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Abstract: This paper reports on-line mixture quantification with FAIMS. Ternary gas mixtures
composed of acetone, ethanol, and diethyl ether were used for quantification. We succeeded in an
on-line quantification of ppm-level concentration and even sub-ppm-level gases using the gradient
descent method. It took 10 minutes to quantify the ternary mixture. However, it was too long,
because we aim to track the temporal change of each component concentration in the mixture.
Then, an algorithm based on feedback control was introduced to reduce the quantification time. The
feedback method successfully tracked concentrations in three cases. The simulation result shows that
the proposed method can reduce the quantification time.

Keywords: quantification of gas mixtures; faims; odor; e-nose

1. Introduction

Nowadays, gas chromatography-mass spectrometry (GC-MS) is a standard method of gas analysis
for chemical quantification [1–3]. Direct-MS is used to sample analytes directly because of its fast speed
and high sensitivity [4]. Selected ion flow tube mass spectrometry (SIFT-MS) is a kind of direct-MS that
is used for real-time detection and quantification because it does not require trapping, preconcentration,
pretreatments, or separation [5,6]. Proton transfer reaction mass spectrometry (PTR-MS), which is
also another type of direct-MS, has high sensitivity [7]. Proton transfer reaction time of flight mass
spectrometry (PTR-TOF-MS) derived from PTR-MS has a sub-ppt-level detection limit [8].

Ion mobility spectrometry (IMS) also has a long history of research [9,10]. The mechanism is
entirely different from MS [11], although the structure of IMS is similar to MS. IMS uses the information
of mobility as a function of the collision cross-section, which is a measure of the ion size. In comparison
to IMS, MS measures the weight per ionic valence of ionized analyte in a vacuum as a spectrum. Field
asymmetric ion mobility spectrometry (FAIMS) is a type of IMS [12,13]. IMS detects ions with the
time difference, whereas FAIMS measures ions by sweeping voltage between electrodes. The field is
called the dispersion field (DF), whereas the bias voltage is called the compensation voltage (CV). DF
is an amplitude of an asymmetric square wave. FAIMS has advantages over GC-MS because of low
cost, no vacuum required, and fast response. Moreover, FAIMS may obtain information related to
the collision cross-section, which may have other feature information different from the information
of the mass-to-charge ratio in MS. Direct-MS has higher sensitivity and a shorter detection time than
FAIMS [14]. However, FAIMS may have the advantage of the cost and ease of maintenance due to the
simple structure.

FAIMS has been applied to many situations. Some papers reported real-time detection with FAIMS
for diseases. Sinha et al. performed real-time infection detection for potatoes and onions [15], Osmo et al.
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certificated that FAIMS can separate the ions from noises in real-time measurement based on the concept
of Shannon entropy [16]. However, the feasibility of real-time mixture quantification with FAIMS has
not been confirmed. The quantification method using off-line measurement data was reported in the
previous paper [17]. In this study, the on-line measurement system was developed as an extension
from the previous system, and trinary gas mixtures were utilized to test the quantification performance.

It can be applied to the real-time sensing such as the odor tracking of temporal change of each
component concentration in the mixture. An odor replication system reported previously tracked the
temporal change of concentrations of some odorants [18]. There are some researches related to the
temporal change of gas mixture concentrations. Erin et al. used planar laser-induced fluorescence for
the quantification of acetone in a broad area [19]. Ilitani et al. developed a gas-imaging system that can
obtain the concentration-distribution of acetaldehyde in breath and released from a palm skin [20].
This application will be useful for odor source tracking. Junji et al. reported an odor tracking robot
using a biosensor obtained from male silk moth [21]. Tanthip et al. demonstrated a humanoid robot
with wearable sensors based on Polymer/Carbon nanotubes for odor tracking [22]. We aim to establish
the fundamental method of tracking a temporal change of each concentration in the mixture using
FAIMS in the present study.

2. Materials and Methods

Figure 1 shows a brief explanation of the experimental system where the mixture composition is
determined by the flowrates of mass flow controllers (MFCs). The sampling bag was directly connected
to MFC, and the vapor inside the bag flows owing to the negative pressure caused by the air pump.
The mixture composition is determined by the ratio of each component flowrate.

Figure 1. The block diagram of the experimental system.

Some improvements to realize the on-line system extensions will be explained below. There is
a difference of protocol between this research and the previous one. Table 1 shows the protocol of
quantification in previous research, whereas the protocol of on-line quantification using FAIMS is
explained in Table 2. The measurement protocol is shown in Table 3. Details were written in previous
work [17].

Some definitions are used in this section. Measurement points are defined as all of the points
measured with FAIMS for each on-line measurement. The update point is defined as a specific point that
moves to the direction of the steepest gradient and approaches the solution little by little. A collected
point is defined as the points needed for the calculation of gradients. The error hypersurface is defined
as the three-dimensional hypersurface obtained from indices E explained in Equation (2) as a function
of concentrations. Lattice points comprise a regularly spaced array of concentration points.
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Table 1. The explanation of the protocol of quantification simulation using all possible combinations of
component concentrations. FAIMS: field asymmetric ion mobility spectrometry.

Procedure Procedure Explanation

1 Check the blank with sampling bag air using FAIMS.

2 Put the gas into a sampling bag. Measure gas concentration in sampling
using a photoionization detector.

3 Perform FAIMS measurement at every lattice points (It takes 2–3 h).

4 Calculate index E at every lattice point.

5 Obtain error hypersurface using linear interpolation.

6 Select initial concentrations as an update point and target concentrations. If
the target point is not on the lattice, it should be measured.

7 Error surface is obtained from index E using linear interpolation.

8 Calculate a gradient, and move the update point to the direction repeatedly
until the number of iterations reaches an allowable number of times.

Table 2. The explanation of the protocol of on-line quantification using FAIMS.

Procedure Procedure Explanation

1 Check the blank with sampling bag air using FAIMS.

2 Put the gas into a sampling bag. Measure gas concentration in sampling using a
photoionization detector.

3 Perform FAIMS measurement of a target gas mixture.

4 Select initial-point concentrations as an update point.

5 Select points close to the update point to calculate the gradient.

6 Perform a FAIMS measurement of selected new points.

7 Calculate index E at the update point and selected points according to Equation (2).

8 Calculate a gradient, and move the update point to the direction little by little.

9 When stagnation is detected, go to 10. Otherwise, go to 5.

10 When the minimum of E in the historical record is below a threshold, finish
quantification. Otherwise, go to 4.

Table 3. Explanation of data measurement protocol. DF: dispersion field, MFC: mass flow controller.

Procedure Procedure Explanation Required Time (s)

1 Clean FAIMS device 10
2 Change flowrate of MFC Immediately
3 Wait for mixing gases depending on flowrates
4 Data measurement with FAIMS 3–90 (depending on the number of DF)

2.1. Data Preprocessing

A simple noise elimination method was utilized because data measured with FAIMS have some
noise. The noise without signal was eliminated by using a threshold value. The threshold value was
empirically set at 0.08, whereas the data range was between 0 and 10.

2.2. Quantization for Quantification

Every MFC has a certain fluctuation level of its flowrate because a MFC controls the flowrate
using feedback. The fluctuation of flowrate deteriorates the repeatability of data (Figure 2).
Therefore, the flowrate was quantized every 2% of its full scale so that a small concentration difference
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could be clearly distinguished, as is shown in Figure 3. It is essential to keep the resolution at
an appropriate level, since we need to approximate the derivative of the ion current with respect
to concentration when we use the gradient descent method. Each flowrate can be converted to
concentration using the equation:

C =
αVmaxCS

Vtotal
(ppm), (1)

where α (= 0.02) is the relative resolution, Vmax is the maximum flowrate of MFC (L/min), CS is the
concentration of a gas in a sampling bag, and Vtotal (= 1.8 L/min) is the total flowrate at the FAIMS
device. Figure 3 shows that the 2% resolution was appropriate, whereas one of 0.5% was insufficient.

Figure 2. The difference between a specified flowrate and an actual flowrate. The actual flowrates
fluctuate within a certain level. If a resolution of quantization is inappropriate, the distribution of the
different flowrates overlap, and this will cause an error. The distributions next to each other should not
overlap. (a) Inappropriate resolution. (b) Appropriate resolution.

Figure 3. Repeatability of FAIMS ion current. (a) 0.5% resolution. (b) 2% resolution. The concentration
of diethyl ether was changed, whereas the acetone and ethanol concentrations were 3.0 ppm and
3.0 ppm, respectively. The highest value along the line DF = 40% was plotted in each case.
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2.3. Local Minimum Detection Algorithm

The difference value between the target data and measured data was utilized for local minimum
detection (see Figure 4). The well-known problem with gradient descent is a local minimum. The correct
solution is called a global minimum. However, information about the gradient sometimes leads to the
local minimum. The index E can be calculated as

E =
k∑

i=1

l∑
j=1

∣∣∣IC(i, j) − ICtarget(i, j)

∣∣∣ (2)

to distinguish between local and global minima, where k is the number of DFs, l is the number of
CVs, IC is the ion current matrix obtained from each measured data, and ICtarget is the ion current
matrix obtained from the data at target concentrations. If the position of the local minimum is far
from the global minimum, the value of E tends to be larger than the noise level. If the position of
the local minimum is near the target point, the E approaches zero. Therefore, if the E is still large
after stagnation is found, the exploration continues from a different point. If the E becomes below
the threshold, the exploration is stopped in order to reduce the time required for quantification. The
threshold value was empirically selected because it depends on the component concentrations of the
ternary gas mixture.

Figure 4. Explanation of local minimum and global minimum. Local minimum and global minimum
can be distinguished using the difference of Index E.

2.4. Data Collected Point

This system was improved to obtain only several data points required for gradients calculation,
whereas all possible combinations of component concentrations were measured in the previous work
in advance [17] (see Figure 5). However, it took a long time due to increasing measurement points
(it took almost three hours). If only the points required for the calculation of the gradients can be
considered, the time decreases drastically. Moreover, if measured points are reused for the calculation,
the time will be further reduced. However, an excessive decrease in the number of measured points
deteriorates the accuracy of gradient estimation. Neighbors of the update points were reused to satisfy
the trade-off relation between the accuracy and the quantification time (see Figure 6).
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Figure 5. Explanation of decrease measurement points. On-line quantification measured the points
needed for only gradient calculation, whereas every lattice point was measured in previous research.

Figure 6. Explanation of the reuse of collected points. When there are collected points near the update
points, those were reused for gradient calculation.

2.5. Mechanism of Concentration-Change Track Using Feedback

Tracking the temporal change of each component concentration using the feedback was tested
with quartz crystal microbalance (QCM) sensors previously [23]. The mechanism will be explained
below. When the sensor responses are approximated with the first-order delay, the dynamics is
expressed using

sk+1 = Fsk + Guk, (3)

where sk is the sensor response vector at the time k∆t, uk is the component concentration change vector
at the time k∆t, and ∆t is the period of the sensor response. The sk = [s1(k), . . . , si(k), . . . , sn(k)]

T,

uk =
[
u1(k), . . . , u j(k), . . . , um(k)

]T
=

[
c1(k) − c1(k− 1), . . . , c j(k) − c j(k− 1), . . . , cm(k) − cm(k− 1)

]T
,

where si(k) is the ith sensor response at the time k, u j(k) is the jth the component concentration change
at the time k, and c j(k) is jth the component concentration at the time k. Equation (3) is expressed as the



Sensors 2019, 19, 5442 7 of 18

state-space equation for a discrete time system using the response vector sk and concentration-change
vector uk at the time k. When F, and G are represented by

F =


f1 0

. . .
0 fn

, G =


g11 · · · g1m

...
. . .

...
gn1 · · · gnm

, (4)

Equation (3) can be written in the next equation for the ith sensor:

si(k + 1) = [ fi gi1 · · · gim]


si(k)

c1(k) − c1(k− 1)
...

cm(k) − cm(k− 1)

. (5)

Therefore, the equation below is derived using data from k = 1 to k = N:
si(2)

...
si(N)

 =


si(1) c1(1) − c1(0) · · · cm(1) − cm(0)
...

...
...

si(N − 1) c1(N − 1) − c1(N − 2) · · · cm(N − 1) − cm(N − 2)




fi
gi1
...

gim

 = Di


fi

gi1
...

gim

. (6)

The parameter vector can be obtained from the least-squares solution expressed by the
following equation: 

fi
gi1
...

gim

 =
(
DT

i Di
)−1

DT
i


si(2)

...
si(N)

. (7)

Thus, all parameters in Equation (3) can be obtained from Equation (7).

2.6. Optimal Feedback Control

The feedback is controlled by the index value J:

J =
p−1∑
k=0

{(
sk+1 − starget

)T
Q

(
sk+1 − starget

)
+ uT

k Ruk

}
, (8)

where sk is the sensor response vector to the blended at time k∆t, starget is the sensor response to the
target gas mixture, and p is the number of concentration-change steps during the feedback. The first
term in Equation (8) is the summation of squares of the differences between the sensor response to the
gas mixture at time k∆t and the sensor response to the target gas mixture. The difference is weighted
by a diagonal matrix Q. The second term is the summation of squares of the concentration change
vectors weighed by an also diagonal matrix R.

The feedback is controlled according to the equations below (the derivation of Equations (9)–(12)
are written in Appendix A). Kk can be considered as a feedback gain matrix at time k, which controls
concentrations according to the magnitude of (sk − starget). Kk is adjusted at each time.

uk = −Kk
(
sk − starget

)
, (9)

Initial matrix : Mp = Q,

from i = (p− 1) to i = 1



Sensors 2019, 19, 5442 8 of 18

Ki =
(
GTMi+1G + R

)−1
GTMi+1F, (10)

Pi = FTMi+1(F−GKi), (11)

Mi = Q + P. (12)

2.7. Preprocessing for Concentration-Change Track with Feedback

Principal component analysis (PCA) was utilized for dimensional reduction to obtain the sk as an
alternative to sensor response vector. The same number of QCM sensors as the number of components
of the gas mixture was used previously [23]. Components between the first component and the third
one were utilized for sk in this work. There is much information in data of FAIMS (the number of
DFs can be selected from 1 to 51, and the number of CVs can be selected from 1 to 512). Four DF
(51.1%, 55.3%, 59.5%, and 63.7%) values were utilized in this study for PCA analysis. The data obtained
from those values were realigned to one line. Thus, the dimension of the data for PCA was 2048.
One hundred twenty-five data were used for making models. Measurement concentrations were
chosen from a combination of x1, x2, and x3 (see Table 4). The three-target concentrations were selected
(see Table 5). The weight matrices such as Qs were found using an exhaustive search.

Table 4. Data explanation for tracking concentration change with feedback.

Name Concentration Candidates (ppm)

x1(acetone) 0, 1.2, 2.3, 3.5, 4.6
x2(ethanol) 0, 1.5, 3.0, 4.5, 6.1

x3(diethyl ether) 0, 1.5, 3.0, 4.6, 6.1

Table 5. The three types of target concentrations for tracking concentrations change with feedback.

ID of Target Concentrations Acetone (ppm) Ethanol (ppm) Diethyl Ether (ppm)

target 1 1.2 1.5 1.5
target 2 2.3 3.0 3.0
target 3 3.5 4.5 4.6

3. Results

First, the performance of the on-line quantification system was confirmed. The results of the
quantification to the ternary gas mixture after the concentration-level quantization are shown in
Figure 7. The measurement history of the update points and measured points are shown in Figure 7.
The result indicates that the update point moved directly to the target point placed in the center,
and finally arrived at the point near the target one. The quantification of the ternary mixture was
successful, as is shown in Figure 7. The total time for quantification was 635 s.
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Figure 7. Results of the on-line quantification of the ternary gas mixture after the concentration-level
quantization. The light blue triangle is the initial point, the red square is the target point, and the blue
star is the point with the smallest error value, which was the solution of the quantification. The orange
points were used to calculate the gradient. The history of the update points was plotted and colored
with the number of iterations. Refer to data in detail in the supplemental files (Figures S1 and S2).

Figure 8 shows a failure example of quantification without quantization. The arrows in this
figure were different from the true direction of the gradient owing to the noise caused by the flowrate
fluctuation. The quantification result is different from the target one, because the gradient vector was
inappropriate without quantization.

Figure 8. The result of on-line quantification without the quantization method. The light blue triangle
is the initial point, and the red square is the target point. The arrows in this figure were different from
the true direction of the gradient owing to the noise caused by the flowrate fluctuation.

A ternary gas mixture with sub-ppb-level concentrations was also examined. Figure 9 shows
the results of the quantification of the ternary gas mixture with the sub-ppb-level concentrations.
Figure 9a shows the result of successful quantification, whereas Figure 9b shows the result of a failure in
quantification due to a local minimum. The smallest error value Egm in Figure 9a was 3.8, whereas that
in Figure 9b was 7.4. Specific information about Figures 7–9 is summarized in Table 6.
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Figure 9. Results of on-line quantification for ternary gas mixture with sub-ppb-level concentrations.
The light blue triangle is the initial point, and the red hexagram is the target point, which is the
same as the point with the smallest error in (a). The point with the smallest error in (b) is the blue
star. The history of the update points was plotted colored with the number of iterations. Refer to
data in detail in the supplemental files (Figures S3–S6). (a) Success in quantification. (b) Failure
in quantification.

Table 6. Specific information in Figures 7–9.

Name Figure 7 Figure 8 Figure 9a Figure 9b

Target concentrations
(red square and red

hexagram)

Acetone (ppm) 8.7 5.4 1.8 1.8

Ethanol (ppm) 8.4 4.4 1.1 1.1

Diethyl ether (ppm) 9.1 6.2 1.7 1.7

Initial-point
concentrations (light

blue triangle)

Acetone (ppm) 3.7 3.0 0.8 3.3

Ethanol (ppm) 3.6 3.0 0.5 1.1

Diethyl ether (ppm) 3.9 3.0 0.7 2.7

Smallest error
concentrations (blue

star and red
hexagram)

Acetone (ppm) 8.7
-

1.8 1.8

Ethanol (ppm) 7.6 1.1 0.5

Diethyl ether (ppm) 9.1 1.7 1.9

Resolution of
concentrations in

quantization

Acetone (ppm) 0.83
-

0.17 0.17

Ethanol (ppm) 0.81 0.1 0.1

Diethyl ether (ppm) 0.88 0.17 0.17

Maximum
concentration of

measurement range

Acetone (ppm) 16.2 8.6 3.3 3.3

Ethanol (ppm) 15.7 7.1 2.0 2.0

Diethyl ether (ppm) 17.0 9.9 3.2 3.2

Minimum
concentration of

measurement range

Acetone (ppm) 2.0 2.2 0.42 0.42

Ethanol (ppm) 2.0 1.8 0.27 0.27

Diethyl ether (ppm) 2.1 2.5 0.42 0.42

Next, we aimed to track the temporal change of each component’s concentration using the gradient
descent method, as is shown in Figure 10a–c. The initial concentrations were acetone (5.1 ppm),
ethanol (4.5 ppm), and diethyl ether (5.8 ppm). This result indicates that the quantified concentration
of each gas followed roughly the concentration changes in spite of certain errors. The time required to
complete the quantification is shown in Table 7.
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Figure 10. Results of the concentration-change track with the gradient descent method. Each component
of the ternary gas mixture was individually plotted for easy visualization. The black dots the history of
the concentration changes, and the bold red line is the concentration of the target. Initial concentrations
were acetone (5.1 ppm), ethanol (4.5 ppm), and diethyl ether (5.8 ppm). The temporal concentration
changes were selected randomly from one quantization point (1.0 ppm of acetone, 0.8 ppm of
ethanol, and 1.1 ppm of diethyl ether) or 0 ppm for each component at the same time. ID indicates each
quantification, and the required times were written in Table 7. (a) Acetone. (b) Ethanol. (c) Diethyl ether.

Table 7. The result of the required time. ID indicates each quantification in Figure 10.

ID Time (s)

1 310
2 93
3 154
4 62
5 92

Then, the feedback method was needed to reduce the quantification time. The simulation
results of the concentration-change track with the feedback method are shown in Figures 11–13.
The concentration of each component was kept constant during the experiment in this study. The three
types of the first term weight matrix Qs were selected:

Q1 =


1 0 0
0 1.1 0
0 0 1.7

, Q2 =


7.5 0 0
0 13 0
0 0 4.7

, Q3 =


1.8 0 0
0 1.4 0
0 0 1.7

. (13)
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Figure 11. Results of the concentration-change track with the feedback using weight matrix Q1.
The solid blue line is the concentration of target 1, the broken red line is the concentration of target 2,
and the dash–dot orange line is the concentration of target 3 (Table 5). The black dots are the history of
the concentration changes. (a) Acetone. (b) Ethanol. (c) Diethyl ether.

Figure 12. Cont.
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Figure 12. Results of the concentration-change track with the feedback using weight matrix Q2.
The solid blue line is the concentration of target 1 (Table 5), and the black dots are the history of the
concentration changes. (a) Acetone. (b) Ethanol. (c) Diethyl ether.

Figure 13. Results of the concentration-change track with the feedback using weight matrix Q3.
The number of iterations was changed to five times from 20 times. The broken red line is the
concentration of target 2, and the black dots are the history of the concentration changes in each figure.
(a) Acetone. (b) Ethanol. (c) Diethyl ether.



Sensors 2019, 19, 5442 14 of 18

The second term of weight matrix R was set to 50I, where I is an identity matrix. The accuracy of
the concentration-change track with Q1 was worse than others when the target concentration was low
(see Figure 11). However, using Q2, the accuracy was improved (see Figure 12). Figure 13 shows the
result with Q3. The number of iterations was reduced to five times.

4. Discussion

When we measure the all possible combinations of component concentrations, the measurement
time increases exponentially. This is one of the reasons for developing the on-line system. The ternary
mixture quantification needs 2–3 h in this situation. The on-line measurement reduces the time
drastically, since its exploratory area in concentration space is quite limited. Thus, the measurement
time can be reduced from 3 h to 10 min. In order to further reduce the quantification time, the cleaning
process should be skipped. Moreover, the alternate measurement of the target gas and blended gas
repeatedly is useful to eliminate the background fluctuation.

The reason for successful on-line quantification (Figures 7 and 9a) was due to the appropriate
quantization. If the concentrations were not quantized, the update points moved in the wrong
direction due to the error (Figure 8). On the contrary, the update point (Figure 7) went straight to the
target point. The result in Figure 8 indicates that estimated gradients were inappropriate because the
update point seemed to be irregularly moved, although it moved toward the inappropriate direction.
Thus, the quantization of an appropriate concentration level is necessary.

The reason that the update point in Figure 9b did not reach the target point is due to a local
minimum because the smallest error value Elm in Figure 9b (= 7.4) was still high compared with
smallest error value Egm (= 3.8) in Figure 9a, which is almost the global minimum. The difference
between Elm and Egm can be utilized to detect the local minimum. Even if the initial point in Figure 9b
is used, the target point concentrations (the red hexagram in Figure 9a) can be obtained when the local
minimum detection triggers the jump to the area outside the local minimum.

We also confirmed the capability to track the temporal change of each component concentration in
the mixture, as is shown in Figure 10. However, the large concentration changes per each step were not
allowed, because it took a long time to find the solution when those changes were large. Thus, the track
of temporal change of each component concentration with the feedback method was considered in
order to track faster changes of the concentrations without any limitations.

When the target concentrations were larger than certain levels, the simulation with the feedback
method was successful (Figure 11), because the tracked concentrations became approximately the same
concentrations as the target ones. Although the accuracy deteriorated when the target concentrations
became lower, it was improved using Q2. The optimal Q depends on the target concentrations.
The advantage of the feedback method over the gradient descent method is to reduce the number
of measurement points. The number of iterations was reduced from 20 to 5 when Q3 was used
(see Figure 13). The time may decrease down to two minutes and 30 seconds with actual measurement,
because around 20 iterations in Figure 7 took 10 minutes. Although the linear model was used
here, a nonlinear model might further enhance its performance. Recently, Sun et al. utilized the
machine learning method for clinical wound detection, and it achieved high-detection rates [24].
Therefore, if machine learning methods can be combined with this method for feature extraction, it
will improve the performance.

5. Conclusions

Recently, FAIMS is mainly used for the integration of MS [25–27] or solving classification problems
for medical disease analysis [28]. Our method to quantify mixtures is a new approach to the application
of FAIMS. Our quantification method needs only FAIMS without any other expensive measurement
equipment. This paper reports the on-line quantification for ternary gas mixtures using FAIMS
and the simulation of odor tracking using FAIMS for the feasibility of real-time quantification using
FAIMS. The on-line quantification using FAIMS was successful. Moreover, on-line quantification
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for sub-ppb-level concentrations was demonstrated. The feasibility of tracking of the temporal
concentration changes with the feedback method was exhibited. In the future, this system can integrate
olfactory display, and it can be used for an odor replicate system. FAIMS can also be utilized for
odor replication in virtual reality. Moreover, this approach can be applied to an odor-tracking robot.
Kostyukevich et al. reported odor tracking using a drone with FAIMS [29]. We will make the mixture
quantification with FAIMS more sophisticated in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5442/s1,
Figure S1: 2D-view of Figure 7, Figure S2: 2D-view of Figure 7 with all of collected points, Figure S3: 2D-view of
Figure 9a, Figure S4: 2D-view of Figure 9a with all of collected points, Figure S5: 2D-view of Figure 9b, Figure S6:
2D-view of Figure 9b with all of collected points.
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Appendix A

The derivations of Equations (9)–(12) are shown in below [23]. The difference between sk+1 and
starget is written in the form:

sk+1 − starget = F
(
sk − starget

)
+ Guk, (A1)

where sk is the sensor response vector to the blended at time kT, and starget is the sensor response vector
to the target gas mixture. The index value to be minimized is defined as

Jp−1 =
(
sp − starget

)T
Q

(
sp − starget

)
+ uT

p−1Rup−1. (A2)

The index value Jp−1 at time (p−1)T is expressed using Equations (A1) and (A2):

Jp−1 =
{
F
(
sp−1 − starget

)
+ Gup−1

}T
Q

{
F
(
sp−1 − starget

)
+ Gup−1

}
+ uT

p−1Rup−1. (A3)

When Jp−1 is differentiated with respect to up−1, the following equation is obtained:

∂Jp−1

∂up−1
= 2GTQ

{
F
(
sp−1 − starget

)
+ Gup−1

}
+ 2Rup−1. (A4)

up−1 is obtained as the solution to minimize the Jp−1 if the Equation (A4) is set to zero:

up−1 = −
(
GTQG + R

)−1
GTQF

(
sp−1 − starget

)
. (A5)

When the feedback gain matrix Kp−1 at the time (p−1)T is defined by

Kp−1 =
(
GTQG + R

)−1
GTQF, (A6)

Equation (A5) is transformed to next equation:

up−1 = −Kp−1
(
sp−1 − starget

)
. (A7)

http://www.mdpi.com/1424-8220/19/24/5442/s1
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If up−1 in Equation (A7) is substituted into Equation (A5) from Equation (A3), Jp−1 is expressed
the following equation:

Jp−1 =
{
F
(
sp−1 − starget

)
−GKp−1

(
sp−1 − starget

)}T
Q

{
F
(
sp−1 − starget

)
−GKp−1

(
sp−1 − starget

)}
+

(
sp−1 − starget

)T
KT

p−1RKp−1
(
sp−1 − starget

)
=

(
sp−1 − starget

)T{
F−GKp−1

)T
Q

(
F−GKp−1

)
+ KT

p−1RKp−1

}(
sp−1 − starget

)
=

(
sp−1 − starget

)T
{
FTQ

(
F−GKp−1

)
−KT

p−1GTQF + KT
p−1

(
GTQG + R

)
Kp−1

}(
sp−1 − starget

)
.

(A8)
Equation (A8) can be transformed using Equation (A6):

Jp−1 =
(
sp−1 − starget

)T
{
FTQ

(
F−GKp−1

)
−KT

p−1GTQF + KT
p−1GTQF

}(
sp−1 − starget

)
=

(
sp−1 − starget

)T
FTQ

(
F−GKp−1

)(
sp−1 − starget

) (A9)

If Pp−1 is defined as
Pp−1 = FTQ

(
F−GKp−1

)
, (A10)

then Equation (A11) is obtained:

Jp−1 =
(
sp−1 − starget

)T
Pp−1

(
sp−1 − starget

)
. (A11)

Let us consider the index value Jp−2 at time (p−2)T. The equation is given by

Jp−2 =
(
sp−1 − starget

)T
Q

(
sp−1 − starget

)
+ uT

p−2Rup−2 + Jp−1 (A12)

using Equation (A8). If Equation (A12) is differentiated with respect to up−2, the following equation is
obtained:

∂Jp−2

∂up−2
= 2GTQ

{
F
(
sp−2 − starget

)
+ Gup−2

}
+ 2Rup−2 +

∂Jp−1

∂up−2
. (A13)

The differentiation of Jp−1 with respect to up−2 is given by

∂Jp−1
∂up−2

= ∂
∂up−2

[{
F
(
sp−2 − starget

)
+ Gup−2

}T
Pp−1

{
F
(
sp−2 − starget

)
+ Gup−2

}]
= 2GTPp−1

{
F
(
sp−2 − starget

)
+ Gup−2

} (A14)

using Equation (A11). Therefore, the following equation is obtained using Equation (A14) if Equation
(A13) set to zero:

up−2 = −
{
GT

(
Q + Pp−1

)
G + R

}−1
GT

(
Q + Pp−1

)
F
(
sp−2 − starget

)
= −

(
GTMp−1G + R

)−1
GTMp−1F

(
sp−2 − starget

)
= −Kp−2

(
sp−2 − starget

)
,

(A15)

where
Mp−1 = Q + Pp−1 (A16)

Kp−2 =
(
GTMp−1G + R

)−1
GTMp−1F. (A17)
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Jp−2 can be obtained using Equation (A16):

Jp−2 =
(
sp−1 − starget

)T
Q

(
sp−1 − starget

)
+ uT

p−2Rup−2

+
(
sp−1 − starget

)T
Pp−1

(
sp−1 − starget

)
=

(
sp−1 − starget

)T(
Q + Pp−1

)(
sp−1 − starget

)
+ uT

p−2Rup−2

=
(
sp−1 − starget

)T
Mp−1

(
sp−1 − starget

)
+ uT

p−2Rup−2.

(A18)

Comparing Equation (A18) with (A2), Jp−2 can be transformed in the same manner as the
calculation for the Jp−1 (Equations (A8)–(A11)):

Jp−2 =
(
sp−2 − starget

)T
Pp−2

(
sp−2 − starget

)
, (A19)

where
Pp−2 = FTMp−1

(
F−GKp−2

)
. (A20)

The calculation is repeated from the time (p-2) T to the time 0. Therefore, Equations (9)–(12)
are obtained.
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