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Abstract

Background: Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to
significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with
embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these
aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo.

Methodology and Principal Findings: Here, we studied the detailed process of PGC specification from stella-GFP ES cells.
We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-
negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs
from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB)
method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had
undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8
and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus
demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we
developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that
BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation.

Conclusions and Significance: The in vitro model we have established can recapitulate the developmental processes in vivo
and provides new insights into the mechanism of PGC specification.
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Introduction

The investigation of primordial germ cell (PGC) specification is

the first essential step in the process of elucidating the mechanisms

involved in the development of a germ cell lineage. However,

significant difficulties exist with regard to research into the process

of PGC specification in vivo. First, the complex in vivo environment

of the cell has led to controversies over the mechanism of PGC

development [1,2]. In addition, PGCs are difficult to study

because they are limited in number, deeply embedded within the

embryo, and are known to migrate during development [3–5],

which mitigates the degree to which they can be effectively

studied. Moreover, large-scale screens of potential inducers of the

PGC specification process are difficult to implement. Hence,

embryonic stem (ES) cells, which have overcome these aforemen-

tioned difficulties, provide promising candidates to recapitulate the

developmental process in vitro and thus serve as a model to

complement studies in vivo.

Previous studies have demonstrated that ES cells are capable of

differentiating into germ cells in either the attachment culture

technique or the EB method [6–12]. Nayernia et al. showed that

live-birth mice could be obtained from spermatozoa that were

completely derived in vitro from ES cells [10]. In addition, oocytes

were derived from gcOct4-GFP ES cells in a study reported by

Hübner et al. [6]. Although such reports have indicated the ability

to successfully study germ cell development in vitro, the process of

PGC specification is poorly understood. First, the parental

imprints—which must be erased and reset during gametogenesis,

reflecting the sex of the individual, and must be maintained in

somatic cells after fertilization [13]—have been examined only in

derived embryonic germ cells [8]. However, no derived PGCs

have been tested for this property [6–12]. Second, the BMP
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pathway, which is confirmed to induce PGC specification of the

proximal epiblast in vivo [14], has proven to function in an obscure

fashion [7]. PGCs were rapidly derived from ES cells by co-

aggregating the PGCs with BMP4 producing cells, whereas

neither the direct addition of BMP4 to the medium nor the

preparation of BMP4-producing feeder cells could obtain this

effect. Moreover, the fundamental question of how PGCs are

derived in vitro remains to be answered, although three current

hypotheses exist. These hypotheses include the ideas that ES cells

may already include PGCs, that ES cells may directly differentiate

into PGCs, and, finally, that PGCs develop through an

intermediate state, such as an epiblast-like stage [15].

Due to the fact that a significant number of markers are shared

between PGCs and ES cells, the careful study of PGC specification

in vitro is difficult. Pluripotent markers, such as Oct4 and SSEA1,

are both expressed in ES cells and PGCs. In addition, PGC

markers, such as Blimp1, Mvh, Fragilis and stella and even germ cell

specific markers, such as Piwil2, Rnh2, Tdrd1 and Tex14, are

detected in ES cells [8,12,16]. Recently a systematic analysis of

single cell expression has revealed the gene expression dynamics in

germ-line cells during PGC specification in vivo [17] and indicated

differential expression patterns between ES cells and PGCs, such

as their expression of Eras, T, and Fgf8. In addition, the gene

expression profiles in common ancestors of the nascent germ cells

and their somatic neighbors demonstrate that the most specific

gene for the germ cell is stella [18], indicating an excellent sorting

marker for studying PGC specification in vitro.

In this study, we aim to elucidate PGC specification using an ES

cell line expressing stella-GFP derived from a stella-GFP BAC

transgene that lacks any ectopic expression [19]. Here, we have

shown that subpopulations of the stella-GFP ES cells were

heterogeneous in terms of stella expression, but none of these

subpopulations shared similar expression patterns with either PGC

precursors or PGCs prior to E7.75. In addition, analysis of the

dynamic gene expression patterns of the derived PGCs using the

attachment culture technique and the EB method indicated that

the process of PGC specification was more faithfully recapitulated

using the EB method than with the former technique. Moreover,

we have developed an in vitro model for PGC specification

providing a convenient strategy to screen new factors or small

molecules that will potentially lead to the elucidation of the

mechanism for PGC specification.

Results

ES cells may not contain PGC precursors or PGCs
It has been proposed that ES cells may already include PGCs or

PGC precursors [15]. To test this hypothesis, the properties of

stella-GFP ES cells were investigated. We found that the stella-GFP

ES cells did not ubiquitously express stella (Fig. 1A), and the two

subpopulations in terms of stella expression were interchangeable

(Figs. 1B and C). To explore whether GFP-positive or GFP-

negative ES (ES+, ES2, respectively) cells possessed similar

expression patterns for PGCs or its precursors, the expression

patterns of PGC-related genes were compared. The genes

expressed in different stages of the PGC precursors and PGCs

prior to E8.25 are summarized in Table 1 [17]. The expression of

stella in ES+ and ES2 cells verified the quality of the FACS result

(Fig. 1D). The differentially expressed genes in the ES cells and in

the different stages of PGCs were clearly Eras, Myc, Sox17, Fgf8, T

and stella (Table 1, Figs. 1D and E). The high expression of Eras

and the undetectable expression of both Fgf8 and T in ES+ and

ES2 cells (Figs. 1D and E) indicated that ES cells did not contain

PGCs prior to E7.75. However, the expression patterns in ES+

could not completely exclude the existence of E8.25 PGCs

(Table 1). Furthermore, Mvh, a marker for post-migratory PGCs

[7] that is also known to be expressed in ES cells [9,12,16], was

shown to be expressed at higher levels in ES+ than in ES2 cells

(Fig. 1E). Thus, the expression of Mvh may be a property of ES

cells. Taken together, these results indicate that ES2 cells may not

contain either PGCs or PGC precursors; whereas ES+ may not

include cells equivalent to PGCs prior to E7.75.

Differentiation methods affect the yield of PGCs from ES
cells

To investigate PGC derivation in vitro, we differentiated stella-

GFP ES cells by implementing either the attachment culture

technique or the EB method. Because stella is specifically expressed

in PGCs during PGC specification in vivo [18], we wanted to

determine whether the derived GFP-positive cells from a day 7

attachment culture (Att+) and a day 4 EB culture (EB+) contained

PGCs (Fig. 2A). We first confirmed this after observing the strong

expression of PGC markers, such as Oct4, Sox2 and Blimp1, in Att+
and EB+ by RT-PCR (Fig. 2B), and the protein expression of

Oct4, Mvh, c-Kit and SSEA1 by Immunocytochemical staining

(Fig. S1). In addition, Eras and Dappa5, which are repressed in

PGCs [17], were downregulated in Att+ and EB+, indicating the

presence of PGCs in these samples (Fig. 2B). Moreover, we

analyzed whether Att+ and EB+ were able to procure the erasure

of parental imprints in a manner similar to that shown in PGCs in

vivo [13]. The imprinted genes we chose were Peg3 (59 upstream

region of the paternally expressed 3 gene), which is a paternally

imprinted gene, and Igf2r (region 2 of the insulin-like growth factor

2 receptor gene), which is a maternally imprinted gene. Both

imprints have been shown to exhibit early imprint erasure, with

Peg3 initiating the erasure earlier than Igf2r in vivo [13]. This

enabled us to determine the change in early imprinting in derived

cells and to follow the time course of imprinting erasure by

detecting their methylation status. Thus, we examined the DNA

methylation state of differentially methylated regions (DMRs) of

Peg3 and Igf2r (Fig. 2C). Upon comparison of Att+ to EB+, Att+
showed partial erasure of Igf2r, whereas EB+ displayed partial

erasure of Igf2r and Peg3 (Fig. 2C), demonstrating that both Att+
and EB+ contained PGCs. In addition, in EB+ the number of

methylated CpG sites was significantly fewer in Peg3 than in Igf2r,

suggesting that Peg3 was erased prior to Igf2r. The EB method, as

opposed to the attachment culture technique, was able to

recapitulate the erasure pattern of gene imprinting in the same

sequential manner as that observed in vivo. Thus, PGCs were

derived from ES cells by both the attachment culture technique

and the EB method.

To explore the process of PGC derivation in vitro using these two

methods, the gene expression dynamics of GFP-positive cells from

days 4 to 8 in the attachment culture technique (Att+) and days 2

to 4 in the EB method (EB+) were analyzed by Quantitative RT-

PCR (Q-PCR) (Fig. 3). First, the six genes that can distinguish ES

cells and PGCs of different stages were analyzed. In both Att+ and

EB+ cells, a decrease in the expression of Eras and an increase in

the expression of stella further confirmed that PGCs were derived

from ES cells using these two methods (Fig. 3A). The expression of

Myc was also shown to decrease in both Att+ and EB+ (Fig. 3A) in

a manner that is similar to its expression pattern in vivo [17].

Although both Att+ and EB+ showed increased expression of T

and Fgf8, the expression level of T peaked on day 2, whereas Fgf8

expression peaked on day 3 in the EB method (Fig. 3A). This

suggested that its expression pattern resembled that of the in vivo

process at roughly E7.25 when gene upregulation is followed by a

subsequent downregulation and the change in the expression of T

Derivation of PGCs In Vitro
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is earlier than that observed for Fgf8 [17]. In comparison, the

expression of both genes peaked on day 5 in the attachment

culture technique. Sox17 expression increased after day 3 in the EB

method, mimicking the in vivo process [17], whereas it remained at

low levels in the attachment culture technique (Fig. 3A). In

addition, the expression pattern of some other PGC and germ cell

markers, which are expressed in both PGCs and ES cells, such as

Oct4, Sox2 and Blimp1, fluctuated during PGC specification

(Fig. 3B). Notably, in Att+ and EB+, the expression of Blimp1

was downregulated followed by a upregulation, indicating the

differentiation of ES cells followed by PGC specification (Fig. 3B).

The expression of the epiblast markers, Cerl, Fgf5, Gata6 and Left-b,

increased significantly with the use of the EB method, whereas the

expression of only Left-b increased clearly in the attachment culture

Figure 1. Heterogeneity of stella-GFP ES cells. (A, B, C) A merged view of the phase contrast images and fluorescence images of stella-GFP
expression (green). (A) stella-GFP ES cells in an ES medium; bar = 100 mm. After the stella-GFP ES cells were sorted by stella expression, we found that
single GFP-positive ES cells formed clones containing both GFP-negative and GFP-positive ES cells (B) and that single GFP-negative ES cells also
generated such clones (C); bar = 50 mm. The ratio of clones including the GFP-positive cell in the GFP-negative and GFP-positive descendents was
78.863% and 82.965%, respectively. Furthermore, the ratio of GFP-positive cells in GFP-negative descendents was roughly 15%, which was the same
as in the GFP-positive descendents and in the unsorted stella-GFP ES cells. (D) RT-PCR gene expression analysis in GFP-positive ES cells (ES+) and GFP-
negative ES cells (ES2). Hoxa1, a somatic marker [17], was not expressed in ES+ or ES2 cells. Fgf8 and T, expressed in PGCs prior to E7.75 [17], were
also undetectable in both ES+ and ES2 cells. (E) Quantitative RT-PCR (Q-PCR) gene expression analysis in ES+ and ES2 cells. The relative expression of
each gene in differentiated cultures was normalized by its expression in ES2 cells after normalization to Gapdh. * P,0.05. Eras, which is not expressed
in PGCs, is a specific marker for ES cells [17]. Eras was expressed at similar levels between ES+ and ES2 cells. The pluripotent markers Nanog, Sox2,
Oct4 and c-kit were more highly expressed in ES+ than in ES2 cells. Sox17, which is expressed in the epiblast and transiently upregulated in PGCs
during PGC development [17], was expressed at extremely low levels in ES+ and ES2 cells. Myc, a pluripotent marker, which is repressed during PGC
development [17], showed similar expression in ES+ and ES2 cells. Mvh, a marker of post-migratory PGCs [7], which is also expressed in ES cells [16],
was more highly expressed in ES+ than in ES2 cells.
doi:10.1371/journal.pone.0004013.g001

Table 1. Summary of gene expression in ES cells and different stages of PGCs.

Eras Hoxa1 Nanog Oct4 Myc c-Kit Sox2 Sox17 Fgf8 T stella

E6.75* 2 2 + + + +/2 +/2 2 + + 2

E7.25 2 2 + + 2 + + + + + +

E7.75 2 2 + + 2 + + +/2 + + +

E8.25 2 2 + + 2 + + 2 2 2 +

ES+ + 2 + + + + + +/2 2 2 +

ES2 + 2 + + + + + +/2 2 2 2

*E = embryonic day.
doi:10.1371/journal.pone.0004013.t001
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Figure 2. The derivation of PGCs from ES cells. (A) Merged view of the phase contrast images and the fluorescence images of stella-GFP
expression (green) in day 7 of the attachment culture technique (upper panel) and day 4 of EB (lower panel); bar = 50 mm. GFP-positive cells in the
attachment culture technique at day 7 accounted for 15% of all cells and formed clusters, whereas the cells in the EB method at day 4 accounted for
6% and were dispersed in the EB. (B) Gene-expression analysis of GFP-positive cells (+) and GFP-negative cells (2) in day 7 of the attachment culture
technique (Att) and day 4 of the EB (EB). All of the detected genes are highly expressed during PGC specification, with the exception of Eras and
Dppa5, which are repressed in PGCs [17]. (C) DNA methylation patterns for the differentially methylated regions (DMRs) of Peg3 and for the DMRs of
Igf2r. The oocytes on day 14 served as a control. The percentage of methylated CpG sites in the GFP-positive cells of the EScells, the day 7 attachment
culture, and the day 4 EB (ES+, Att+, and EB+, respectively) were as indicated.
doi:10.1371/journal.pone.0004013.g002
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technique (Fig. 3C), suggesting that an intermediate stage, perhaps

an epiblast stage, existed during the process of PGC specification

in vitro when the EB method was implemented. Thus, the process

of PGC derivation was more faithfully recapitulated in the EB

method.

In vitro model of PGC specification
To determine the signals that promote the derivation of PGCs,

we attempted to develop an in vitro model of PGC specification.

First, because the two subpopulations of stella-GFP ES cells were

interchangeable regarding stella expression (Figs. 1B and C), we did

not sort either of them to establish the model. Second, because the

process of PGC derivation was more faithfully recapitulated in the

EB method than in the attachment culture technique, we

employed the EB method. Third, because unknown components

coupled with the inherent variability in the quality of the serum

are known to hamper the accuracy of the results [15], we decided

to develop a completely chemically defined medium (CDM). In

this respect, several basic media (including DMEM, DMEM/F12,

Ham’s F12, X-vivo, 1640, and IMDM) were tested, and we found

that a combination of Ham’s F12 with IMDM supported the

survival of cells most effectively. Because the relative percentage of

GFP-positive cells was extremely low in EBs formed in the CDM

(0.78%) (Fig. 4A), the CDM model provided a strategy to study the

signals that trigger PGC derivation.

Considering that BMP4, a mesoderm inducer, plays an

important role in PGC generation in vivo [14], we applied BMP4

to our differentiation model. Interestingly, the percentage of GFP-

positive cells was higher in day 4 EBs supplemented with BMP4

than in EBs with CDM alone, 2.96% and 0.78%, respectively

(Fig. 4A). To detect whether the GFP-positive cells in the CDM

supplemented with BMP4 included PGCs, the expression of the

PGC-related genes, the 6 main genes and also Nanog, Sox2 and

Blimp1, was tested (Fig. 4B). As expected, in the presence of BMP4

the expression patterns of the PGC-related genes in GFP-positive

cells were similar to the expression patterns in E7.25 PGCs

(Fig. 4B), such as decreased expression of Eras and upregulated

expression of T and Fgf8. In addition, the immunostaining results

of the GFP-positive cells confirmed the expression of PGC

markers, such as Oct4, Mvh, SSEA-1 and c-Kit (Fig. S2). The

mesoderm induction effect of BMP4 was also confirmed (Fig. 4C).

Thus, BMP4 was effective in promoting PGC specification in cells

other than mesodermal cells derived from stella-GFP ES cells.

To further confirm the requirement of BMP4 in PGC

specification, the BMP4 antagonist noggin was introduced to these

samples. At day 2, noggin was added to the EB alone and to the

CDM prior to the addition of BMP4. The percentage of GFP-

positive cells in the noggin-alone (0.83%) and the noggin-BMP4

samples (0.67%) was similar to that of the CDM (0.78%), but lower

than that of the CDM with BMP4 (2.96%) (Fig. 4A). In addition, all

detected genes showed that the expression patterns of the GFP-

positive cells in the presence of noggin were similar to those for the

CDM (Fig. 4B). Thus, no PGCs differentiated from ES cells in a

culture system that contained noggin. To determine whether PGC

derivation was sensitive to the dose of BMP4, two other doses of

BMP4 (20 and 100 ng/ml) were added to day 2 EBs in the CDM.

The percentage of GFP-positive cells in the high dose (100 ng/ml)

sample was 5.06%, whereas the percentage remained at roughly 3%

in the medium dose (50 ng/ml, 2.96%) and low dose samples

(20 ng/ml, 2.72%) (Fig. 4A). Interestingly, the expression patterns

of the GFP-positive cells at all doses of BMP4 did not differ

significantly (data not shown). These data further confirmed the role

of BMP4 in inducing PGC differentiation from stella-GFP ES cells.

Because another two BMP proteins, BMP8b and BMP2, also

promote PGC specification by assisting BMP4 in vivo [20–22],

BMP8b and BMP2 were used to supplement the EBs in the CDM

containing BMP4 (comBMP) at day 2. The percentage of GFP-

positive cells by adding comBMP (3.1%) and the expression

patterns of these cells were similar to that observed for BMP4

alone (Fig. 5A,B). Because BMP8b shows no additive effect with

either BMP4 or BMP2 in vivo [20–22], suggesting different roles of

BMP8b in PGC specification, BMP8b alone was added at day 2 to

the EBs in the CDM. Both the overall percentage of GFP-positive

cells (1.15%) and the gene expression pattern of these cells were

similar to that in the CDM, indicating that BMP8b alone was not

sufficient to promote the generation of PGCs (Figs. 5A and B).

Furthermore, because the absence of BMP8b is known to result in

an absence of PGC generation in vivo [20,21], we examined

whether BMP4 induced the expression of BMP8b in the CDM.

The expression of BMP8b was detected in the GFP-negative cells

in day 4 EBs in the CDM with BMP4 but not in the GFP-positive

cells, the ES cells, or the day 4 EBs in the CDM (Fig. 5C). These

results demonstrated that no synergic effect was detected by

adding BMP8b or BMP2 with BMP4, while BMP4 can stimulate

the expression of BMP8b in non-PGC cells in the CDM.

Because BMP4 is also a member of a group of proteins known

as mesoderm inductors [23], Wnt3a, another factor promoting

mesoderm lineage[24], was tested. As expected, Wnt3a had a

positive effect on PGC derivation similar to that observed for

BMP4 (Figs. 5A and B). Subsequently, activinA, which induces the

generation of both the mesoderm and the endoderm [25], was

shown to act in a similar fashion to BMP8b (Figs. 5A and B) with

no induction of PGC specification. Thus, Wnt3a stimulated PGC

specification in a manner similar to BMP4, whereas BMP8b and

activinA failed to stimulate PGC specification.

Discussion

In this study, we successfully derived PGCs from mouse ES cells

using stella as a selective marker. Interestingly, our data

demonstrated that although ES cells were heterogeneous, they

may not contain cells that are equivalent to PGC precursors or

PGCs prior to E7.75. In addition, we found that the process of

PGC differentiation from ES cells underwent complicated changes

in the patterns of gene expression and methylation status, therefore

mimicking the in vivo PGC generation process. Moreover, this

process was more faithfully recapitulated when implementing the

EB method than when using the attachment culture technique,

suggesting a significant influence of the precise method on the ES

cell differentiation process. Furthermore, to our knowledge, this is

the first report demonstrated that PGCs were capable of being

derived in a completely CDM, and our results showed that BMP4

and Wnt3a promoted PGC derivation from ES cells, whereas

BMP8b and activinA were unable to promote PGC derivation.

Our data showed that ES cells were heterogeneous regarding

their ability to express stella-GFP and that the two populations

Figure 3. Gene-expression dynamics in GFP-positive cells from approximately days 4,8 in the attachment culture technique (4A,
5A, 6A, 7A, 8A) and from days 2,4 in the EB method (2E, 3E, 4E). (A) Genes differentially expressed between ES cells and PGCs. (B) PGC
markers and germ cell markers, both expressed in ES cells and PGCs. (C) Epiblast markers. The relative expression of each gene in differentiated
cultures was normalized by its expression in GFP-positive cells from day 4 EBs after normalization with Gapdh.
doi:10.1371/journal.pone.0004013.g003
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were capable of generating one another. This phenomenon is

similar to that reported for Rex1 in ES cells [26] and thus serves to

confirm their reported heterogeneity. We also found that the two

subpopulations of ES cells not only differed in the gene expression

pattern (Figs. 1D and E), but also showed different DNA

methylation patterns in imprinted genes (Figs. 2C and S3),

consistent with previous studies indicating that ES cells are

epigenetically unstable [27]. However, neither of the subpopula-

tions possessed expression patterns similar to PGC precursors or

PGCs prior to E7.75 (Fig. 1E, Table 1). Recently, Hayashi et al.

also reported on the heterogeneity of ES cells regarding the

expression of stella [28]. Through single cell Q-PCR analysis, they

found that Stella-positive ES cells are closely related to the inner

cell mass and not related to the epiblast or PGCs, whereas Stella-

Figure 5. Screening the promotion effect of PGC specification by various factors. (A) Flow cytometric analysis of stella-GFP expression in
day 4 EBs in the CDM supplemented with BMP2, BMP4 and BMP8b (comBMP), BMP8b, Wnt3a or activinA. (B) Gene-expression analysis of the PGC
markers in GFP positive cells in (A). The relative expression of each gene in differentiated cultures was normalized by its expression in GFP-positive
cells in the CDM with BMP4 after normalization with Gapdh. (C). The expression of BMP8b in GFP-positive or GFP-negative cells in ES (ES+, ES2), in
day 4 EBs in the CDM (CDM+, CDM2), in day 4 EBs in the CDM with 50 ng/ml BMP4 (BMP4+, BMP42) and in day 4 EBs in serum (day 4 EB). The day 4
EBs in serum served as a positive control.
doi:10.1371/journal.pone.0004013.g005

Figure 4. Induction of PGCs by BMP4 in the CDM. (A) Flow cytometric analysis of stella-GFP expression in day 4 EBs in the CDM or
supplemented with BMP4, noggin or BMP4+ noggin. (B) Gene-expression analysis of PGC markers in GFP positive cells in (A). The relative expression
of each gene in differentiated cultures was normalized by its expression in GFP-positive cells in the CDM with BMP4 after normalization with Gapdh.
(C). Gene-expression analysis in GFP-positive (BMP4+) and GFP-negative (BMP42) cells in day 4 EBs in the CDM with BMP4. Foxa2 is a mesoendoderm
marker, whereas Mixl1, Flk1, Mesp1, Evx1 and Tbx6 are mesoderm markers [24,25]. Gapdh served as loading control.
doi:10.1371/journal.pone.0004013.g004
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negative ES cells are more similar to the epiblast cells [28]. Taken

together, these results suggest that ES may not contain either

PGCs or PGC precursors.

By following these detailed differentiation dynamics, we have

found that, in comparison to the attachment culture technique, the

process of PGC specification was more faithfully recapitulated

using the EB method. Our results indicated that the imprinted

genes were able to procure the erasure in stella-positive cells when

the EB method (EB+) was used, whereas only Igf2r was able to

procure the erasure when the attachment culture (Att+) technique

was implemented (Fig. 2C). The sequential erasure of Peg3

followed by Igf2r was detected in EB+ but not in Att+ (Fig. 2C).

In addition, our results showed that the gene expression dynamics

of specific PGC markers, such as T, Fgf8 and Sox17 in the EB

method, resembled the expression of in vivo markers more closely

than the markers observed using the attachment culture technique

(Fig. 3A). Finally, our results indicated that all of the levels of the

detected epiblast genes were remarkably higher in the EB+,

whereas only the level of Left-b was higher in Att+, indicating the

presence of an epiblast stage in the PGC specification process

when analyzed using the EB method. This observation was similar

to that shown for the PGCs derived from proximal epiblasts in vivo

[14]. Thus, the EB method presented a process of PGC

specification that more closely mimicked the in vivo process.

Our data demonstrated that BMP4 was sufficient to promote

PGC specification in the CDM. Initially, we discovered that

BMP4 functioned as a soluble protein. In contrast to our findings,

Toyooka et al. indicated that the direct addition of BMP4 to the

medium, or simply co-culturing cells with BMP4-producing cells

as feeders, does not necessarily stimulate PGC production [7]. A

possible reason for the latter observation is that the serum in their

culture medium includes factors that perform functions similar to

BMP4 or interfere with BMP4, while our CDM culture eliminated

this complicated effect by providing a far superior strategy to study

the signals in PGC specification. In addition, our data suggest that

the dose of BMP4 regulates the efficiency of PGC specification.

Upon increasing the dose of BMP4 from 50 to 100 ng/ml, the

percentage of GFP-positive cells increased (Fig. 4A) in a manner

that was consistent with previous studies demonstrating that mice

heterozygous for the BMP4-null generate fewer PGCs than wild-

type mice [14]. This aforementioned result was also consistent

with a previous study demonstrating that the PGC number is

regulated by BMP signaling in an organ culture [29]. Moreover, it

is possible that BMP4 triggers PGC derivation by providing a

favorable microenvironment in our model. BMP4 induced the

expression of BMP8b in GFP-negative cells in the CDM, which

are the nearby cells of our derived PGCs in the EBs (Fig. 5C),

consistent with previous findings that BMP8b expressed in the

extraembryonic ectoderm is necessary for PGC specification from

an epiblast precursor [20]. However, because BMP8b alone is not

sufficient to promote PGC derivation (Figs. 5A and B), BMP4

must have an additional effect on this process. Interestingly, BMP4

can induce the formation of the extraembryonic mesoderm

[30,31] where PGCs form a cluster and undergo further

development. Therefore, BMP4 may establish a proper microen-

vironment for PGC specification and development. Thus, the

functions performed by BMP4 in PGC specification were

represented in our in vitro model.

Our results suggested that the germ cell fate was related to the

fate of the mesoderm. Here, we found that a majority of the

detected mesoderm markers were confirmed in the GFP-positive

cells of the CDM in the presence of BMP4, which is consistent

with an in vivo study demonstrating that mesoderm markers are

expressed in some nascent PGCs while being repressed in PGCs

[18]. However, Wnt3a and activinA, both of which induce

mesoderm production in vitro [23–25], were shown to have

different effects on PGC specification (Fig. 5A,B). Recently, a

study by Gadue et al. revealed that upon direct addition of the two

factors individually, Wnt3a is responsible for the induction of a

population of cells with Foxa2lowT+, which are cells in the

posterior part of the primitive streak, whereas activinA induces

cells with Foxa2highT+, which are cells of the anterior part of the

primitive streak [32]. Thus, the promotion effect of Wnt3a and

negative effect of activinA in PGC specification suggest that either

PGCs originate from the posterior part of the primitive streak or

the germ cell fate is imposed on these cells in the primitive streak.

Together, it is possible that, during gastulation the precursors of

putative PGCs and nascent mesoderm cells, expressing mesoderm

markers, such as Evx1, Tbx1 and Mesp1, were segregated from

other somatic cells with the induction of BMP4 and/or Wnt3a.

Soon after this segregation, the upregulation of Blimp1 in some of

these precursors repressed the expression of mesoderm markers

and finally the Blimp1-positive cells destined for a germ cell fate.

(Fig. 6). Hence, our model provides a novel method to screen for

factors or small molecules that may be involved in PGC

specification.

Materials and Methods

ES Cell Maintenance
The stella-GFP ES cells (a gift from Prof. M. Azim Surani, also

described as stella-GFP BAC ES cells in their publication [19])

were maintained in an ES medium that consisted of DMEM/F12

(Invitrogen) supplemented with 15% fetal calf serum (Hyclone),

1 mM glutamine (Invitrogen), 100 U/ml penicillin/streptomycin

(Sigma), 0.1 mM b-mercaptoethanol (Sigma), and 1,000 U/ml

LIF (Sigma) on mitomycin C-treated mouse embryonic fibroblasts.

ES Cell Differentiation
ES cells were differentiated in either a serum-containing

medium (ES medium without LIF) or a serum-free medium, the

components of which were described previously by Gadue et al.

[32], containing 75% Iscove’s modified Dulbecco’s medium

(Invitrogen), 25% Ham’s F12 medium (Invitrogen) with 0.5-fold

of both N2 and B27 (without retinoic acid) (Invitrogen), 0.05%

BSA (Sigma), 2 mM glutamax (Invitrogen), 0.5 mM ascorbic acid

(Sigma) and 4.561024 M 1-thioglycerol (Sigma). The attachment

culture technique and EB method were performed as previously

described [6,32]. Briefly, after the ES cells were trypsinized,

disassociated ES cells were plated on gelatin-treated plates for

40 min to remove the feeder cells. These cells were subsequently

filtered through a 75-mm cell strainer. The ES cells were seeded at

a density of 1 to 2.56104 cells per cm2 in a serum-containing

medium in the attachment culture technique at a density of

0.56105 cells/ml in serum-containing medium or at 1.56105

cells/ml in a serum-free medium in the EB culture. After 48 h, the

EBs were dissociated, filtered, and seeded as primary EBs to

generate secondary EBs. The secondary EBs were cultured in

either a serum-containing medium or a serum-free medium

supplemented with BMP4, noggin, BMP2, BMP8b, Wnt3a or

activinA, as indicated.

Flow cytometry
Cells were dissociated in trypsin-EDTA and resuspended in the

medium used previously. The cells were then placed in a MoFlo

High-Performance Cell Sorter (Dako Cytomation, Glostrup,

Denmark) using Summit 4.0 Software (Dako Cytomation) for

analysis and sorting.
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Reverse Transcription Polymerase Chain Reaction (RT-
PCR) analysis and Q-PCR analysis

The total RNA was extracted using an RNeasy Micro Kit

(Qiagen). The RNA was then reverse-transcribed into cDNA using

Sensiscript RT Kits (Qiagen). PCR was performed with Ex Taq

polymerase (Takara) in a PCR buffer. The cycle conditions were

as follows: 94uC for 5 min followed by 28–30 cycles of a 94uC
denaturation period for 40 sec, a 56–60uC annealing period for

40 sec, and a 72uC elongation period for 40 sec, with a final

elongation period at 72uC for 10 min. The primers used are listed

in Table S1.

Q-PCR analysis was performed on an ABI PRISM 7300

Sequence Detection System using the SYBR Green PCR Master

Mix (TOYOBO). The PCR consisted of 12.5 ml of SYBR Green

PCR Master Mix, 1 ml of 10 mM forward and reverse primers,

10.5 ml water, and 1 ml template cDNA in a total volume of 25 ml.

Cycling was performed using the default conditions of ABI 7300

SDS Software 1.3.1: 2 min at 95uC, followed by 30–35 cycles of

15 sec at 95uC and 1 min at 60uC. The relative expression of each

gene was first normalized against Gapdh. The expression results for

each gene were subsequently normalized by the expression with

respect to the selected sample in each group, as indicated in each

figure. The primers used for Q-PCR are shown in Table S2.

DNA Methylation Analysis
Genomic DNA was extracted using the DNeasy kit (Qiagen).

The DNA was then treated with a sodium bisulfite solution, as

described previously [33]. Differentially methylated regions

(DMRs) of Igf2r or Peg3 were amplified by Ex-Taq DNA

polymerase (TaKaRa) via nested PCR. The conditions for the

first round of cycling were as follows: 94uC for 5 min followed by

35 cycles of a 94uC denaturation period for 30 sec, a 55uC
annealing period for 30 sec, and a 72uC elongation period for

60 sec, with a final elongation period at 72uC for 10 min. The

second round of PCR cycling was as follows: 94uC for 5 min

followed by 35 cycles of a 94uC denaturation period for 30 sec, a

58uC annealing period for 30 sec, and a 72uC elongation period

for 60 sec, with a final elongation period at 72uC for 10 min. The

PCR primers are listed in Table S3. Amplified fragments were

cloned into the plasmid vector pGEM-T Easy (Promega), and 10

samples in each experiment were sequenced using an ABI PRISM

3100 Genetic Analyzer (Applied Biosystems, Foster City, CA).

Immunocytochemical analysis
The cells were treated as described previously [12]. Briefly, the

cells were fixed in 4% paraformaldehyde and blocked with 10%

normal goat serum and 0.2% Triton X-100 for 60 min at room

temperature. The cells were then incubated overnight at 4uC with

the primary antibody to Oct4 (rabbit polyclonal IgG, Abcam),

Mvh (rabbit polyclonal IgG, a kind gift from Dr. Toshiaki Noce),

SSEA-1 (mouse monoclonal IgG, Chemicon) or c-kit (rabbit

polyclonal IgG, Chemicon). Further incubation with anti-rabbit

tetramethylrhodamine isothiocyanate (TRITC)-conjugated IgG or

anti-mouse TRITC (both from Santa Cruz) was performed for

45 min at room temperature. The cells with only secondary

antibody staining served as negative controls. The nuclei were

detected by DAPI (Roche) staining. The images were obtained

with an Olympus phase contrast microscope (IX-71; Olympus).

Statistical analysis
All data presented are representative of at least three

independent experiments unless indicated otherwise. The results

are expressed as the mean6s.e.m. of at least three independent

experiments. Statistical analysis was performed using one-way

ANOVA, followed by the SNQ test if necessary. The data

collected from Quantitative RT-PCR were analyzed with the

original data normalized with Gapdh. The statistical significance

was inferred at * P,0.05 and ** P,0.01.

Supporting Information

Figure S1 Immunostaining of PGC markers, Oct4, Mvh, SSEA-

1 and c-Kit in differentiated cells derived from ES cells by

attachment culture (four upper panels) or the EB method (cells

were dissociated from EBs before staining, four lower panels).

Nuclei were visualized by Dapi. Bar = 50 mm.

Found at: doi:10.1371/journal.pone.0004013.s001 (1.87 MB TIF)

Figure S2 Immunostaining of PGC markers Oct4, Mvh, SSEA-

1 and c-kit in sorted GFP positive cells in day 4 EB in CDM with

BMP4. Nuclei were visualized by Dapi. Bar = 50 mm

Found at: doi:10.1371/journal.pone.0004013.s002 (0.24 MB TIF)

Figure S3 DNA methylation patterns of Peg3 differentially

methylated regions (DMRs) and Igf2r DMRs. The percentage of

methylated CpG sites in GFP-negative cells in ES cells, day 7

attachment culture and day 4 EB (ES2, Att2, EB2, respectively)

were as indicated.

Found at: doi:10.1371/journal.pone.0004013.s003 (0.49 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0004013.s004 (0.04 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0004013.s005 (0.05 MB

DOC)

Table S3

Found at: doi:10.1371/journal.pone.0004013.s006 (0.03 MB

DOC)
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Figure 6. A potential model of PGC specification. Some of the cells in the ICM (inner cell mass)/ES cells were Stella and/or Blimp1 positive cells.
with the development of the embryo, the expression of Blimp1 was depressed in these cells with the help of signals from neighboring cells. Later,
induced by WNT and/or BMP signaling, a subpopulation of these cells with the expression of mesoderm markers emerged, some of which acquired
the expression of Blimp1. Then, Blimp1 functions to repress the expression of somatic markers that were normally down-regulated in PGCs [34].
Subsequently, cells with the expression of both Blimp1 and Stella were fated to germ-line development.
doi:10.1371/journal.pone.0004013.g006
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