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Detecting the ultra low dimensionality
of real networks

Pedro Almagro 1, Marián Boguñá 2,3 & M. Ángeles Serrano 2,3,4

Reducing dimension redundancy to find simplifying patterns in high-
dimensional datasets and complex networks has become a major endeavor
in many scientific fields. However, detecting the dimensionality of their latent
space is challengingbut necessary to generate efficient embeddings to beused
in a multitude of downstream tasks. Here, we propose a method to infer the
dimensionality of networks without the need for any a priori spatial embed-
ding. Due to the ability of hyperbolic geometry to capture the complex con-
nectivity of real networks, we detect ultra low dimensionality far below values
reported using other approaches. We applied our method to real networks
from different domains and found unexpected regularities, including: tissue-
specific biomolecular networks being extremely low dimensional; brain con-
nectomes being close to the three dimensions of their anatomical embedding;
and social networks and the Internet requiring slightly higher dimensionality.
Beyond paving the way towards an ultra efficient dimensional reduction, our
findings help address fundamental issues that hinge ondimensionality, such as
universality in critical behavior.

The problem of dimensions—identifying the dimensionality of the
relevant space associated with a given phenomenon—recurs across
disciplines in the natural sciences. In statistical physics, the number of
spatial dimensions is one of the few factors that determines the critical
properties and the universality class of extended systemswhere events
at multiple length scales make relevant contributions. In the string
theory framework for particle physics and quantum gravity, extra
invisible dimensions lie beyond the three that we observe in ordinary
space. However, those additional dimensions cannot be reached either
because they could all be curled up into tightly packed manifolds or
because, even though someof them could be large, events that we can
experience are locked onto some subset of dimensions. This last idea
also emerges in a completely different framework within computer
science and network science: complex data and interactions only
populate a small subspace of their original high-dimensional space.
This blessing of dimensionality1,2 —recast as a curse of dimensionality3

in other contexts where the sparsity of data may be problematic—is

sustained by phenomena of measure concentration as dimension
increases4–6, which can greatly help mathematical analysis of real
systems7. Assisted by these effects, reducing dimension redundancy to
find simplifying patterns in high-dimensional datasets and graphs has
become a major endeavor.

In the field of computer science, a variety of data-driven techni-
ques have been proposed to facilitate this task8–12. These techniques
aremost often based on somedefinitionof similarity distance between
the elements in the dataset13–15 and involve the construction of a
similarity graph that is mapped onto a latent low-dimensional space,
typically Euclidean, where connected nodes are kept close to each
other16–18. However, the intrinsic geometry of complex datasets and
graphs is not obvious, and defining similarity distances in agreement
with their relational and connectivity structure is challenging. In
addition, the graph embedding techniques employed often assume a
latent space with a predetermined number of dimensions or imple-
ment heuristic techniques to find a suitable value for the embedding
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dimension, for instance by evaluating the quality of embeddings
across different dimensions12,19. Moreover, different embedding mod-
els applied to the same network may lead to different values of the
selected embedding dimension. Independent principled methods are
thus required tofind the intrinsic geometry anddimensionof datawith
complex structure.

In the framework of network science, the characterization of
dimensionality is linked to the definition of distance. The fractal
dimension of a network has been defined on the basis of scaling
properties under a length scale transformation using similarity dis-
tances defined in terms of topological shortest paths20–28. The same
procedure has also been applied to networks using explicit geometry—
for instance, geography—as the reservoir of distances, with the result
that networks characterized by a wide distribution of link lengths in
Euclidean space have a fractal dimensionality higher than that of the
explicit space29. Alternatively, the dimensionality of such spatial net-
works has also been measured as a correlation dimension computed
from time series that describe network trajectories of random
walkers30.

Here, we introduce a method to infer the dimensionality of the
latent hyperbolic space underlying the connectivity of a complex
network without the need for any a priori spatial embedding. We also
avoid shortest path distances since they are strongly affected by the
small-world property and do not provide a broad range of distance
values. Within the context of network geometry31, our approach is
model-driven and assumes that real networks arewell described by the
geometric soft configuration model in D dimensions, the SD=HD+ 1

model, which is a multidimensional generalization of the S1 model32

and its H2 purely geometric formulation in hyperbolic space33. The
S1=H2 model is based on fundamental principles to describe the
observed connectivity of real unweighted and undirected networks.
The model assumes a one-dimensional similarity space plus a popu-
larity dimension from which hyperbolic geometry emerges as the
geometry that naturally embodies the hierarchical architecture of
networks. In this way, the model explains many typical features of real
networks including sparsity, the small-world property, heterogeneous
degree distributions, and high levels of clustering34. Furthermore,
statistical inference techniques allow us to obtain maps of real net-
works in the hyperbolic plane that are congruent with the model35.
Beyond visualization, these representations have been used in a mul-
titude of tasks, including efficient navigation36–38; the detection of
patterns such as self-similarity32,37,39,40 and communities of strongly
interacting nodes41,42; and the implementation of a renormalization
procedure that brings to light hidden symmetries in the multiscale
nature of complex networks37,40 and enables scaled-down and scaled-
up network replicas43.

The geometric soft configuration model is able to do that while
being a maximal entropy model, meaning that it makes the minimum
number of assumptions to explain observations given the constraints
(degree distribution and level of clustering). Hence, it is the most
parsimonious option providing the simplest explanation for the
complex topology of real networks34. As we show below, the multi-
dimensional model can produce different graph structures—while
preserving sparsity and the small-world property—by changing the
degree distribution, parameter β that controls clustering, and the
dimension D that controls the chordless cycles spectrum. This
dependencyof the densities of chordless cycles of different lengths on
the dimensionality of the model is the feature that we exploit to
implement our dimensionality detection methodology.

Results
Statistics of cycles and their relation with dimensionality
If networks aremetrical and related to a latent space in such a way that
connections between nodes aremore likely the closer the nodes are in
that space, then differences in the structure of the space due to

changes in its dimensionality should be naturally reflected in the
topology of the networks. This suggests that measuring the intrinsic
dimensionality of a complex network should bepossible by computing
profiles of structural properties that are expected to be sensitive to
dimensionality. Synthetic surrogates producedwith the generalization
of the S1=H2 model to D similarity dimensions, the SD=HD+ 1

model32,34, can then be used to assess the statistics obtained. In what
follows, we prove that the frequencies in the graph of chordless cycles
of different lengths are just such key structural properties. A chordless
cycle is defined as a closed path in the graph without a cycle chord,
meaning that all edges between the nodes of the cycle belong to the
edge set defining it. Persistent homology of complex networks44–46 —a
recently developed computationalmethod that quantifies the stability
of topological features (typically holes measured as voids bounded by
simplices) in the simplicial complexes of a sequence of successive
approximations of the original dataset—also focuses on the statisticsof
a particular type of cycles to obtain geometrical information. In con-
trast to persistent homology, in our work we compute local edge
cycles in the original network and thus we are not restricted to sim-
plicial complexes. More importantly, persistent homology does not
shed any light on themanifold structure beyond its homology or on its
relation with network connectivity and, even if the qualitative geo-
metric structure of the data is detectable, the precise dimension is
highly sensitive to noise and difficult to estimate using this technique,
especially in medium-sized to large networks.

In the SD model, a node i is assigned two hidden variables: a
hidden degree κi, quantifying its popularity or importance, and a
position in a similarity space, represented as a D-dimensional sphere,
denoted by vi. The probability of connection between any pair of
nodes i and j takes the form of a gravity law, and its magnitude
increases with their combined popularities and decreases as their
similarity distance increases, so that more popular and similar nodes
are more likely to be connected:

pij =
1

1 + χβij
with χ ij =

RΔθij

ðμκiκjÞ1=D
: ð1Þ

The hidden variable κi of node i is called its "hidden degree” because it
coincides with the expected degree of node i in the ensemble of graphs
producedby themodel. Thus, the degree distribution of these graphs is
strongly related to the distribution of hidden degrees, ρ(κ), which is
arbitrary. To model the degree heterogeneity observed in real net-
works, here we chose ρ(κ) to be power-law distributed, that is, ρ(κ)∝ κ−γ

with γ> 2.Δθij is the angular distance between the two vectors, vi and vj,
positioningnodes i and j in theD-dimensional similarity sphereof radius

R=
�

N

2π
D + 1
2
Γ D+ 1

2

� �� 1
D, whereN is the number of nodes in the graph so that,

without loss of generality, the density of nodes on theD-sphere is set to
1. The parameter β (or inverse temperature) calibrates the coupling of
the network with the underlying metric space and controls the level of
clustering in the topology (cycles of length three in the network
induced by transitive relations) as a reflection of the triangle inequality
in the latent geometry. Finally, the parameter μ controls the average
degree of the network. The Fermi-Dirac form of the connection
probability in Eq. (1) is the only possible choice that defines maximally
random ensembles of geometric graphs which are simultaneously
sparse, heterogeneous, clustered, small-worlds (if γ < 3 or β < 2D),
and degree–degree uncorrelated34. In its isomorphic purely geometric

formulation, the HD+ 1 model33,47,48, the popularity and similarity
dimensions are combined into a single distance in (D + 1)
hyperbolic space.

We next prove that cycles of different length and dimensionality
are intertwined in SD networks in a non-trivial way, which ultimately
enables us to determine D. In particular, clustering poses an upper
limit on the dimension of the similarity space. As noted in
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the supplementarymaterial in37 and in49, the distances between points
randomly scattered on the surface of a D-sphere become more
homogeneous and approach a constant as D increases, so that the
model becomes dependent on the hidden degree only and tends to a
zero-clustering limit for very large networks. This is illustrated by the
behavior of the average local clustering coefficient of nodes, C, and by
themeandensity of edge triangles,Ct, in synthetic networks generated
by the SD model with realistic parameters, Fig. 1A, B. Specifically, we
used power-law distributions for the hidden degrees P(κ) ~ κ−γ and
measured Ct as the number of triangles incident on an edge properly
normalized. Normalization is performed by dividing the number of
triangles going through an edge by the maximum possible number
given the degrees at the ends of the edge and then averaged over links
that connect nodes in the networkwith a degree greater than one. The
maximum value of both C and Ct is obtained at β =∞ (or zero tem-
perature), for which the probability of connection becomes a step
function. These maximum values decrease as D increases for all
values of the exponent γ, Fig. 1A, B. As shown, for a typical value of the
mean density of edge triangles in real networks, Ct >0.5 (see Table S1),
the dimension of the similarity space can be atmostD ≈ 7 when γ = 2.5,
or D ≈ 5 if γ = 3. The dependency on dimensionality is also evident for
the mean density of (chordless) edge squares, Cs, and pentagons, Cp,
shown in Fig. 1C and 1D. As in the case of triangles, normalization is
performed by dividing the number of squares (pentagons) going
through an edge by the maximum possible number given the degrees
at the ends of the edge discounting participation in triangles (partici-
pation in triangles and squares). The obtained quantity is averaged
over links that connect nodes in the network with a degree greater
than one. As opposed to edge triangles, the densities of edge squares
and pentagons are notmonotonous but display amaximum for a value
of the dimension that increases with network heterogeneity. Notice
that clustering coefficients can alternatively be defined relative to
individual nodes, insteadof edges.While the results are similar, in50 we
found the definition relative to edges to bemore stable with respect to
degree heterogeneity than the relative to nodes, which is what moti-
vated our choice.

Note that all our measurements in this work are of chordless
cycles, to ensure that the densities are not directly dependent on each
other. We can therefore exploit this independence by analyzing the
“phase space” defined by (Ct,Cs,Cp). In principle, the phase space can

be extended to cycles of higher order. However, in small-world net-
works, the frequencyof chordless cycles abovepentagons is extremely
low. Figure 2 shows the behavior of pairwise relations between the
mean densities of edge triangles, squares, and pentagons in networks
generated with the SD=HD+ 1 model for different dimensions D and
values of γ; the graphs reveal the delicate balance between the three
densities. For a fixed D and γ, each curve is obtained by varying the
inverse temperature β∈ (D,∞). The curves for the different dimen-
sions in Fig. 2A–C, showing the projection on the plane (Cs,Ct),
Fig. 2D–F, for the plane (Cp,Ct), and in Fig. 2G–I, for the plane (Cp,Cs),
are clearly differentiated, meaning that each dimension presents a
characteristic profile.

There are several interesting patterns that can be observed in the
phase space (Ct,Cs,Cp). First, all the curves tend to collapsewhen there
is only a small level of clustering, thus becoming dimension indepen-
dent. This is to be expected because in this case the topological
equivalent of the triangle inequality breaks down, so that the network
loses its metric character. In addition, all the curves tend to be closer
together—and so tend towards dimension independence—as γ→ 2.
This implies that, beyond the fact that ametric spacemay beneeded to
explain the observed levels of clustering, its dimensionality is not very
important when degrees are strongly heterogeneous and networks are
dominated by very big hubs. In turn, this explains why highly hetero-
geneous real networks are extremely well described by the S1

model35,36,41,51.

Inferring hidden dimensions
These results suggest a method by which we can infer the hidden
dimension D* of a real network. First, we created an ensemble of syn-
thetic surrogates using the SD model with different values of the
inverse temperature β and dimension D. To preserve the consistency
of the hidden degrees in the synthetic networks and of the observed
degrees in the original graph, we computed hidden degrees using an
iterative process35 that forces a match between expected degrees in
the model and observed degrees, see subsection “Estimation of the
hiddendegrees” in theMethods section. This step alsoensures that the
model reproduces the degree distribution of the real network with
high fidelity. After obtaining the hidden degrees, we assigned homo-
geneous random positions to the N nodes in the D-dimensional simi-
larity space. To keep the process computationally efficient, we
restricted the ensemble of synthetic surrogates to feasible values of D
and β. The maximum achievable density of edge triangles happens at
β =∞ anddecreasesmonotonously for increasing values ofD, as shown
above in Fig. 1. Accordingly, we set the maximum dimension to be
explored as the maximum dimension able to reproduce the level of
edge clustering of the network under study. For each D less than or
equal to the maximum value, we decided the set of inverse tempera-
tures, β, to be explored by sampling homogeneously the phase space
of edge clustering in a neighborhood of the observed value, see sub-
section “Estimationof the rangeof inverse temperatures in the random
ensemble” in Methods. The sample of random surrogates was gener-
ated using the connectivity law Eq. (1). The densities of edge triangles,
squares, and pentagons were then computed for each surrogate in the
ensemble and for the real network. Finally, a data-driven classifier was
used to infer D* from the surrogates that best approximate the real
network in terms of edge cycles.

This method can produce as many random network surrogates
for a real network as needed to ensure statistical significance. Thus, a
simple classifier is suitable for predicting the dimensionality of a net-
work; we used K-nearest neighbors (K-NN). The K-NN classifier iden-
tifies the K surrogates closest to the original network in the surrogate
(Ct,Cs,Cp) phase spacebyminimizing Euclideandistance. Tomaximize
the accuracy of our procedure, we also implemented an optimization
of parameter K for each original network, see subsection “Classifier
selection” inMethods. The inferred dimensionof the real networkD* is

Fig. 1 | Maximum clustering as a function of the dimension. Maximum value of
node clustering (A), and mean density of edge triangles (B), squares (C), and
pentagons (D), as a function of the dimension D and power law exponent γ in
synthetic networks generated by theSD model. Values correspond to averagesover
100 network realizations of sizeN = 1000 and β =∞. The error bars are smaller than
symbol sizes. The value of μ in Eq. (1) was adjusted so that the observed average
degree was <k>= 10:0±0:1 in all networks.
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that which maximizes the weighted frequency f ðDÞ= PK
i= 1 ωiδDi ,D

,
where the normalized weights are inversely proportional to the dis-
tance di between the real network and the i-th surrogate in the (Ct,
Cs,Cp) space and δDi ,D

is the Kronecker delta function, so that themost
recurrent dimension in neighboring surrogates closest to the original
network tends to dominate. We also carried out tests using decision
trees and neural networks as classifiers, and obtained similar results,
see subsection “Classifier selection” in Methods.

We evaluated the performance of our method by testing it on
model networks generated using theSD=HD+ 1 model.Model networks
were produced for specific values of γ, β, and D, and taken as test
networks, meaning that an ensemble of random synthetic surrogates
was generated for each of them, including the estimation of hidden
degrees from observed degrees in the test network. The inferred
dimensionality, D*, of the test networks was then used to generate
confusion matrices, defined as the probability of predicting D* in a
network generated with dimensionD. To quantify the goodness of our
method, we computed confusion matrices for different types of
topologies. Specifically, we tested networks with different degree
heterogeneities by varying the exponent γ, and for each of them we
inferred the dimension of networks within two different intervals of β:
one corresponding to the high clustering regime centered around
β = 2.5D, and the other to the low clustering limit in the neighborhood
of β = 1.5D, more details can be found in subsection “Calculation of
confusion matrices” in Methods. Confusion matrices for these
experiments are shown in Fig. 3. An inference method is considered a
good method when the confusion matrices are close to the identity
matrix. As shown, the predictions were very good, only generating

mild confusionwith contiguous values ofD for low values of β, γ andD,
as expected. This fact is consistent with the tendency of the paired
density edge curves Ct,CS,Cp to converge for low values of β and γ, as
shown in Fig. 2.

Dimensionality of real networks
We applied our method to infer the dimensionality of real complex
networks fromdifferent domains. As a case example, Fig. 4 showsmean
densities of edge cycles for three real networks: the Internet at the
autonomous system level36, the email network within the Enron
company52, and the human connectome from53. The curves for the dif-
ferent dimensions are clearly separated in the email network and in the
human connectome, which have very clean estimations of D* with
extremely high accuracies as shown in Table S1 in SI. In both cases, the
measured edge densities were well reproduced by the SD*

model with
D* = 7 and D* = 3, respectively. The case of the Internet at the autono-
mous system level is particularly interesting. Even though the dimen-
sion was clearly identified, D* = 7, curves for different dimensions were
very close to each other, introducing a certain uncertainty into the
inference. This is due to the high heterogeneity of the degree distribu-
tion, with a power-law exponent γ ≈ 2.1, which implies that its topology
can be reasonable well reproduced even with D = 1. Nevertheless, the
high value of the inferred dimension suggests that relevant information
is hidden in its complex similarity space. This evinces the need to
develop embedding algorithms working in arbitrary dimensions that
could be used to uncover the hidden attributes of their components.

The cluttering of the curves for the different dimensions in the
cycles phase space affects the accuracy of the estimated dimension of a

Fig. 2 | Relationbetween densities of edge triangles, squares andpentagons for
different values of γ. Panels (A–C) show the projection of the phase space in the
subspace (Cs,Ct), panels (D–F) show the projection in the subspace (Cp,Ct), and
panels (G–I) show the projection in the subspace (Cp,Cs). In plots (A–F), the dashed
red line represents the β = 2D limit separating the small-world and large-world

phases34. In these plots, the area on the left of the dashed red line corresponds to
β < 2D (small-world phase) and the area on the right corresponds to β > 2D (large-
world phase if γ > 3). Eachpoint represents an average over 10 network realizations.
Standard errors are smaller than the symbols themselves.
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real network, which is calculated as the proportion of random surro-
gates of the real network whose dimension is inferred correctly by the
corresponding K-NN classifier. Note that accuracy is a measure of the
resolution capacity of the dimensionality detectionmethod (error rate
associated to the K-NN classifier), which is informative about the error
in the best estimate of the embedding dimension because it quantifies
how discernible is the dimension of a real network, and the more dis-
cernible it is the higher the likelihood that the method selects the best
value. Confusion matrices in Fig. 3, defined as the probability of pre-
dicting D* in a network generated with dimension D as a function of
clustering and heterogeneity in the network, complement the infor-
mation provided by accuracy. It should be noted that inmore than half
of the 33 networks analyzed in this work the accuracy reached values of
over 90%, and in more than 40% the accuracy is of 99% or absolute.

Figure 5 shows the inferred dimensionality of the 33 real net-
works as a function of their domain. See also Table S1 where we
report the accuracy of the inference. In all the domains, we found
most of the networks to have very low to moderate dimensions, in
the range D* = [1, 4]. In the higher dimension range, the Internet has
an inferred dimensionD* = 7, and friendship (both online and offline)
and email networks range from D* = 6 up to D* = 9, which could be a
reflection of the extremely complex nature of human social interac-
tions. The PGP-trust andEUEmail networks are clear exceptions in the
category with D* = 1 and D* = 3, respectively. The former is driven by
digital trust between the users of an encryption program, while the
later represents email communications between members of a large
European research institution. Hence, both these cases depart from
the postulates of homophily in social intercourse. Interestingly, the
dimensionality of collaboration networks is lower than that of
friendship networks, as an indication of more constrained social
dynamics in professional environments. In the biological category,

we foundonenetworkwith higher dimensionality as compared to the
others in the same category: the network of genetic interactions in
the organism Drosophila melanogaster. The higher dimension
observed for this network can be understood because it is the pro-
jection onto a single layer of a multiplex network that describes
different types of genetic interactions. In addition, the dimension-
ality of brain connectomes remains close to the three dimensions of
their anatomical Euclidean embedding, while transport networks are
slightly above the two dimensions of their geographical embedding.
Finally, the inferred dimensionality for networks of the co-
occurrence of terms in language and music is D* = 5 and D* = 6,
respectively, while the citation and hyperlink networks are within the
intermediate to low dimensionality region.

Discussion
Dimensionality is a key concept in the project of understanding the
geometrical structure of reality. In recent years, the quest to identify
dimensionality has reached computer science and network science
where, sustained by phenomena of measure concentration, complex
data and interactions only populate a small subspace of their original
high-dimensional space. The method we present here does not need
any a priori spatial embedding and infers the dimensionality of a graph
by exploiting the fact that the densities of edge cycles in its topology
carry information about its dimensionality. Our results not only prove
that complex networks populate a reduced region of a high-
dimensional space but also that they are well represented in hyper-
bolic geometry with ultra low dimensionality.

This claim is valid for complex networks that are simultaneously
sparse, small-world, and highly clustered, and possibly—but not
necessarily—with heterogeneous degree distributions. Even if a real
network is naturally embedded in Euclidean space, this minimal set of
complex features ensures that our methodology is applicable, mean-
ing that explicit Euclidean distances in those systems are not the only
factor that determines connectivity in the network and other features
mayhave a role aswell. At the same time, our formalism is also valid for
geometric randomgraphs, whichare very homogeneous and clustered
and non small world networks, which happen in our model when γ > 3
and β > 2D. This means that graphs in this region of the parameter
space are effectively described by the geometry of theD-sphere, which
becomes the Euclidean space in the thermodynamic limit, rather than
by hyperbolic geometry. Finally, links in D-dimensional lattices are
strongly correlated whereas in our model links are statistical inde-
pendent. D-dimensional lattices are, thus, not suited to being descri-
bed by our hyperbolic multidimensional model.

We should also mention that some networks present anomalous
statistics of higher-order edge cycles that cannot be perfectlymatched
by the geometric soft configuration model in any dimension. The
typical anomalous situation is one in which, for a given value of edge
triangles, the value of edge squares or pentagons is higher than the
maximum value when dimension D = 1. In such cases, our method
would predict an inferred dimension D* = 1, but such networks were
not included in the datasets wehave explored in this work. Also, theSD

model will tend to give and upper bound to the dimension of real
networks with spurious clustering, like in one-mode projections of
bipartite networks, but the underestimation is minimized if the net-
work has a heterogeneous degree distribution. Nervertheless, in gen-
eral themodel provides a very gooddescriptionof the structureof real
networks proving that their latent geometry is hyperbolic.

We applied our method to a large number of real networks from
different domains and found dimensionalities in the range fromone to
nine, with some striking regularities. Among these, we found tissue-
specific biomolecular networks in the cell to be extremely low
dimensional; connectomes in the brain to be close to the three
dimensions typical of their anatomical Euclidean embedding; and
social and a technological network, such as the Internet, to require

Fig. 3 | Confusionmatrices.The left column shows results forβ = 1.5D anddifferent
values of γ. This choice of β corresponds to the small-world phase even if γ > 3. The
right column shows the same for β = 2.5D. In this case, networks with γ > 3 are large-
worlds. The color in each D −D* box indicates the probability that the predicted
dimension is D* when the dimension used to generate the synthetic network is D.
Each panel is evaluated with approximately 5 × 103 networks, more details in sub-
section “Calculation of confusion matrices” in Methods.
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more dimensions for a faithful description. This means that despite
complex networks having a much lower dimension than their overall
size in terms of the number of nodes, more than one similarity
dimension is typically needed to map their complex architecture.
Social networks based on friendship are at the top of the dimension-
ality ranking, which reflects homophily in human interactions being
determined by a multitude of sociological factors including age, sex,

social class and beliefs or attitudes54. Our results are in the range of the
logarithmic relationship argued for in ref. 55, between the dimension
of anunderlyingmetric space and the number of nodes in online social
networks.The caseof the Internet is particularly striking. Despite being
a technological network, its higher dimensionality is a reflection of the
fact thatmany different factors influence the formation of connections
between autonomous systems and, as a consequence, a variety of

Fig. 5 | Dimensions of real networks by category. The size of the symbol is proportional to the number of networks with the same dimension.

Fig. 4 | Estimation of the dimension of real networks.Mean densities of edge triangles, squares, and pentagons for the Internet at the autonomous system level (A–C),
the email network within the Enron company (D–F), and a human connectome (G–I).
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relationships may be present, for instance provider–customer, peer-
to-peer, exchange-based peering, sibling, or backup relationships,
amongothers56. In any case, our estimations arewell belowestimations
based on Euclidean space because hyperbolic space is more appro-
priate to represent the hierarchical structure of real complex networks
and it is more suited to embed real world networks. To make a con-
crete example, the Internet requires only D = 7 dimensions to be
embedded in hyperbolic space in our framework, while this number
multiplies by six scaling up to D = 47 in Euclidean space57.

Beyond providing a reliable multidimensional hyperbolic model
of complex networks that reproduces their structure faithfully with
ultra low and customizable dimensionality, our results pave the way
towards a meaningful practical method for an ultra efficient dimen-
sional reduction of complex networked system by embedding them in
their multidimensional hyperbolic space. Apart from providing more
accurate descriptions than two-dimensional maps in the hyperbolic
plane,multidimensional hyperbolic embeddings will help to reveal the
correlation of factors known to determine connectivity in complex
systems—such as geographic and cultural ones in economic and social
networks—with the dimensions identified. Another interesting ques-
tion concerns how the different dimensions in multidimensional
hyperbolic maps of real networks line up with multiplexity, where
different types of relationships connect pairs of nodes. In addition, our
findings can be exploited to create predictive models from relational
data with complex structure and help address fundamental issues that
hinge on dimensionality. In networks, not only does dimensionality
have an impact on the structural characterization of connectivity, but
is also crucial for understanding network function, as the dimension
governs dynamical processes on networks, such as diffusion and syn-
chronization, as well as their critical behavior.

Methods
Estimation of hidden degrees of real networks
Given a real network, our goal is to generate networks with the SD

model but preserving the degree distribution of the real network as
much as possible. In the SD model, hidden degrees are given fixed
values but nodes’ degrees are random variables that depend on the
hidden degrees. Therefore, to reproduce the degree distribution, we
have to find the sequence of hidden degrees that better reproduces
the sequenceof observeddegrees. Todo so, we generalize themethod
in35 to arbitrarydimensions. Given a set of parametersβ andD, for each
observed degree class k in a real network, we infer the corresponding
hidden degree κ so that the ensemble average degree of the SD model
of a node with hidden degree κ is equal to its observed degree, that
is, �kðκÞ= k.

After this procedure, the degree distribution of synthetic net-
works generatedby theSD modelwith the inferred sequenceof hidden
degrees is very similar to the one from the real network. Specifically,
1. Initially set κi = ki∀ i = 1,N, where ki is theobserveddegreeof node

i in the real network.
2. Compute the expected degree for eachnode i according to theSD

model as

�kðκiÞ=
Γ D+ 1

2

� �
ffiffiffiffi
π

p
Γ D

2

� �X
j≠i

Z π

0

sinD�1θdθ

1 + Rθ
ðμκiκj Þ1=D

� �β
, ð2Þ

where R=
�

N

2π
D + 1
2
Γ D+ 1

2

� �� 1
D and μ=

βΓ D
2ð Þ sinDπ

β

2π1 +D
2 hki

.

3. Correct hidden degrees: Let ϵmax = max
i

f∣�kðκiÞ � ki∣g be the max-
imal deviation between actual degrees and expected degrees.
• If ϵmax > ϵ, the set of hidden degrees needs to be corrected.

Then, for every class of degree ki, we set ∣κi + ½ki� �kðκiÞ�u∣ ! κi,
where u is a random variable drawn from U(0, 1). The random
variable u prevents the process from getting trapped in a local

minimum.Next, go to step 2 to compute the expected degrees
corresponding to the new set of hidden degrees.

• Otherwise, if ϵmax≤ϵ, hidden degrees have been correctly
inferred for the current global parameters.

Following this algorithm, we can generate surrogates of a given
network Gwith different D and β values without modifying the degree
distribution. The tolerance value of ϵ used in this work is ϵ = 1.

Estimation of the range of inverse temperatures in the random
ensemble
Inverse temperature β can take any value within the range (D,∞).
However, the relation between edge clustering CD

t ðβÞ and β in the SD

model is non-linear, approaching zero atβ→D+ (in the thermodynamic
limit) and converging to a constant value when β→∞. Our aim is to
sample homogeneously the phase space of edge clustering in a
neighborhoodof the observed value. That is, if C*

t is the observed edge
clustering of a real network, we have to generate surrogate networks
homogeneously within the interval ðC*

t � ΔCt ,C
*
t +ΔCtÞ.

We first focus on the one dimensional case D = 1. In this case, we
first generate a small sample of 20 networks with the S1 model for
different values of β drawn from an uniform distribution U(1, 15) and
perform a non-linear fitting to the obtained values as a function of β
with the function

C1
t ðβÞ=C1

t,maxð1� e�aðβ�β0ÞÞ, ð3Þ

where C1
t,max , a, and β0 are fitting parameters. Once the fitting para-

meters are know, we can invert Eq. (3) to obtain β as a function of C1
t as

β= β0 � 1
a
ln 1� C1

t

C1
t,max

 !
: ð4Þ

Then, to generate thefinal set of networks,we sample values uniformly
in the interval ξ 2 ðC*

t � ΔCt ,C
*
t +ΔCtÞ and use Eq. (4) with C1

t = ξ to get
the corresponding values of β. In this work we use ΔCt = 0.1.

For higher dimensions, wemake use of the approximate empirical
scaling relation

CD
t ðβ=DÞ
CD
t,max

≈
C1
t ðβÞ

C1
t,max

, ð5Þ

which implies that the functional dependence of edge clustering on β
is approximately the same for every dimension up to scaling factors,
see Supplementary Fig. S1. This allows us to extrapolate the range of
values of β to be explored. Specifically, as in the one dimensional case,
we sample values uniformly in the interval ξ 2 ðC*

t � ΔCt ,C
*
t +ΔCtÞ.

Then, for each sampled value ξ we associate a value of β as

β =D β0 � 1
a
ln 1� ξ

C1
t,max

 !" #
, ð6Þ

where parameters a and β0 and C1
t,max are the ones obtained for the

case D = 1. Notice, however, that in some cases it is not possible to
sample the same interval of edge clustering in all explored dimension.
This can be due to the imperfect scaling relation Eq. (5), to the fact that
C*
t +ΔCt is higher than the value that can be reproduced in a given

dimension, or that C*
t � ΔCt gives values of β below the minimum

allowed value, that we set to D + 0.25. Using this procedure, we gen-
erate a set of 50 networks per dimension.

Classifier selection
In order to learn the relation between the proportion of triangles,
squares and pentagons in a real network and its dimensionality we
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have evaluated different supervised machine learning (ML) techni-
ques. Our examples are copies generated using the adjusted SD model
and we use cycle proportions as predictors and the dimension as the
target property.

Let us consider the set of copies x = (ϕ1,…,ϕN), each copy ϕ
characterized by a vector ϕ = [Ct(ϕ),Cs(ϕ),Cp(ϕ)] of 3 features and
dimension D(ϕ). Being D*(ϕ) the target feature to be estimated, the
problem consists of finding the function f such that f(ϕ) =D(ϕ) ±ΔD
that minimizes ΔD = |D*(ϕ)-D(ϕ)| for every ϕ in x. Since the dimension
of each copy is known in the training step, we use supervised ML
techniques to estimate function f.

In our problem, the target estimation D is a discrete value.
Although, there existmanydifferentMLalgorithms to predict this kind
of values, the no-free-lunch theorem58 states that no ML algorithm is
the best for every problem. In fact, the performance of ML algorithms
strongly depends on the classification problem, and the number and
distribution of the input instances. Therefore, it is unknown apriori the
techniques showing a good performance, and finding them usually
requires a trial and error process.

When selecting themachine learningmethod that allows to infer
the dimensionality associated to a network following the process
described in this paper, we have carried out tests with neural
networks59, decision trees60 and K-nearest neighbors (K-NN)61 meth-
ods. In the case of neural networks, we used a feed-forward archi-
tecture (FNN) with a 64-neurons hidden layer and Adam62 as
optimizer (hyperbolic tangent as the activation function). In the case
of K-NN, the target is predicted by local interpolation of the targets
associated to the nearest neighbors in the training set. The decision
tree uses a tree-like model of queries that allow to classify an
instance. Supplementary Fig. S2 illustrates the decision
regions learned by each of these three methods when generalizing
the dimensionality of a set of networks. For the sake of clarity, only
the proportion of triangles and squares have been taken into
account. We have obtained very good results with K-NN and neural
networks.

At the light of these results, we have selected the K-NN method
due to its simplicity andgeometric interpretation. The implementation
of machine learning methods (including K-NN) used in our experi-
ments are those found in63. Finally, to maximize the accuracy of our
method, we select the value of the parameter K as the one maximizing
the proportion of synthetic networks correctly classified with respect
to their dimension. This value is then used to infer thedimensionof the
original network using the K-NN method.

Calculation of confusion matrices
Tables 1 and 2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data or their source reference are available in the manuscript
and the supplementary materials, or they will be provided upon
request.

Code availability
The codes for the computation of cycles in real networks and for the
implementation ofSD surrogates can be accessed in the GitHub public
repository online at https://github.com/networkgeometry/detecting-
dimensionality, and can be cited as ref. 64.
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