearity of 0.25% FS was
satisfactory. Johnson et al. [14] reported a novel ribbed and bossed structure. The incorporation of
ribs into the diaphragm for stress concentration proved effective in enhancing the sensitivity and
reducing deflection. Additionally, the introduction of a self-aligning rim facilitated manufacture.
However, the overload resistance was not high enough for the field of aviation due to its thin
bosses. Tian et al. [1] designed a beam-membrane structure through etching the cross beam on the flat
diaphragm and the stiffness was increased, resulting in a satisfactory linearity (the nonlinearity was
0.09% FS) for measurements of 5 kPa. Nevertheless, the overload resistance as well as the sensitivity of
1.549 µV/V/Pa was relatively low for use in the aviation field. With a high sensitivity micro-pressure
sensor, the altitude of even one stair can be sensed [6]. To detect altitude variations of less than 100 m,
the target pressure range is set as 500 Pa, and both the high sensitivity and a high overload capacity
beyond 200 times measurement are required. Simultaneously, a feasible fabrication process is also
expected for mass production. Unfortunately, most of the sensors mentioned above are not able to
fully meet all these requirements.

Now that the structures discussed above are not satisfactory for micro-pressure measurements,
a novel beams-membrane-dual-island structure originated from the bossed diaphragm is put forward.
By incorporating beams into the diaphragm, stresses are expected to be concentrated. In addition,
high overload resistance is anticipated due to the existence of islands to limit the displacement. As the
silicon bulk micromachining is utilized to realize the proposed sensor, high yield and low cost can be
expected. To verify the scheme, a finite element method (FEM) model, nonlinear optimization, and
experiments are implemented.

2. Experimental Section

2.1. Structural Design

To protect the silicon structure from being fragmentized under the atmosphere pressure, 200 times
higher than the operating range, a bossed diaphragm is adopted as shown in Figure 1. With the
support of mass, the membrane could withstand the high overload of 200 times overpressure without
being broken. What’s more, the introduction of mass improves the stiffness of the structure, which
results in an acceptable linearity. Simultaneously, the improvement of the stiffness sacrifices the
effective stress which determines sensitivity. To satisfy the demands for high sensitivity and overload
resistance, a novel structure based on bulk silicon process is constructed as shown in Figure 2, where
L is the effective width of the membrane, I is the top width of the island, D is the distance between
two islands, t is the distance between an island and the side of the membrane, and W is the beam’s
width, respectively. H and B are the thicknesses of the membrane and beams, respectively. In this
figure, one of the piezoresistors arranged on the beams is enlarged. Besides, the bonding glass on
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the backside can be observed clearly from the cross-sectional view. In the configuration, two islands
are connected by three beams located on the membrane. The dorsal cavity provides the space for
deformation. The structure is designed for 500 Pa micro-pressure measurements.
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2.2. Structural Analysis

The ranges of all the variables listed in Table 1 are constrained by the level of processing technology,
certain scopes, actual demands and reliability. To obtain the optimal dimensions of the sensor structure,
the optimization model is constructed [15]:

maxpσeqvq (1)

ωmax ď 0.2H (2)

σoverload ď
σb
n

(3)

σb ď 7GPa (4)

where σeqv, ωmax, σoverload, σb and n are the maximum Mises stress, maximum deflection, maximum
overload pressure (100 kPa), ultimate strength of ingle crystal silicon, and safety factor (n = 11).
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Table 1. The parameters of the proposed sensor chip.

Parameter B H I L W t

Dimension (µm) 20–50 20–30 1500–1600 5400–5700 200–500 150–500

To determine the structural dimensions, the relationship between single structure dimensions and
the maximum von Mises stress has been researched. The influences of structure dimension variables
on the maximum von Mises stress σeqv are plotted in Figure 3. Descriptions of the dimension of the
proposed structure are as follows: it is obvious that membrane thickness H has a great effect on the
maximum von Mises stress. The beam thickness B and the beam width W are secondary. On the
other hand, when the membrane width L is determined, island width I and beam length t also affect
the maximum von Mises stress. On account of the locations where the four resistors are arranged,
determination of both variables should refer to the stress distribution of the structure. The uniformity
of the distribution needs to be taken into consideration as well as the maximum von Mises stress.
As Figure 4 shows, the two situations are supposed to be avoided. The relationship between beam
length t and the maximum von Mises stress is extremely similar to that of island width I, and the
influence of beam length t on maximum von Mises stress is small, and can be ignored.
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According to the influences of the structural dimension variables on the maximum von Mises
stress and the optimization model, the dimensions of the proposed structure are finally determined.
The overall dimensions of the sensor die are 7000 µm ˆ 7000 µm, with a 20 µm thickness membrane,
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a 1500 µm width island, two 25 µm thickness and 980 µm width beams, and another 750 µm width
beam to connect two islands in the middle.

The numerical simulation program ANSYS is employed to evaluate the performance of the
proposed structure with the above dimensions. The concentration is taken to the distribution of
von Mises stress and the stress path along x-axis from center to edge, which influences the location of
resistors and the sensitivity respectively. As Figure 5 shows, the stress concentration appears in the
red regions, where the resistors should be placed. Furthermore, the nonlinear regions of stress can be
found at the edges of beams, where the piezoresistors should not be located.
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To compare the proposed structure with the C-type structure and E-type structure, which have
been widely applied in various fields for measuring the micro-pressure of gas or water [1,2,15–17], all
of them were simulated and the corresponding performances are plotted in Figure 6. Apparently, the
proposed structure presents the highest sensitivity for the same dimensions. Furthermore, the stiffness
is increased as a result of the introduction of beams and islands, so deflection is decreased and better
linearity can be expected.
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In order to theoretically estimate the specific value of the sensitivity of the new structure, the
output voltage equation is given (take the resistor oriented in <110> direction on a (100) n-type silicon
wafer) [18,19]:

Uoppq «
1
2

π44pσx ´ σyqUi (5)

where Uo(p) and Ui are the output and the input voltages, π44 is the shearing pirezoresistance coefficient,
p is the applied pressure, and σx and σy are the longitudinal and transversal surface stresses at the
central point of the resistor as labeled in Figure 5.

Consideration is given to temperature features as well as sensitivity, and the ion implantation
concentration is set as 3 ˆ 1014 cm´3 less than 1 ˆ 1017 cm´3, so π44 can be set as 138 ˆ 10´7 cm2/N.
Furthermore, the difference between σx and σy has been calculated by ANSYS ranging from applied
pressure p, so output voltage Uo(p) is derived from Equation (5):

Uoppq « 0.414ˆ 10´5pσx ´ σyq500Pa (6)

where the sensitivity of 0.016 mV/V/Pa can be deduced.

2.3. Fabrication

The microchip adopted in this sensor is fabricated based on the bulk micromachining of a standard
double side polished n-type (100) silicon wafer, whose thickness is 380 µm, and p-type piezoresistors
are doped. P-type doping is adopted for two reasons: first, the piezoresistive coefficient of single
crystal silicon is determined by the crystal orientations and doping types. To achieve the highest
sensitivity on a (100) silicon layer, p-type resistors can be arranged at the edge of beams along with
<110> direction, while n-type resistors have to be rotated 45˝ [20]. Second, heavily doped p+-Si is less
influenced by temperature than heavily doped n+-Si.

The detailed fabrication stepsare illustrated in Figure 7. Photolithography is employed and
a total of six masks are need, five for the sensing element and one for the metal layer on the glass
wafer [21]. (a) At first, SiO2 layers are grown on both sides of the substrate by thermal oxidation;
(b) then, the inductively coupled plasma (ICP) techniqueis used to etch the damping gap on the
front side of the silicon wafer after which implantation of boron is carried out with a concentration
of 3 ˆ 1014 cm´3 approximately forming a sheet resistance of 100 Ω; (c) heavy boron ion diffusion
follows to create the connection between Al and the piezoresistors; (d) after, the passivation layers of
Si3N4 and SiO2 are deposited and patterned by low pressure chemical vapor deposition (LPCVD) and
plasma enhanced chemical vapor deposition; (e) Then contacts are created through photo patterning
and etching technology on the front side utilizing reactive ion etching. The annealing technology
should be executed at 1100 ˝C for 30 min under nitrogen in order to activate the boron ion electrically
and make the dopant uniform. To connect resistors and wire through the formation of bonding
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pads, a metallization process is performed to sputter Al. Furthermore, a sintering process is involved
to strengthen the ohmic contacts between Al wires and piezoresistors; (f) then to create a cavity
and simultaneously avoid forming a bevel generated by KOH etching which is unfavourable for
miniaturization, inductively coupled plasma etching is used on the back side of the wafer after
patterning; (g) finally, the back side of the wafer is attached to Pyrex 7740 glass, with an anti-adsorption
electrode made of Cr sputtered on the glass, by anodic bonding process. A microphotograph of the
finished sensor chip is shown in Figure 8.
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2.4. Package and Measurement

The sensor is simply packaged for characterization as shown in Figure 9. The whole sensor chip
is adhered to a stainless steel shell. The electrical connections between the pads in sensor chip and
gold-filled copper pins are realized by gold wires. The static experimental setup is established as shown
in Figure 10 and the static performance of the developed sensor is tested. The tested sensor is mounted
into the outer tube connected to a compressor and pressure monitor through the rigid transfer frame.
The compressor is used to control the pressure applied on the sensor chip, simultaneously monitored
by the pressure meter to calibrate the tested sensor, whose Wheatstone bridge is excited with a 3 V DC
power supply. The dynamic characteristics of the proposed sensor are tested with a set of calibration
systems shown in Figure 11. A stable centrifugal machine is used for acceleration calibration along the
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normal direction of the membrane of the sensor. The natural frequency is calibrated though fixing the
tested sensor and a reference sensor on the mechanical shaker. A peak concerning the voltage ratio
will be generated when a sine sweep frequency passes through.
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3. Results and Discussion

3.1. Experimental Results

Figure 12 shows the unamplified output voltage versus the pressure at room temperature.
Meanwhile, the linear simulation result is depicted for comparison. The measured sensitivity of
the tested sensor is 17.339 µV/V/Pa with a maximum non-linearity of 2.556%FS. The time-drift and
temperature-drift of the proposed sensor are respectively measured within the temperature range from
0 ˝C to 50 ˝C with a 10 ˝C interval and for 60 min. Figure 13 shows outputs versus temperature and time.
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The static characteristics are calculated on the basis of least square fitting results and listed in
Table 2, demonstrating agreement between the full scale output voltage of actual measurement and
the ANSYS calculated one with a deviation of 5.9%.

Table 2. Static performance of the proposed sensor.

Parameter Value

Temperature (˝C) 20
Supply voltage (V) 3

Zero point offset (mV) 4.196
Full scale span (mV) 23.781

Sensitivity (µV/V/Pa) 17.339
Nonlinearity (%FS) 2.556

Hysteresis (%FS) 0.514
Repeatability (%FS) 0.759

Accuracy (%FS) 2.715

3.2. Discussion

The proposed sensor demonstrates the capability of high overload of 200 times overpressure
and measurement with high sensitivity of 17.339 µV/V/Pa as Table 3 shows. The sensitivity in this
work is more than nine times that reported in [1] and the overload resistance is enhanced by nearly
5%. In contrast with the sensors established in [2], which feature a high sensitivity of 12 µV/V/Pa,
the sensitivity of the proposed sensors 1.44 times that, and the overload resistance is 8.65 times
higher. Additionally, as bulk silicon micromachining technology has been utilized, low cost and mass
production have been achieved, unlike [2] where SOI has been used to produce ultrathin film to
provide high sensitivity.

Table 3. Comparison with other pressure sensors.

Sensor Sensitivity (µV/V/Pa) Overload Resistance (kPa)

Proposed sensor 17.339 100
Sensor in [1] 1.549 95
Sensor in [2] 12 10.36

Sensor in [13] 0.699 97.86
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Apparently, there is a deviation of 5.9% between the simulated and experimental results.
The reason mainly lies in the calibration apparatus available in the laboratory, which features a precision
of 42 Pa in 500 Pa pressure ranges equal to 8.4% FS. Due to the limited calibration accuracy, the
precisions of the testing sensor and the equipment are of the same order. A ware of the finite accuracy,
careful calibration of five pressure cycles has been done, which makes a small contribution to reducing
the measurement errors. Besides, the residual stresses on Si3N4 and SiO2 passivation layers may also
contribute to the relatively poor accuracy.

Zero-offset voltage is closely related to time and temperature as shown in Figure 13, which results
from the different temperature coefficients of the four piezoresistors in the Wheatstone bridge due
to the inconsistent dopant concentration of the resistors involved in the fabrication process step (b).
The change of zero-offset voltage over time within 60 min is 0.38 mV (0.016% FS), although the zero
point offset is slightly large, which relates to the precision of ICP technique involved in the fabrication
process (b) as well as additional piezoresistive effect created by thermal stress produced during the
packaging. The temperature coefficient of the offset output (TCO) of the proposed sensor can be
calculated as 0.00135/˝C within the temperature range from 0 ˝C to 50 ˝C with a 10 ˝C interval and
60 min stability time.

4. Conclusions

This work demonstrates a highly sensitive and overloading pressure sensor with
a beam-membrane-dual-island structure. To verify the feasibility of the scheme, a prototype has been
simulated, optimized, and fabricated. Test results reveal the effectiveness of the proposed structure
to improve the sensitivity and the capability of bearing overload. Namely, the sensor features high
sensitivity and overload capacity, and is promising for applications in the aviation field. Future work
will be devoted to further studying the static performance of this device by improving the experimental
conditions and the fabrication precision.
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