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SUMMARY
Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed

an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs). We initially generated an

hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found

BMP2, transforming growth factor b1 (TGF-b1), and GDF5 critical for GFP expression and thus chondrogenic differentiation of the

hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles.

Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I

collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immuno-

suppressedmini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency

mice and rats suffered fromneither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell

source for regenerating cartilage defects.
INTRODUCTION

Articular cartilage covers the ends of bones and provides

shock absorption and lubrication to diarthrodial joints.

Articular cartilage is a highly specialized tissue composed

of chondrocytes and a specific extracellular matrix (ECM)

that consists of types II, IX, and XI collagen and proteogly-

cans, but not type I collagen. Such cartilage is called hya-

line cartilage. Focal defects or degeneration of articular

cartilage due to trauma or regional necrosis can progres-

sively degenerate large areas of cartilage owing to a lack

of repair capacity. These conditions ultimately result in a

loss of joint function, inducing osteoarthritis. Autologous

chondrocyte transplantation is a successful cell therapy

for repairing focal defects of articular cartilage. However,

this approach suffers from the need to sacrifice healthy

cartilage for biopsies and the formation of fibrocartilagi-

nous repair tissue containing type I collagen (Roberts

et al., 2009), because the required in vitro expansion

induces the dedifferentiation of chondrocytes toward

fibroblastic cells. In addition, it is difficult to achieve the

integration of repair tissue into the adjacent native carti-

lage. Other attractive cell sources for repairing cartilage de-

fects include mesenchymal stem cells (MSCs). However,

MSCs can differentiate into multiple cell types, resulting

in a mixture of cartilaginous tissue, fibrous tissue (as in-

dicated by the expression of type I collagen), and hyper-

trophic tissue (as indicated by the expression of type X

collagen) (Mithoefer et al., 2009; Steck et al., 2009). Despite

the ability to achieve short-term clinical success, non-hya-
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line repair tissue is eventually lost, because it does not

possess the proper mechanical qualities.

Currently, a new option for repairing defects in cartilage

has become available by applying human induced pluripo-

tent stem cells (hiPSCs) with self-renewal and pluripotent

capacities without ethical issues. It has been reported that

both human embryonic stem cells (hESCs) and hiPSCs

can be differentiated into chondrogenic lineages (Barberi

et al., 2005; Vats et al., 2006; Koay et al., 2007; Hwang

et al., 2008; Bigdeli et al., 2009; Nakagawa et al., 2009; Bai

et al., 2010; Oldershaw et al., 2010; Toh et al., 2010; Medve-

dev et al., 2011; Umeda et al., 2012; Wei et al., 2012;

Koyama et al., 2013; Cheng et al., 2014; Ko et al., 2014;

Zhao et al., 2014). However, the purity and homogeneity

of the resultant cartilage vary, and in vivo transplantation

studies have not investigated the risk of teratoma forma-

tion systematically. The transplantation of inappropriately

differentiated embryonic stem cells (ESCs) results in tera-

toma formation and tissue destruction at implanted sites,

as shown in experiments using murine ESCs (Wakitani

et al., 2003; Taiani et al., 2010). The transplantation of

hiPSC-derived cells also carries the risk of tumor formation

in association with the artificial reprogramming process

(Okita et al., 2007; Yamashita et al., 2013). Therefore, an

optimized protocol for driving hiPSC differentiation to-

ward chondrocytes that generates pure cartilage without

tumor formation in vivo is needed. In this study, we aimed

to generate hiPSC-derived cartilage that exhibits the ability

to (1) generate pure cartilage in vivo, (2) integrate neocarti-

lage into the adjacent native articular cartilage, and (3)
ors
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produce neither tumors nor ectopic tissue formation when

transplanted in immunodeficiency animals. We therefore

developed a chondrogenic differentiation method by tak-

ing advantage of real-time monitoring of the chondrocytic

phenotype of cells derived from COL11A2-EGFP hiPSCs.

We then examined whether the resultant hiPSC-derived

cartilage met the above specifications using an animal

transplantation model.
RESULTS

Establishment of an Efficient Chondrogenic

Differentiation Method Using COL11A2-EGFP

Reporter hiPSCs

In order to design a method for the chondrogenic differen-

tiation of hiPSCs, we first attempted to create chondrocyte-

specific reporter hiPSC lines. Because the a2(XI) collagen

chain gene (COL11A2) is expressed in a chondrocyte-spe-

cific manner, we introduced the human COL11A2-EGFP

transgene, where EGFP cDNA was linked to the COL11A2

promoter and enhancer sequences (Figure S1A), into the

409B2 hiPSC line using the piggyBac vector system and

established stable cell lines. To examine the expression

pattern of the transgene, we transplanted the COL11A2-

EGFP hiPSC lines into severe combined immunodeficiency

(SCID) mice, which formed teratomas. GFP was exclusively

expressed in the chondrocytes of cartilage in the teratomas

(Figure S1B), indicating that COL11A2-EGFP hiPSCs ex-

press GFP only when they differentiate into chondrocytes.

We used theseCOL11A2-EGFP hiPSCs in order to search for

the culture condition that drives the differentiation of

hiPSCs toward chondrocytes.

The COL11A2-EGFP hiPSCs were initially differentiated

into mesendodermal cells by Wnt3a and Activin A, as pre-

viously reported (Oldershaw et al., 2010; Umeda et al.,

2012), for 3 days. On day 3, the medium was changed to

basal medium supplemented with chondrogenic factors

aimed to commit the cells to the chondrocytic lineage.

We tested three types of supplementation: A (ascorbic

acid), ABT (ascorbic acid, BMP2, and transforming growth

factor b1 [TGF-b1]), and ABTG (ascorbic acid, BMP2, TGF-

b1, and GDF5). These supplements were added to the basal

medium (DMEM with 1% insulin-transferrin-selenium

[ITS] and 1% fetal bovine serum [FBS]). Basic fibroblast

growth factor (bFGF) was added during the adherent cul-

ture (day 3 to day 14) to promote cell proliferation. The

hiPSC-derived mesendodermal cells did not form nodules

under the conditions of A supplementation, whereas they

became focally multilayered and formed nodules under

the conditions of ABT or ABTG supplementation on day

14 (Figure 1A). The nodules observed under the conditions

of ABTG supplementation specifically exhibited COL11A2-
Stem C
EGFP fluorescence, whereas the nodules formed under the

conditions of ABT supplementation did not. Additionally,

ABTG produced a significantly higher ratio of COL11A2-

EGFP-positive cells than did either A or ATB according to

fluorescence-activated cell sorting (FACS) analysis (Fig-

ure 1B). The characteristics of human COL11A2-EGFP-pos-

itive cells on day 14 may corresponded to those of early

precursor cells and chondrocyte-committed cells, as the

Col11a2-LacZ (Tsumaki et al., 1996) and Col11a2-EGFP

(Hiramatsu et al., 2011) reporter genes were expressed in

condensing mesenchymal cells in the limb buds of trans-

genic mice at 12.5 days postcoitum.

In order to generate scaffold-free cartilaginous tissue

from hiPSC-derived chondrogenically committed cells

in vitro, we considered transferring the cells into a three-

dimensional culture, such as a suspension culture or pellet

culture. Because the cell nodules cultured in ABTG supple-

mentation were readily detached, likely due to the low

adherent properties of cartilaginous ECM, we chose a

suspension culture as a three-dimensional culture. The

nodules suspended in medium formed particles, which

showed a gradual increase in GFP fluorescence (Figure 1C)

and white cartilaginous appearance (Figure 1D). Through

these examinations, we established the differentiation pro-

tocol shown in Figure 1E. Here, the hiPSCs were initially

differentiated into mesendodermal cells by Wnt3a and

Activin A for 3 days. On day 3, the medium was changed

to chondrogenic medium (ABTG supplementation) to

commit the cells to the chondrocytic lineage. The cell

nodules were then subjected to the suspension culture on

day 14.

The effectiveness of ABTG supplementation in inducing

chondrogenic differentiation was confirmed by the pres-

ence of high expression levels of chondrocyte-marker

genes in the particles on day 28 (Figure S1C) and the

intense staining of the particles with safranin O on day

42 (Figure S1D). These results suggest the promise of our

protocol for differentiating hiPSCs toward chondrocytes.

In order to examine whether BMP2 and/or TGF-b1

are dispensable for chondrogenic differentiation, we also

tested the effects of ABG (ascorbic acid, BMP2, and GDF5)

and ATG (ascorbic acid, TGF-b1, and GDF5) supplementa-

tion. ABG and ATG produced smaller proportions of

COL11A2-EGFP-positive cells than did ABTG on day 14

(Figure S1E). Particles induced under the conditions of

ABG and ATG supplementation on day 42 did not contain

cartilaginous elements (Figure S1F). These results collec-

tively suggest that BMP2, TGF-b1, and GDF5 are all neces-

sary for the chondrogenic differentiation of hiPSCs in our

protocol. Therefore, we employed ABTG supplementation

for the chondrogenic differentiation of hiPSCs. Hereafter,

chondrogenic medium corresponds to medium supple-

mented with ABTG. We used this differentiation method
ell Reports j Vol. 4 j 404–418 j March 10, 2015 j ª2015 The Authors 405



Figure 1. Optimized Protocol for Differentiating hiPSCs toward Chondrocytes
(A) Images of hiPSC-derived cells induced in the presence of the indicated supplement on day 14. Top panels: phase view. Bottom panels:
GFP fluorescence view. The right panels show images of cells derived from hiPSCs that did not bear the COL11A2-EGFP transgene cultured in
the presence of ABTG supplementation. Scale bars, 50 mm.
(B) FACS analysis of COL11A2-EGFP-positive cells in the iPSC-derived cell culture in the presence of the indicated supplements on day 14.
The error bars denote the means ± SD of three individual experiments. **p < 0.01.

(legend continued on next page)
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in a recently published paper for hiPSC disease modeling

(Yamashita et al., 2014).

Cartilaginous Tissues Were Formed from Multiple

Independent hiPSC Lines

A histological analysis of the particles performed on day 42

showed that cartilaginous tissues could also be generated

from other hiPSC lines, including 604B1, HDF-11, and

KF4009-1 (Figure S2A). The 409B2, HDF-11, and KF4009-1

lines were induced from dermal fibroblasts obtained from

different individuals, and the 604B1 line was induced

from the blood cells obtained from a different individual.

All hiPSC lines were generated using episomal vectors.

These results suggest that cartilaginous tissues were formed

from multiple independent hiPSC lines by our protocol.

Hyaline-Cartilaginous Maturation of Particles

in Suspension Culture

We performed histological analysis of the particles over

time. The particles consisted of cells embedded in a small

amount of ECM stained slightly with safranin O on day

28 (Figure 2A). The ECM in the particles matured, as indi-

cated by intense staining with safranin O on day 42 (Fig-

ure 2B). Immunohistochemistry results showed that the

ECM contained both type I and type II collagen. When

we continued to culture the particles in chondrogenic me-

dium, they maintained an expression of type I collagen on

day 70 (Figure S2B) and day 140 (Figure S2C).

To reduce type I collagen expression and achieve hyaline

cartilage maturation, we further manipulated the culture

condition. We replaced chondrogenic medium with con-

ventional medium (DMEM + 10% FBS) on day 14, 28, or

42 and continued the cultures for another 28 days. Me-

dium replacement on day 42 resulted in the formation of

intensely safranin-O-positive cartilaginous ECM with

increased type II collagen expression and decreased type I

collagen expression (Figure 2C). Medium replacement on

day 14 (Figure S2D) or 28 (Figure S2E) resulted in continued

expression of type I collagen. We confirmed the recapitula-

tion of the decrease of type I collagen expression by replac-

ing the chondrogenic mediumwith conventional medium

on day 42 in another iPSC line, 604B1 (Figures S2F and

S2G). We additionally found that replacing chondrogenic

medium with medium supplemented with A, ABT, ABG,

or ATG also decreased type I collagen expression (Fig-

ure S2H). These results suggest that ABTG is necessary

for the commitment to chondrocytic lineage but is not

continuously necessary. The three-dimensional structure
(C) Phase and GFP fluorescence images of the COL11A2-EGFP hiPSC-de
(D) Images of the hiPSC-derived particles on day 56 in 3.5-cm dishes
(E) Schematic representation of the protocol for differentiating hiPS
See also Figure S1.
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of the particles formed by day 42 was sufficient and effec-

tive at inducing the hyaline-cartilaginous maturation of

chondrocytes.

The particles were surrounded by a membranous struc-

ture that expressed type I collagen (Figures 2B and 2C).

This membrane probably corresponded to the perichon-

drium, which is formed during development. The ratio of

SOX9-positive cells in the particles, except for those in

the surface membrane, gradually increased, reaching

91.8% ± 0.91% on day 42 and almost 99.7% ± 0.2% on

day 56 (Figures 2D and 2F). Almost all cells expressed

COL11A2-EGFP on day 56 (Figure 2E). Type X collagen

expression was undetectable (Figure S2I).

Suspension Culture Facilitates the Chondrogenic

Differentiation of iPSCs and Elimination of

Non-chondrocytic Cells

We examined how the transfer of the cell nodules to the

suspension culture affects chondrogenic differentiation.

When we maintained the cell nodules in the adhesion cul-

ture beyond day 14, the nodules poorly formed cartilagi-

nous tissue on day 42 (Figure S3A), which contrasts the

cartilaginous appearance of the particles cultured in sus-

pension on day 42 (Figure 2B). These results suggest that

the suspension culture facilitates the cartilaginous matura-

tion of iPSC-derived chondrogenic cells.

After transferring the particles to suspension culture in

new dishes, the dish bottoms gradually became covered

with cells, suggesting that some of the cells detached

from the particles, attached to the dish bottoms, and prolif-

erated. These cells had a spindle-shaped morphology and

did not exhibit COL11A2-EGFP fluorescence (Figure S3B).

The expression analysis showed that the cells in the sus-

pended particles expressed much higher levels of chondro-

cyte marker genes than the cells attached to the dish

bottom (Figure S3C). These results suggest that non-chon-

drocytic cells were removed from the particles during the

suspension culture, thus enhancing the cartilage purity.

Sequential Analysis of the Growth and Differentiation

of Chondrogenically Differentiating hiPSCs

At the start of the differentiation of hiPSCs, the addition of

Wnt3a and Activin Awith a low concentration of FBS (1%)

decreased the expression of pluripotent markers and tran-

siently increased the expression of an early mesendoderm

marker (BRACHYURY, also known as T) on day 3 (Figures

3A and S4), as previously reported (Oldershaw et al.,

2010). The lack of increase in the number of cells despite
rived cell culture under ABTG supplementation. Scale bars, 50 mm.
. Scale bar, 5 mm.
Cs toward chondrocytes.
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Figure 2. Histological Analysis of hiPSC-Derived Particles in Suspension Culture
Semiserial sections were stained with H&E and safranin O-fast green-iron hematoxylin and immunostained with anti-type II collagen
antibodies, anti-type I collagen antibodies, anti-SOX9 antibodies, and anti-GFP antibodies, as indicated. Scale bars, 50 mm.
(A) A particle 28 days after the start of differentiation of hiPSCs (day 28). The second and fourth panels are magnifications of the boxed
region.

(legend continued on next page)
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cell division and the reduced cell survival observed on day

3 (Figure 3B) suggest that the non-mesendoderm cells pref-

erentially died under these conditions, contributing to the

formation of a mesendodermal-cell-rich population. We

suggest that the low concentration of FBS was insufficient

for the survival of non-mesendodermal cells, whereas mes-

endodermal chondrocytes could survive due to the pres-

ence of essential cytokines. After switching the medium

to chondrogenic medium on day 3, the expression of

pluripotent markers further decreased from days 7 through

14, while the expression levels of many of the mesodermal

markers increased (Figures 3A and S4), suggesting that the

hiPSC-derived cells produced according to this protocol

included a mixture of both paraxial mesodermal cells and

lateral plate mesodermal cells. The number of cells

increased until day 14 (Figure 3B), reflecting the formation

of nodules (multilayered cells).

On day 14, we detached the cell nodules from the dish

bottoms to form particles and transferred them to a suspen-

sion culture. We counted only the number of cells in the

particles, not the number of monolayer cells that were

left attached to the dishes (Figure 3B). The number of cells

in the particles increased slowly and gradually. A certain

population of cells continued to die in the particles until

day 42. At the end of the culture, the number of cells in

all particles was approximately seven times the number

of hiPSCs observed at the start of differentiation (Figure 3B).

On average, we began the differentiation procedure with

1.6 ± 0.1 3 105 hiPSCs per 35-mm dish. The number of

cells reached 11.3 ± 0.3 3 105 on day 14. Among these

cells, 4.06 ± 0.04 3 105 participated in the formation of

particles. The number of cells in the particles increased to

10.4 ± 0.2 3 105 cells on day 42. The number of particles

was 14.6 ± 4.0 per dish, and the average diameter of the par-

ticles was 0.7 ± 0.2 mm on day 21, 0.8 ± 0.2 mm on day 28,

1.1 ± 0.2 mm on day 42, and 1.4 ± 0.5 mm on day 70.

Chondrocyte hypertrophy appeared to be limited in the

particles, as the expression levels of IHH and COL10A1

mRNAs in the particles were lower than that observed in

the articular cartilage (Figure S4), and the amount of

type X collagen in the particles was undetectable in an

immunohistochemical analysis (Figure S2I). Few COL1A1

mRNAs and some COL1A2 mRNAs were expressed in the
(B) A particle on day 42. Bottom panels are magnifications of the bo
(C) A particle on day 70. The medium was switched from chondrogen
magnifications of the boxed region.
(D) Histological sections of particles obtained on days 56 and 70 we
(E) Histological sections of particles obtained on day 56 were immun
(F) The ratio of the number of SOX9-positive cells per total cells d
hematoxylin. The numbers of cells in the particles, except for the surf
means ± SD.
See also Figures S2 and S3 and Table S1.

Stem C
particles (Figure S4). The expression of OSTEOCALCIN

was absent, suggesting that osteoblastic differentiation

did not occur.

We then performed cellular analysis during differen-

tiation. Differentiation into mesodermal cells appeared

around day 10 (Figures 3 and S4). FACS analysis revealed

that COL11A2-EGFP fluorescence on day 10 was slightly

increased compared with that on day 0 (Figure S5A). We

divided cells on day 10 into two groups based on the

FACS analysis: a GFP (�) cell group, which showed lower

GFP fluorescence intensity than the median, and a GFP

(+) cell group, which showed higher GFP fluorescence in-

tensity than the median. We isolated both cell groups,

cultured them in micromass in chondrogenic medium for

a further 10 days, and subjected them to FACS analysis

and expression analysis. The GFP (+) cell progeny con-

tained more COL11A2-EGFP-positive cells (Figure S5B)

and expressed higher expressions of chondrocyte-marker

genes (Figure S5C) than the GFP (�) cell progeny. We

further confirmed that micromass culture of the GFP (+)

cell progeny formed cartilaginous nodules, as indicated

by staining with safranin O (Figure S5D). These results

suggest that our differentiation method could create a

chondrogenic progenitor population (GFP [+] cells) and is

efficient at chondrogenic maturation of the progenitor

cells.

In Vivo Pure Cartilage Formation Induced by

hiPSC-Derived Cartilage without Tumor Formation

or Ectopic Tissue Formation in SCID Mice

To assess the chondrogenic activity of the hiPSC-derived

cartilage in vivo, we transplanted the cells into the sub-

cutaneous spaces of SCID mice. We transplanted hiPSC-

derived chondrocyte particles on day 28, 42, or 70 (chon-

drogenicmediumwas replacedwith conventionalmedium

on day 42) and sacrificed themice 12 weeks after transplan-

tation. A histological analysis revealed the formation of

cartilaginous tissues in two out of six transplantation sites

for day-28 particles, four out of six for day-42 particles, and

two out of six for day-70 particles. Transplantation of day-

42 particles resulted in the formation of the most hyaline-

like cartilage, as indicated by intense safranin O staining,

high type II collagen expression, low type I collagen
xed region.
ic medium to conventional medium on day 42. Bottom panels are

re immunostained with anti-SOX9 antibodies.
ostained with anti-GFP antibodies.
uring the maturation of particles. Cells were counterstained with
ace layers, were counted. n = 3 particles. The error bars denote the
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Figure 3. Analysis of Marker Gene Expression and Growth and Death of hiPSC-Derived Cells during Differentiation
We collected whole cells during the adhesion culture until day 14. From day 15, we collected only particles, not cells attached to the
bottom of the dishes.

(legend continued on next page)
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expression (Figures 4A and 4B), and low type X collagen

expression (Figure 4C). Transplantation of day-28 particles

showed weak safranin O staining. The hyaline cartilagi-

nous tissue generated by the transplantation of particles

on day 42 was surrounded by a membrane that expressed

type I collagen. Immunohistochemistry using anti-human

vimentin antibodies showed that the cells in the hyaline

cartilage were hiPSC derived, whereas the cells in the

surrounding membrane were derived from the mice (Fig-

ure 4B). There were no signs of teratoma or other tumor for-

mation in any of the transplanted sites. These results

suggest that hiPSC-derived cartilage has the ability to

form and maintain hyaline cartilage in vivo for 12 weeks.

We next examined whether the transplanted cells induce

ectopic tissue formation. The human b-actin sequence was

not amplified within the range of 40 cycles in real-time

RT-PCR reactions among either the organs or lymph nodes

of SCID mice 4 and 12 weeks after transplanting particles

on day 42 (Figure 4D). Our control experiment showed

that this assay can be used to detect human sequences at a

Ct (cycle threshold) value of 40 among samples containing

0.0003%human cells (Figure S6A). These results suggest that

hiPSC-derived chondrocyte particles on day 42 formneither

tumors nor ectopic tissue lesions when transplanted in vivo.

For long-term observation, we sacrificed the mice

12 months after transplanting hiPSC-derived particles on

day 42, harvested the transplanted sites, and subjected

them to histological analysis. All six samples showed carti-

lage hypertrophy, as indicated by the expression of type X

collagen (Figure 5). Among these samples, five had portions

of the cartilage replaced with bone-like tissue, but a sub-

stantial amount of cartilage with amorphology resembling

epiphyseal cartilage remained. These results suggest that

the hiPSC-derived cells produced using our protocol un-

dergo hypertrophy, although at a very slow rate. There

were no signs of teratoma or other tumor formation at

any of the transplanted sites.

In order to obtain insight into why the hiPSC-derived

cartilage in the subcutaneous space of SCID mice was sta-

ble, we transplanted chondrogenically differentiated MSC

pellets (Takara, PT-2501) without a scaffold into the subcu-

taneous space of SCID mice as a control. No cells survived

4weeks after transplantation (n = 6). It is difficult, however,

to directly compare the results from the transplantation of
(A) Real-time RT-PCR expression analysis of marker genes for pluripo
blasts, and osteoblasts. RNA expression levels were normalized to the
data are representative of two independent experiments.
(B) Growth and death of hiPSC-derived cells. The collected cells were su
Cell numbers were counted after the addition of trypan blue. Cells that
rates indicate the number of live cells divided by the total number o
The error bars denote the means ± SD.
See also Figures S4 and S5 and Tables S2 and S3.
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hiPSC-derived cartilaginous particles with those from

the transplantation of MSC-derived cartilaginous pellets,

because the two cell types had reached different stages

and their route to chondrogenesis may be different. Never-

theless, this result is consistent with the notion that the im-

munosuppressed environment induced by il2rg mutation

(SCID) is not the only factor associated with the long-

term preservation of cartilage. Rather, the presence of a

cartilaginous tissue structure composed of chondrocytes

embedded in the extracellular matrix in the particles may

be another factor required for cartilage preservation.

hiPSC-Derived Cartilaginous Particles Can Be

Orthotopically Transplanted without Any Tumor

Formation or Ectopic Tissue Formation in SCID Rats

We transplanted hiPSC-derived cartilaginous particles into

defects created in the articular cartilage of SCID rats. Due to

the small size and limited depth of the rat cartilage, wewere

unable to fix mature particles that were lubricious in their

defects. Therefore, we transplanted premature-hiPSC-

derived cartilaginous particles obtained on day 28. The de-

fects were filled with hiPSC-derived cells in three of four

knees at 1 week and three of four knees at 4 weeks after

transplantation, as indicated by the expression of human

vimentin (Figure 6A). The day-28 particles produced tissue

that exhibited metachromatic staining with toluidine blue

and a strong expression of type II collagen in the articular

cartilage defects (Figures 6A and 6B), which differs from

the observation that day-28 particles fail to producemature

cartilage in subcutaneous spaces. We speculate that the or-

thotopic environment might stimulate the maturation of

day-28 particles. Side-to-side integration between the tis-

sues formed by the transplanted cells and the rat articular

cartilage was strongly achieved (Figure 6B). There were no

signs of teratomas or other tumors in any of the four trans-

planted sites.

The human b-actin sequence was not amplified within

40 cycles in the real-time RT-PCR reactions among either

the organs or lymph nodes of the SCID rats at 4 or 12 weeks

after transplantation (Figure 6C). As with mice, our control

experiment for rats show that this assay can be used to

detect human sequences at a Ct value of 40 among samples

containing 0.0003% human cells (Figure S6B). Together

with the little or no expression of pluripotent markers
tency and the development of the mesoderm, chondrocytes, fibro-
level of b-ACTIN (ACTB) expression. n = 3 technical replicates. The

bjected to collagenase digestion to obtain a single-cell suspension.
did not incorporate trypan blue were considered alive. Cell survival
f cells. n = 3 dishes.
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Figure 4. Transplantation of hiPSC-Derived Particles on Day 28, 42, or 70 into the Subcutaneous Spaces of SCID Mice
Mice were sacrificed 12 weeks after transplantation. Histological analysis of the transplanted sites was performed.
(A) Semiserial sections were stained with H&E and safranin O-fast green-iron hematoxylin and immunostained with anti-type II and anti-
type I collagen antibodies. Scale bars, 500 mm.

(legend continued on next page)
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Figure 5. Long-Term Observations of
hiPSC-Derived Particles on Day 42 Trans-
planted into the Subcutaneous Space of
SCID Mice
Mice were sacrificed 12 months after
transplantation. Semiserial sections were
stained with H&E and safranin O-fast green-
iron hematoxylin and immunostained with
anti-type X collagen antibodies. Magnified
images of the boxed regions are shown in
panels to the immediate right. Scale bar,
500 mm (left) and 50 mm (middle and right).
See also Table S1.
observed in the hiPSC-derived chondrocytes on day 21 or

later (Figures 3A and S4), these results suggest that hiPSC-

derived cartilaginous particles obtained on day 28 neither

form tumors nor ectopic tissue when implanted into defec-

tive articular cartilage.

hiPSC-Derived Cartilaginous Particles Fixed Articular

Defects in Mini-pigs

To examine whether hiPSC-derived cartilaginous particles

can survive in the articular cartilage defects created in larger

animals, we transplanted hiPSC-derived cartilaginous par-

ticles into defects created in the articular cartilage of three

knees in mini-pigs weighing 27.0–30.5 kg and treated

them with cyclosporine, an immunosuppressant. Trans-

planted particles survived in the defects of all three knees

at 1 month after transplantation (Figure 7). Immunohis-

tochemistry showed that cartilage filling the defects ex-

pressed human vimentin, confirming that progeny of the

hiPSC-derived cartilaginous particles survived in the de-

fects for at least 4 weeks. In addition, particles showed indi-

cations of integration with the host articular cartilage and

with each other.
(B) Magnified images of day-42 particle progeny in the boxed regions
antibodies that recognize only human vimentin. The blue color reflec
(C) Magnified images of day-28, 42, and 70 progenies stained with
immunostained with anti-type X collagen antibody. The blue color re
(D) RNAs were extracted from various organs of SCID mice that receiv
PCR to amplify human and murine b-actin mRNAs. n = 3 mice. The
Surrounding fat, fat tissue surrounding the transplanted site; Intrape
axillary lymph nodes; Cervical, cervical lymph nodes; MEF, murine em
See also Figure S6 and Tables S1–S3.

Stem C
DISCUSSION

We herein developed an approach for differentiating

hiPSCs toward chondrocytes capable of generating pure

cartilage in vivo and fixing articular cartilage defects with-

out tumor formation.

BMP2, TGF-b1, and GDF5 were required to obtain GFP-

positive cells from COL11A2-EGFP hiPSC-derived mesen-

dodermal cells. Plural receptors for BMPs (BMPRs) have

been identified, and the affinity for these receptors has

been shown to differ between BMPs and GDF5 (Nishitoh

et al., 1996). In addition, BMPRIA and BMPRIB regulate

distinct processes in the formation and differentiation of

cartilage (Zou et al., 1997), and BMP and GDF family mem-

bers have distinct functions in cartilage formation when

overexpressed in transgenic mice (Tsumaki et al., 2002).

Furthermore, both BMPRIA and BMPRIB are necessary for

cartilage formation (Yoon et al., 2005). These findings are

consistent with our results showing that both BMP2 and

GDF5 are necessary for the differentiation of hiPSCs toward

mature chondrocytes. It is also possible that BMP2, TGF-b1,

and GDF5 were each required in our protocol, because we
of (A). Semiserial sections were immunostained with anti-vimentin
ts DAPI. Scale bars, 50 mm.
safranin O in the boxed regions of (A). Semiserial sections were
flects DAPI. Scale bars, 50 mm.
ed hiPSC-derived particles on day 42 and subjected to real-time RT-
error bars denote the means ± SD. Transplant, transplanted site;
ritoneal, intraperitoneal tissue; Groin, groin lymph nodes; Axillary,
bryonic fibroblasts; HDF, human dermal fibroblasts.
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Figure 6. Orthotopic Transplantation of
hiPSC-Derived Cells into SCID Rats
hiPSC-derived cartilaginous particles ob-
tained on day 28 were transplanted into
defects created in the articular cartilage of
the distal femurs of SCID rats. The trans-
planted sites (A and B) and various organs
(C) were collected.
(A and B) Histological analysis of the
transplanted sites at 1 and 4 weeks after
transplantation. Semiserial sections were
stained with H&E and toluidine blue and
immunostained with anti-vimentin anti-
bodies that recognize only human vimentin
and anti-type II collagen antibodies. The
blue color reflects DAPI. Magnified images
of the boxed regions in (A) are shown in
(B). Scale bars, 50 mm.
(C) RNAs were extracted from various organs
at 4 and 12 weeks after transplantation and
subjected to real-time RT-PCR to amplify
human and rat b-actin mRNAs. n = 3 rats.
The error bars denote the means ± SD.
Bone, bone of the femoral diaphysis; Sur-
rounding fat, fat tissue surrounding the
transplanted sites; Intraperitoneal, intra-
peritoneal tissue; Groin, groin lymph nodes;
Axillary, axillary lymph nodes; Cervical,
cervical lymph nodes; MEF, murine embry-
onic fibroblasts; HDF, human dermal fibro-
blasts.
See also Figure S6 and Tables S1–S3.
used iPSC-derived mesendodermal cells instead of more

mature mesodermal tissues to induce chondrogenesis.

Articular cartilage is highly lubricious. Lubricin encoded

by the PRG4 gene and glycosaminoglycans contribute to

maintaining the low friction of cartilage and directly

inhibit cell adhesion (Englert et al., 2005). Therefore, since

the hiPSC-derived particles expressed PRG4, it is reasonable

that the cartilaginous nodules formed in the hiPSC-derived

cell culture were easily and reproducibly detached from the

dishes and did not attach to the dishes again (Figure 3A).
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In addition to the notion that three-dimensional cultures

facilitate chondrocytic differentiation (Huey et al., 2012),

the suspension culture appeared to contribute to removing

non-chondrocytic cells and thus purification of the chon-

drocytic cells. Non-chondrocytic cells, once detached

from the particles, may preferentially attach to the dish

bottom (Figure S3). Furthermore, we employed chondro-

genic culture conditions with a low concentration of FBS

supplemented with a minimum of growth factors that are

essential for chondrocyte survival. The non-chondrocytic
ors



Figure 7. hiPSC-Derived Cartilaginous
Particles Fixed Articular Defects in Mini-
pigs
(A) hiPSC-derived cartilaginous particles
(approximately ten) obtained on day 56
were transplanted into defects created in
the articular cartilage of the distal femurs of
mini-pigs and fixed with fibrin glue.
(B) Histological analysis of the trans-
planted sites at four weeks after trans-
plantation. Semiserial sections were
stained with H&E and safranin O-fast green-
iron hematoxylin and immunostained with
anti-vimentin antibodies that recognize
only human vimentin. The blue color re-
flects DAPI. Magnified images of the solid
boxed regions are shown in central panels.
Magnified images of the dotted boxed re-
gions are shown in right panels. Arrows
indicate the boundary between native
cartilage and transplanted cartilage. Scale
bars, 500 mm (left) and 50 mm (right).
cells might die under these conditions (Figure 3B) and drop

out from the particles. As a result of these purification steps,

which include the transfer of non-adhesive chondrocyte

clusters into a suspension culture, chondrocytic differen-

tiation in a three-dimensional culture, the removal of

non-chondrocytic cells from lubricious particles into the

medium, and the selective death of non-chondrocytic cells,

we succeeded in obtaining pure chondrocytes without the

use of cell sorting. The result of this method was approxi-

mately 1.03 106 chondrocytes from 1.6 ± 0.13 105 hiPSCs

per 35-mm dish. Thus, our method is capable of producing

sufficient numbers of cartilage particles to treat patients, as

we can create 1.0 3 107 chondrocytes per ten 35-mm

dishes, which is relatively easily tomanage and is sufficient
Stem C
to cover a 10-cm2 defect of articular cartilage in autologous

chondrocyte implantations.

Articular cartilage remains permanent, and its bottom

portion is slowly and continuously remodeled into under-

lying bone. In the present study, when hiPSC-derived carti-

laginous particles were transplanted into the subcutaneous

space of SCIDmice, the cartilage remained intact for at least

1 year, while a portion of the chondrocytes slowly under-

went hypertrophy and remodeling into bone-like tissue.

This property of slow remodeling into bonemay contribute

to the vertical integration of neocartilage into underlying

bone if transplanted into sites of defective articular carti-

lage. Treatment of the iPSC-derived particles with thyroid

hormone induced the hypertrophy of chondrocytes
ell Reports j Vol. 4 j 404–418 j March 10, 2015 j ª2015 The Authors 415



in vitro (unpublished data), suggesting the rate of hypertro-

phy is dependent on the protocol.

It has been difficult to achieve cartilage-to-cartilage inte-

gration because the cartilage ECM is anti-adhesive (van de

Breevaart Bravenboer et al., 2004). Chondrocytes obtained

from younger donors have been reported to achieve better

side-to-side integration (Adkisson et al., 2010), raising the

hypothesis that the use of immature chondrocytes results

in better integration. The advantage of differentiating

hiPSCs in a manner that mimics the developmental path-

way includes the ability to generate chondrocytes with

limited cellular senescence, which resembles chondrocytes

from young individuals. In this study, the hiPSC-derived

cartilaginous particles obtained on day 42 or longer dis-

played a mature cartilaginous ECM that was lubricious.

On the other hand, the particles obtained on day 28

adhered to the shallow defects of SCID rat articular cartilage

and were integrated into the adjacent native cartilage at

4 weeks after transplantation. We could not observe longer

periods, because the remodeling of articular cartilage in rats

was highly active, such that human chondrocytes present

in the transplanted cartilage disappeared andwere replaced

with host rat chondrocytes within 8 to 12 weeks. This phe-

nomenon was partly due to the small size of the defects in

rats; the maximum appropriate defective size was 1 mm in

diameter, since the width of the femoral groove in SCID

rats was also �1 mm. A similar phenomenon was also

noted in rats treated with immunosuppressive drugs (Toh

et al., 2010). The particles obtained on day 56 filled artic-

ular cartilage defects in mini-pigs and showed indications

of integration with the native cartilage and each other at

4 weeks after transplantation, demonstrating that the par-

ticles have potential to fix cartilage defects even under

heavy-weight-bearing conditions. The efficacy of trans-

planting hiPSC-derived chondrocytes into articular carti-

lage defects of mini-pigs for longer periods is for future

study.

We used this differentiation method in a recently pub-

lished paper for hiPSC disease modeling (Yamashita et al.,

2014), in which analysis of FGFR3 skeletal dysplasia and

drug screening were performed. We analyzed the safety

and efficacy of cell transplantation into animals in the cur-

rent study, demonstrating that our differentiation method

is clinically relevant to cell transplantation therapy in

regenerative medicine. In addition, we performed cellular

analyses on the differentiation pathway using the GFP

signal from the COL11A-EGFP line and on the appropriate

time range and conditions required for in vitro maturation

toward hyaline cartilage. These content would correspond

to advancing the application of basic research from the lab-

oratory to the clinic in regenerative medicine.

In summary, we herein developed a simple approach for

differentiating hiPSCs into scaffoldless hyaline cartilage.
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The use of iPSCs carries the risk of tumor formation in rela-

tion to the reprogramming method, a concern that does

not exist for ESCs. However, we did not observe any forma-

tion of teratomas or tumors or of ectopic tissue in SCID

mice and rats using our method when hiPSC-derived carti-

lage were transplanted either subcutaneously or orthotopi-

cally. Our results should contribute to an important step in

translating the present procedure to clinical applications.
EXPERIMENTAL PROCEDURES

Ethics Statement
All experiments were approved by the institutional animal com-

mittee, institutional biosafety committee, and institutional review

board of Kyoto University.

Chondrogenic Differentiation of hiPSCs
Integration-free hiPSC lines 409B2 and 604B1 (Okita et al., 2011)

generated using episomal vectors were a gift from K. Okita and S.

Yamanaka (Center for iPS Cell Research and Application [CiRA],

Kyoto University, Kyoto, Japan). Episomal vectors bearing

OCT3/4, SOX2, KLF4, LIN28, L-MYC, and p53 small hairpin RNA

were transduced to generate hiPSCs. The episomal vectors were

spontaneously lost during the establishment of the iPSC clones

(Okita et al., 2011). HDF-11 and KF4009-1 were generated in our

laboratory. Each hiPSC line was generated from the tissue of a

different individual. The established hiPSCs were maintained on

mitomycin-C-treated SNL (STO/Neo-resistant/LIF) cells in human

ESC medium containing DMEM/F12 (Sigma), 20% KnockOut

Serum Replacement (Invitrogen), 2 mM L-glutamine (Invitrogen),

13 10�4 M nonessential amino acids (Invitrogen), 1 mMNa pyru-

vate (Invitrogen), 1 3 10�4 M 2-mercaptoethanol (Invitrogen),

50U and50mg/ml of penicillin and streptomycin, respectively (In-

vitrogen), and 4 ng/ml of bFGF (WAKO). The hiPSCs were trans-

ferred and then maintained in a feeder-free medium that included

Essential 8 (Invitrogen) with 50 U/ml penicillin and 50 mg/ml

streptomycin in 3.5-cmMatrigel-coated dishes. The hiPSCs formed

high-density cell colonies that consisted of 1–2 3 105 cells 10–

15 days after the start of maintenance under the feeder-free culture

conditions. Subsequently, the hiPSCs were subjected to differentia-

tion by changing the medium to a mesendodermal differentiation

medium (DMEM/F12 with 10 ng/ml of Wnt3a [R&D Systems],

10 ng/ml of Activin A [R&D], 1% ITS; Invitrogen], 1% FBS, 50 U

and 50 mg/ml of penicillin and streptomycin, respectively [Invitro-

gen]) (day 0). Three days later (day 3), the medium was changed to

the basalmedium (DMEMwith 1% ITS, 1% FBS, 2mML-glutamine

[Invitrogen], 1 3 10�4 M nonessential amino acids [Invitrogen],

1 mM Na pyruvate [Invitrogen], 50 U of penicillin, and 50 mg/ml

of streptomycin) supplemented with one of five types of chondro-

genic supplementation: A (50 mg/ml of ascorbic acid [Nacalai]), ABT

(50 mg/ml of ascorbic acid, 10 ng/ml of BMP2 [Osteopharma], and

10 ng/ml of TGF-b1 [PeproTech]), ABTG (50 mg/ml of ascorbic

acid, 10 ng/ml of BMP2, 10 ng/ml of TGF-b1, and 10 ng/ml of

GDF5 [PTT]), ABG (50 mg/ml of ascorbic acid, 10 ng/ml of BMP2,

and 10 ng/ml of GDF5), and ATG (50 mg/ml of ascorbic acid,

10 ng/ml of TGF-b1, and 10 ng/ml of GDF5). Fourteen days after
ors



the start of the differentiation of the hiPSCs (day 14), the cartilagi-

nous nodules were physically separated from the bottom of the

dishes to form particles, which were then transferred to a suspen-

sion culture in 3.5-cm petri dishes. A total of 10 ng/ml of bFGF

was added to the chondrogenicmedium fromday 3 to day 14 to in-

crease proliferation. In some experiments, the medium was

changed to conventional medium (DMEM with 10% FBS, 50 U

and 50 mg/ml of penicillin and streptomycin, respectively) on day

42. The medium was changed every 2–7 days.

Generation of hiPSCs Bearing the COL11A2-EGFP

Reporter Transgene
To construct the chondrocyte-specific reporter piggyBac vectors,

the human sequences corresponding to the murine Col11a2

promoter and enhancer were amplified via PCR. The murine

Col11a2 promoter/enhancer sequences of p742-gw-Int (pLI-gw,

P1-20) were replaced by the human COL11A2 promoter/enhancer

sequences to prepare phProm-ENmcs(gw)-hInt (P16-22). phProm-

ENmcs(gw)-hInt was recombined with pENTR1A-mcs/Egfp-Ires-

Puro (P8-79) via an LR reaction (Invitrogen) to prepare phProm-

gw(Egfp-IresPur)-hInt (P16-23). The hProm-gw(Egfp-IresPur)-hInt

sequence was released from the plasmid backbone using PstI and

FspI and inserted into the piggyBac vector PB-MCSII (P16-16), a

gift from K. Woltjen (CiRA), to prepare PB-hCOL11A2-EGFP (PB-

MCSII[hProm-gw(Egfp-IresPur)-hInt], P16-24). The PB-hCOL11A2-

EGFP vector and transposase expression vector (PBaseII, P16-25),

a gift from A. Hotta (CiRA), were introduced into the 409B2

hiPSCs (Okita et al., 2011) using nucleofection technology

according to the manufacturer’s instructions (Amaxa). Single-cell

suspensions of the hiPSCs were plated onto 10-cm dishes. Approx-

imately 10 days later, the colonies were mechanically picked up

and hiPSC lines were established. The genomic integration of the

PB-hCOL11A2-EGFP transgene was analyzed using genomic PCR.

The primers used to amplify the transgene are listed in Table S3.

Approximately 1.0 3 106 hCOL11A2-EGFP hiPSCs were implanted

into the capsule of the testis in the SCID mice to form teratomas.

Two months after implantation, the teratomas were dissected

and subjected to immunohistochemical analysis of the EGFP

expression.

Statistical Analysis
Data are shown as means and SDs. We used the Student’s t test.
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