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The tropical disease malaria, which results in more than one million deaths annually, is caused by protozoan parasites of the genus
Plasmodium and transmitted by blood-feeding Anopheline mosquitoes. Parasite transition from the human host to the mosquito
vector is mediated by gametocytes, sexual stages that are formed in human erythrocytes, which therefore play a crucial part in
the spread of the tropical disease. The uptake by the blood-feeding mosquito triggers important molecular and cellular changes
in the gametocytes, thus mediating the rapid adjustment of the parasite from the warm-blooded host to the insect host and
subsequently initiating reproduction. The contact with midgut factors triggers gametocyte activation and results in their egress
from the enveloping erythrocyte, which then leads to gamete formation and fertilization. This review summarizes recent findings
on the role of gametocytes during transmission to the mosquito and particularly focuses on the molecular mechanisms underlying
gametocyte activation and emergence from the host erythrocyte during gametogenesis.

1. Introduction

With an annual death toll of more than one million
people, the tropical disease malaria is considered one of
the most significant infectious diseases worldwide. Malaria
is caused by protozoan parasites of the genus Plasmodium
and transmitted by blood-feeding Anopheline mosquitoes.
During their life cycle, plasmodia alternate between the
human host and the insect vector, and thus the transmission
stages of the parasite had to develop mechanisms for rapid
adaptation to the new environment in order to coexist with
the respective host.

Like most apicomplexan parasites, plasmodia further
switch between tissue-specific multiplication cycles and a
phase of sexual reproduction, which mediates the transition
from the human to the mosquito and thus plays a crucial
part in the spread of the disease. The malaria sexual phase
begins with the differentiation of gametocytes in human
erythrocytes, followed by their uptake during the blood meal
of the mosquito and the formation of gametes within the
insect midgut. The transformation of the fertilized zygote
into the infective ookinete subsequently marks the end of the
malaria sexual phase (reviewed in [1]).

Historically, scant research has been devoted to the
malaria sexual stages, namely, gametocytes, gametes, and
zygotes, since they neither contribute to the clinical picture of
patients nor do they play a role for vector control. However,
within the last two decades the dramatic increase of drug
resistance in malaria parasites has forced researchers to
broaden their consideration of tactics to combat the disease,
including transmission blocking strategies aimed at the sex-
ual stages. Such transmission blocking strategies, on the level
of either drugs or vaccines, are designed to disrupt parasite
reproduction and further development in the mosquito
midgut, thus breaking the life cycle of the parasite. Research
on the malaria transmission stages, however, was formerly
hampered by cost- and time-consuming cultivation, as well
as by the technically challenging infections of mosquitoes
with parasites. This was particularly true for work on P.
falciparum, the causative agent of malaria tropica.

In recent years knowledge on the malaria sexual phase
has benefited from a dramatic resurgence provided by
proteomic, microarray, and annotation projects that arose
out of the genome sequence projects for multiple malaria
species (e.g., [2–7]). As a result, a number of new sexual
stage antigens have been identified, and progress has been
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made in the identification and functional characterization
of enzymes and regulatory proteins that are involved in
gametocyte differentiation and fertilization (reviewed in
[1]).

Nowadays, three main questions regarding the malaria
sexual phase are in the focus of interest. (1) Which are the
mechanisms that cause a subset of erythrocytic parasites
to enter the sexual stage pathway and to differentiate to
gametocytes?. (2) How do gametocytes become activated
within the mosquito midgut and how do they transform into
gametes?. (3) In which way do the sexual stages interact with
factors of the mosquito midgut? This review addresses the
role of gametocytes during malaria transmission and partic-
ularly discusses the recent findings on gametocyte activation
following entry of the mosquito midgut, as well as their
egress from the host erythrocyte and transformation into
gametes. Additional aspects of gametocytogenesis, sexual
stage proteins, and malaria transmission can be found in
other recent reviews [1, 8–11].

2. Gametocyte Differentiation in the Human

The gametocytes are the only stages within the life cycle of
malaria parasites that are able to mediate the transition from
the human host to the insect host. The development of asex-
ual blood stage parasites to intraerythrocytic gametocytes,
which is referred to as gametocytogenesis, starts approxi-
mately 7–15 days after the appearance of parasites in the
human blood. It is not known to which degree gametocytes
develop stochastically, with a small proportion of committed
parasites leaving the asexual cycle and entering the sexual
pathway, versus gametocytogenesis as a response to complex
environmental signals during infection. Gametocytogenesis
was previously shown to be influenced by different kinds
of stress, including parasite density, anemia, host immune
response or drug treatment (e.g., [12–20]; reviewed in [8,
10]). Up to date, little is known about parasite genes that
regulate gametocytogenesis, but it was observed that reduced
levels of gametocytes in parasite cultures are often associated
with the loss of genetic information following subtelomeric
deletion in the right arm of chromosome 9 [21].

While in most Plasmodium species the sexual stages
mature within less than two days, a time period of about
10 days is required for gametocyte development in the
human malaria pathogen P. falciparum [22]. Gametocyte
maturation can be classified into five morphological stages
(stages I–V) [23], and mature P. falciparum gametocytes
show an eponymous falcipare form. In these stages, the
host erythrocyte has conformed to the crescent shape of the
parasite and is reduced to a small cytoplasmic hem. The
intraerythrocytic gametocyte lies within the parasitophorous
vacuole (PV) and is shielded from the erythrocyte cytoplasm
by the PV membrane (PVM), which is located adjacent
to the parasite plasma membrane (PPM) (Figure 1(a)).
Underneath the PPM is a typical gametocyte feature, the
pellicular complex, which consists of a subpellicular mem-
brane (SPM) vacuole subtended by an array of longitudi-
nally oriented microtubules [24]. These structures probably

give the gametocyte stability, and the electron-dense SPM
disappears during gametogenesis (Figures 1(a), 1(b), 1(c),
and 1(d)). Besides morphological changes, maturation of
gametocytes also includes alterations on the molecular level
in order to prepare the parasites for the rapid adaptation
to the mosquito midgut. For instance, a large amount of
mRNA is transcribed and stored in the cytoplasm of female
gametocytes, as shown for the transcripts of the sexual stage
surface proteins Pbs25 and Pbs28 in the rodent malaria
model P. berghei [25], which will be transcribed only in the
mosquito vector (see below).

The gender is predetermined in the developing game-
tocytes [26]. Gender specificity becomes established in the
schizont committed to gametocytogenesis [27], and the
gender ratio is typically female-biased with one male for
about five female gametocytes, depending on the respective
parasite clone [28]. This difference might be explained by
the fact that one male gametocyte forms approximately
eight microgametes, thus establishing a roughly 1 : 1
ratio of micro- and macrogametes in the mosquito midgut,
thereby leading to most efficient fertilization in a monoclonal
infection [8, 28]. Recently, Reece et al. demonstrated in the
mouse model that parasites were able to adjust the sex ratio
according to parasite density and the number of parasite
clones coinfecting the mammalian host [29]. For instance,
a less female-biased sex ratio would increase the probability
of a successful fertilization of females of the respective clone,
when competing with others [29–32]. In contrast, in vitro
studies on P. falciparum did not show an adjustment of sex
ratio to gametocyte density. However, an impact of the sex
ratio on the infection rate, depending on gametocyte density,
was observed [33].

The fact that single, haploid asexually replicating malaria
parasites are able to develop into gametocytes of both
sexes in the absence of sex chromosomes indicates that
gametocyte gender determination is governed by differential
gene expression [34]. Gametocyte stages I to IV were
reported to sequester in the bone marrow and spleen,
while terminally differentiated stage V gametocytes are then
released in the peripheral blood system [35, 36] and only
become infectious to mosquitoes after a further two or
three days of circulation [37, 38]. Bloodstream gametocytes
might not be distributed homogeneously, as evidenced
by a significant aggregation pattern observed in midgut
smears of P. falciparum-fed mosquitoes [39], and it is an
intriguing hypothesis that parasites increase the likelihood of
fertilization in the mosquito midgut by promoting uptake in
preformed complexes of gametocytes.

3. Gametocyte Activation in
the Mosquito Midgut

While feeding on an infected human, the female mosquito
takes up malaria gametocytes together with the blood meal.
By entering the midgut, the parasites receive environmental
signals, which indicate the switch from warm-blooded
host to insect vector and which initiate the development
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Figure 1: Ultrastructural changes in P. falciparum gametocytes during activation. (a) Transmission electron micrograph of a mature, non-
activated gametocyte. The erythrocyte is reduced to an electron-light hem. The PVM is located adjacent to the PPM and the PV is therefore
not discernable. No osmiophilic bodies are detectable, indicating that a male microgametocyte is pictured. Inset shows the pellicular
membrane complex, depicting the SPM (1), the PPM (2) and the PVM (3). (b) A female macrogametocyte two-minute postactivation.
The gametocyte is in the process of rounding up, thereby loosing its crescent shape. The osmiophilic bodies become closely associated to
the parasite surface. At the poles, the PVM separates from the PPM and the erythrocyte is in the process of degrading (arrowheads). (c)
Ultrastructure of an exflagellating microgametocyte. The axoneme of a forming microgamete is visible as longitudinal section, and several
other cross sections of axonemes are detectable inside the microgametocyte. The PVM has disappeared and the EM ruptured. (d) A female
macrogamete after emergence. This stage is marked by pronounced ER and the highly branched single mitochondrion. The SPM is in
the process of disintegrating (arrowheads). A, axoneme; EM, erythrocyte membrane; ER, endoplasmic reticulum; FV, food vacuole; M,
mitochondrion; N, nucleus; OB, osmiophilic body; PPM, parasite plasma membrane; PV, parasitophorous vacuole; PVM, PV membrane;
SPM, subpellicular membrane. Bar, 1 μm.

of gametes. Such signals include a drop of temperature by
approximately 5◦C [40], and the presence of the mosquito-
derived molecule xanthurenic acid (XA), a byproduct of eye
pigment synthesis [41, 42]. An additional signal reported to
induce gametocyte activation is an increase of pH from 7.2 to

about 8 [40, 43], but such a pH shift was later discussed to be
an artificial inductor of exflagellation [9]. While XA appears
to initiate a number of signaling events in the parasite (see
below), the quest for a receptor that binds XA was hitherto
unsuccessful.
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Gametocyte activation is routinely measured by the
formation of exflagellation centers, although a time period
of almost 15 minutes lies between these two events [44]. This
is due to the fact that exflagellation can easily be observed
under the light microscope and quantified by counting of
exflagellation centers. Exflagellation is the process when
the activated male microgametocyte forms motile flagellar
microgametes, which detach from the residual body by
binding to erythrocytes (see below). Two previous studies
showed that induction of exflagellation involves a fast
increase in intracellular calcium and cGMP [45, 46]. An
initial benchmark in elucidating sexual stage signaling was
the identification of two guanylyl cyclases (GCα and GCβ)
as integral membrane proteins in P. falciparum [47], which
are activated by addition of XA (Figure 2) [48]. Noteworthy,
the subsequent disruption of the GCβ ortholog in P. berghei
resulted in normal exflagellation, but motility-impaired
ookinetes, indicating that the role of GCβ is not essential for
gametocyte activation [49]. The increase of cGMP triggers
the activation of a cGMP-dependent protein kinase, PKG.
Activation of PKG leads to rounding up of the gametocyte,
a process that appears to be independent from calcium
increase [50]. Gametocyte exflagellation further involves the
presence of the second messengers diacylglycerol and inositol
triphosphate (IP3), hydrolysis products of phospholipase C
activity [51]. The latter eventually mediates the release of
intracellular calcium from the endoplasmic reticulum (ER)
(Figure 2).

It is not yet known how the signaling pathway involving
IP3 and calcium release and the pathway involving cGMP
and PKG activation are linked together, and whether PKG
has an additional effect on calcium release from the ER
(Figure 2). Current data suggest that at least three effector
pathways exist (discussed in [50]): (1) a PKG-dependent,
calcium-independent pathway that mediates rounding up of
the activated gametocytes, (2) a calcium-dependent pathway
that initiates microgamete formation, and (3) a calcium-
dependent pathway that regulates emergence of activated
gametocytes of both genders.

4. Gametocyte Egress from the Host Erythrocyte

Following uptake by the mosquito, both male and female
gametocytes round up and then escape from the enveloping
erythrocytes within about 10 minutes postactivation (Figures
1(b), 1(c), and 1(d)). In this period the microgametocyte
replicates its genome three times in order to produce eight
motile microgametes (reviewed in [1, 9]). Egress of the
activated gametocyte from the host erythrocyte has been
linked to the presence of osmiophilic bodies, gametocyte-
specific secretory organelles that were first identified by
electron microscopy due to their electron-dense features
(Figure 1(b)) [24, 52]. They appear first in stage IV gameto-
cytes and are particularly present in the female sexual stages.
The osmiophilic bodies migrate to the PPM during acti-
vation and disappear within a few minutes post-activation,
coevally with the rupture of the PVM (Figures 1(b), 1(c), and
1(d)) (G. Pradel, unpublished observations).

Osmiophilic bodies contain a gametocyte-specific and
highly hydrophilic protein, Pf g377, which is considered a
marker for these organelles [53, 54]. Only recently has the
function of Pf g377 been investigated by reverse genetic
methods. Gene-disruption studies showed that female P.
falciparum gametocytes lacking this protein reveal a reduced
number of osmiophilic bodies and fail to egress from the
host erythrocyte, pointing to a pivotal role of this protein in
gametocyte emergence [55].

Another protein, which was only recently identified,
MDV-1/Peg3, has also been implicated with gametocyte
egress. In P. falciparum, expression was reported to be ini-
tiated in stage I gametocytes in association with all membra-
nous structures of the PVM and to persist until gametocyte
maturation [56–58]. First gene disruption studies on P.
falciparum described a reduced formation of particularly
male gametocytes [57]. Two subsequent studies, however,
indicated a role of the protein post-activation of gametocytes.
Lal et al. [59] reported the presence of MDV-1/Peg3 in
P. berghei gametocytes of both sexes and a subsequent
focal localization at the anterior pole of the developing
ookinete. Studies on parasites in which the respective gene
was knocked out resulted in reduced ookinete formation.
A study by Ponzi et al., on the other hand, showed that
P. berghei MDV-1/Peg3 was associated with the gametocyte
osmiophilic bodies [60]. Gametocytes lacking this protein
failed to egress from the host erythrocyte, thus resulting in
reduced fertilization and ookinete formation. Ponzi et al.
[60] therefore suggested that MDV-1/Peg3 plays a major
role in disrupting the PVM and the erythrocyte membrane
(EM).

Independent from the life-cycle stage, host cell egress
of malaria parasites involves rupture of two membranes,
PVM and EM. The time line of rupture, however, was
recently object to several brisk discussions. Particularly two
models are currently under investigation, the inside-out
model, in which the PVM ruptures prior to the EM [61],
and the outside-in model, in which the EM is degraded
first [62, 63] (reviewed in [64]). The timeline of parasite
egress was hitherto mainly investigated in the asexual blood
and liver stages, and no data are available for the egress
of gametocytes. In the above mentioned study, Ponzi et
al. [60] suggested that MDV-1/Peg3 is involved in PVM
destabilization and that EM rupture depends on the absence
of the PVM. In accord with this hypothesis, new studies from
our laboratory indicated that the PVM disappears within
a few minutes after gametocyte activation, and that the
rupture of the EM follows several minutes later (G. Pradel,
unpublished observations), thus supporting the inside-out
model of egress.

The coming-out of malaria parasites from the host
cell requires protease activity. A number of new studies
engaged with the identification of proteases that mediate
emergence of asexual blood stage merozoites. Data point
to the involvement of the cytoskeleton-degrading malaria
proteases falcipain-2 and plasmepsin II [64]. Particularly
SERA (serine-rich antigen) proteins, which were identified
in the PV of blood stage schizonts (e.g., [65, 66]), are
supposed to mediate PVM rupture. It was shown for
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Figure 2: Schematic overview of signaling pathways identified to date that are involved in gametocyte activation (modified from [83]).
Gametocyte activation is induced by a decrease in temperature and the presence of the mosquito-derived molecule XA. So far, a receptor
involved in activation has not been identified. Activation effects PLC and GC, resulting in an increase of IP3 and cGMP. The latter
activates a PKG. IP3 mediates release of intracellular calcium from the ER, which activates CDPK4 and consequently Map-2 in the male
microgametocyte, eventually leading to exflagellation. A possible link between PKG and calcium release has not yet been confirmed. Signaling
pathways in the activated macrogametocyte that are downstream of calcium release were not yet identified. Black lines indicate direct
interactions and dashed lines indicate indirect interactions. Ca2+, calcium ion; CDPK, calcium-dependent protein kinase; cGMP, cyclic
guanosine monophosphate; DAG, diacylglycerol; DNA, deoxyribonucleic acid; E, erythrocyte; ER, endoplasmic reticulum; GC, guanylyl
cyclase; GTP, guanosine triphosphate; IP3, inositol triphosphate; Map-2, Mitogen-activated protein kinase 2; PDE, phosphodiesterase;
PIP2, phosphatidylinositol-4,5-bisphosphate; PKG, cGMP-dependent protein kinase; PLC, phospholipase C; PV, parasitophorous vacuole;
R, receptor; T, temperature; XA, xanthurenic acid.

SERA-5 of P. falciparum that the protease is proteolytically
activated by the serine-like subtilisin protease Pf SUB1 [67].
While no detailed studies were yet performed on malaria
gametocytes, it is worth mentioning that transcripts of select
representatives of the above mentioned protease families are
expressed in these stages, including falcipain-1, plasmepsin
VI, SERA-6, SERA-7, and Pf SUB3 [68, 69].

A popular strategy in investigating protease activity
during rupture is the treatment of parasites with pro-
tease type-specific inhibitors. Again, these studies were
mostly performed on blood stage parasites, particularly
using cysteine protease inhibitors like E64. Treatment with
this inhibitor, however, resulted to date in contradictory
results, and it was reported that the inhibitor blocked

either degradation of the PVM [62, 63] or rupture of the
EM [70]. A similar egress study using protease inhibitors
was recently performed on activated P. berghei gametocytes
and showed that exflagellation can be blocked by the
cysteine/serine protease inhibitors TPCK and TLCK [71].
Our laboratory subsequently confirmed these results in P.
falciparum. Treatment of activated gametocytes with TPCK,
TLCK, PMSF, or two novel falcipain-targeting cysteine
protease inhibitors during activation reduced the formation
of microgametes [72]. Furthermore, the aspartic protease
inhibitor EPNP appeared to interfere with rounding up of
gametocytes. The exact modes of action for these proteases
during gametocyte egress from its host cell remain to be
investigated.
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5. Exflagellation and Gamete Formation

is the process in which the newly formed microgametes
adhere to neighboring erythrocytes, thus forming rosettes
called exflagellation centers, and then detach from the
residual body of the activated male microgametocyte. The
exflagellating microgamete adheres to sialic acids and gly-
cophorin A of the erythrocyte surface [73] and this binding
is probably mediated by Pf s230, an abundantly expressed
adhesion protein that is associated with the gamete surface
[74]. Interestingly, Pf s230 is proteolytically processed during
gametocyte activation, and this processing can be inhib-
ited by the metalloprotease inhibitor 1,10-phenanthroline
[75, 76]. The same inhibitor blocks exflagellation by leaving
the microgamete amotile [72], and it is tempting to speculate
that processing of Pf s230 increases the adhesive properties
of this protein, which are needed for the binding of the
exflagellating microgamete to erythrocytes [74].

Astonishing advances have been made in unveiling the
signaling cascades during gametogenesis of plasmodia. This
might be explained by the fact that sexual stage proteins
can easily be disrupted because of their nonessentiality for
parasite proliferation, and thus a functional characterization
can be obtained by phenotype analysis of parasites, in which
the respective genes have been knocked out. Genome anno-
tation has revealed an extensive catalog of parasite-encoded
kinases, the malaria kinome, with at least 86 hypothetical
kinases identified in P. falciparum [77, 78]. Several orthologs
of these kinases were disrupted in P. berghei. An initial
elegant study showed that the calcium-dependent protein
kinase PbCDPK4 is involved in sexual stage signaling and
regulation [79] (Figure 2). The kinase becomes activated
by calcium increase following XA activation, resulting in
genome replication in microgametocytes [79]. In P. falci-
parum, Pf CDPK4 was reported to be gametocyte-specific
and activated by phospholipase C [80]. In a subsequent
step, the mitogen-activated protein kinase Pbmap-2 controls
formation of male gametes at the stage of cytokinesis [81–
83]. Downstream of these events, the protein kinases Pbnek-
2 and Pbnek-4 trigger genome replication to the tetraploid
level in the zygote stage [81, 84, 85]. Furthermore, PbCDPK3
is required for ookinete motility and engagement with the
mosquito midgut epithelium [86, 87]. When highlighting
these novel signaling pathways during gametogenesis, it has
to be taken under consideration, however, that in some
cases the results obtained for P. berghei and P. falciparum
might differ. For example, a recent reverse genetics approach
on the P. falciparum ortholog Pf map-2 pointed to an
essential function of this kinase for the parasite asexual blood
cycle [88], contradictory to the abovementioned results on
Pbmap-2. This indicates that insights gained by studying the
rodent malaria model P. berghei cannot be as easily applied
to human malaria pathogens as has so far been assumed.

Ingestion by the blood-feeding mosquito triggers molec-
ular changes in the sexual stages of P. falciparum, with
approximately 20% of stage-specific genes being activated
during sexual stage development and parasite transmission
[3, 5, 6]. This molecular switchover adjusts the gameto-
cytes to the invertebrate host and on one hand initiates

reproduction but on the other hand prepares the emerg-
ing gametes for the hostile environment of the mosquito
midgut. Gametocyte development and gamete formation are
particularly accompanied by the coordinated expression of
numerous surface-associated proteins, including the EGF
domain-containing proteins Pf s25 and Pf s28, the cysteine
motif-rich proteins Pf s230 and Pf s48/45, as well as the
multiadhesion domain Pf CCp proteins. These proteins
and their potential as transmission blocking targets were
discussed previously [1] and will therefore not be focus of
this review. Noteworthy is that the majority of these surface
proteins have adhesive properties and can be divided in two
classes. One class of sexual stage proteins, including Pf s230,
Pf s48/45, and the six Pf CCp proteins, is expressed within
the PV of the developing gametocyte and subsequently
present on the gamete surface, but expression of these
proteins usually ceases during fertilization (Figure 3). The
expression of the second class of surface proteins starts at
the time point of fertilization, as was shown for Pf s25 and
Pf s28, and expression often persists until the ookinete has
formed [1]. The reason for this sudden onset of protein
expression during fertilization is the translational repression
of messenger RNA encoding for these proteins. This was
interalia shown for the repression of Pbs25 and Pbs28 by
the P. berghei RNA helicase DOZI (development of zygote
inhibited) as part of a ribonucleoprotein complex [25].
Furthermore, transcript of the transcription factor AP2-O is
present in female gametocytes. The factor, however, is only
translated in the ookinete stage, where it then activates a
set of genes encoding for adhesion proteins important for
midgut invasion [89].

The reason for such a high number of adhesive proteins
in the malaria parasite sexual stages remains elusive, but a
new study from our laboratory might provide a first step
towards answering this question. We showed that the six
Pf CCp proteins, which are characterized by a high number of
adhesion modules, assemble to form multiprotein complexes
during their expression in the PV, and these complexes are
subsequently present on the surface of the newly emerged
macrogametes [90]. Preliminary data point to an additional
involvement of other surface-associated adhesion proteins in
these complexes, like the transmembrane protein Pf s48/45,
which might link the complex to the gamete surface [91]
(S. Scholz, A. Kuehn, N. Simon, and G. Pradel, unpublished
observations). We hypothesize that these protein complexes
cover the macrogamete in the form of a sticky coat and that
they are involved in important adhesive processes during
malaria transmission to the mosquito. The complexes might
play a role in promoting contact between the emerging
gametes within the blood meal or in protecting the gametes
from the aggressive environment of the mosquito midgut.
Noteworthy, the gametes and zygotes are the only stages
within the parasite’s life cycle that, for more than one day,
have to persevere outside a host cell. Here they are exposed
to factors of the blood meal, including midgut bacteria and
digestive enzymes, as well as components of the human
immune system. This exposure results in an approximate
300-fold loss of parasite abundance during transmission
to the mosquito, and the malaria transmission stages are
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Figure 3: Morphological changes of malaria parasites during transmission from the human host to the mosquito vector. The
intraerythrocytic gametocyte stages mature in the human host and are taken up by the blood-feeding female mosquito. By entering the
mosquito midgut, the gametocytes become activated and round up, before emerging from the enveloping host erythrocyte. Proteases (P) are
involved in these processes. During gametogenesis, the female macrogametocyte transforms into a macrogamete, while the activated male
microgametocyte forms eight microgametes. Within approximately twenty-minute post-activation, the motile microgamete fertilizes the
macrogamete and the resulting zygote transforms within a day into the infective ookinete. Two classes of sexual stage proteins are expressed
in association with the parasite surface. A first class of proteins (shown in green) is expressed in the parasitophorous vacuole of the developing
gametocyte, where some of them assemble to form adhesive multiprotein complexes. The proteins are later exposed on the surface of the
newly emerged gametes, but expression ceases during fertilization. Expression of a second class of surface-associated proteins (shown in
pink) is repressed in the gametocyte stage, but repression is released during fertilization (R) and protein expression persists to the ookinete
stage.

therefore considered bottleneck stages of the parasite’s life
cycle [92].

6. Mating of Malaria Parasites

During exflagellation, the microgamete detaches from the
residual body and is freely motile, moving via sinusoidal or
helical waves [93]. It is not known whether the microgamete
meets the macrogamete by coincidence, whether it actively
scans the blood meal, or whether it migrates along a
gradient of an attractant that is released by the macrogamete.
Interestingly, we recently identified filamentous protrusions
of the P. falciparum gamete surface, which form immediately
upon activation and which appear to establish long-distance
contacts between parasites in the mosquito midgut (G.
Pradel, unpublished observations). These filaments fit the
typical characteristics of socalled nanotubes, novel organelles
that were recently described for a number of animal cells
(reviewed in [95, 96]). It has been proposed that nanotube-
like filaments can be formed by almost all cells serving
as a medium for exploring the extracellular environment
[94] and therefore are likely to represent ancient features of
unicellular eukaryotes. Nanotubes were reported to have a
function in communication between cells, including calcium
signaling and organelle transfer [95, 96]. We therefore
hypothesize that the “nanotubes” of malaria gametes might
be tools to facilitate association within the midgut in order to
increase the chance of parasite mating.

Once the microgamete adheres to a macrogamete, fer-
tilization begins by fusion of the plasma membranes. Two
recent studies on P. berghei described the identification of the
microgamete protein GCS1 (generative cell specific 1), also
termed HAP2, which enables gamete fusion, and disruption
of the respective gene results in male sterility and blocked
fertilization [97, 98]. GCS1/HAP2 is a conserved protein of
algae and plants, where it is involved in pollen tube guidance
and seed formation [99, 100], and was also identified in
protozoan parasites [97, 98, 101]. Importantly, GCS1/HAP2
does not mediate the initial binding between the two mating
partners, which appears to involve other adhesion proteins
[98].

Cell fusion is followed by nuclear fusion, and over
the next 3 hours, meiosis occurs and the zygote becomes
tetraploid [102]. During the following 24 hours, the zygote
transforms into the infective ookinete stage, thus marking
the end of the malaria sexual phase. The ookinete is motile
and possesses an apical complex which enables it to disrupt
and traverse the midgut epithelium, before settling down
between epithelium and basal lamina. Parasite tetraploidy
persists throughout the ookinete stage until sporozoite
budding in the oocyst restores the haploid state [102].

7. Concluding Remarks

Despite intense work on the sexual stages of malaria
parasites, they represent the least understood stages of the
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parasite’s life cycle. Gametocyte differentiation and game-
togenesis have mostly been studied in the human malaria
pathogen P. falciparum, and for these sexual stages, a variety
of proteins have been identified and characterized. On the
other hand, the implication of malaria sexual stage proteins
for malaria transmission was preferentially investigated in
the murine P. berghei model, which is more easily accessible
for genetic manipulations and transmission studies. Up to
date it is challenging to combine information gained by both
systems to receive the big picture on the malaria sexual phase.
We expect that in the near future research on the sexual stages
of malaria parasites will be dominated by two major tasks:
(i) the big hunt for “the gene”, which enables the blood stage
parasite to enter the sexual pathway and (ii) the analysis of
the molecular mechanisms and signaling events of sexual
stage parasites during fertilization in the mosquito midgut.
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