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Schizophrenia is a severe and disabling psychiatric disorder with a complex and 
multifactorial etiology. The lack of consensus regarding the multifaceted dysfunction of this 
ailment has increased the need to explore new research lines. This research makes use 
of proteomics data to discover possible analytes associated with psychoneuroimmune 
signaling pathways in schizophrenia. Thus, we analyze plasma of 45 patients [10 patients 
with first-episode schizophrenia (FES) and 35 patients with chronic schizophrenia] and 
43 healthy subjects by label-free liquid chromatography–tandem mass spectrometry. The 
analysis revealed a significant reduction in the levels of glia maturation factor beta (GMF-
β), the brain-derived neurotrophic factor (BDNF), and the 115-kDa isoform of the Rab3 
GTPase-activating protein catalytic subunit (RAB3GAP1) in patients with schizophrenia 
as compared to healthy volunteers. In conclusion, GMF-β, BDNF, and 115-kDa isoform of 
RAB3GAP1 showed significantly reduced levels in plasma of patients with schizophrenia, 
thus making them potential biomarkers in schizophrenia.

Keywords: schizophrenia, proteomics, liquid chromatography–tandem mass spectrometry, Rab3 GTPase-
activating protein catalytic subunit, glia maturation factor beta, brain-derived neurotrophic factor

INTRODUCTION
As a major psychiatric disorder, schizophrenia is characterized by a particular symptomatology that 
includes both positive and negative symptoms, as well as cognitive impairment (1). Schizophrenia 
affects approximately 1% of the worldwide population and is a devastating disease that requires a 
large amount of medical resources owing to its early onset and chronicity (2). Therefore, its timely 
recognition and intervention enables the prevention of psychosis onset, as well as a reduction in 
the severity of the disease (3, 4). Schizophrenia presents with dissimilar clinical phenotypes whose 
heterogeneity hampers the consolidation of its pathophysiology (5, 6). The high complexity that 
characterizes schizophrenia may be explained by a combination of genetic and environmental 
factors (7, 8).

New research lines and approaches using proteomic techniques have recently arisen in search of 
a new explanation for the pathogenesis of schizophrenia (9, 10). Proteomics provides a molecular 
vision of the ailment that supports the acquisition of new knowledge about its biochemical 

Frontiers in Psychiatry | www.frontiersin.org

ORIGINAl ReSeARCh

doi: 10.3389/fpsyt.2019.00885
published: 29 November 2019

November 2019 | Volume 10 | Article 885

https://creativecommons.org/licenses/by/4.0/
mailto:jose.manuel.olivares.diez@sergas.es 
mailto:cspuch@uvigo.es 
https://doi.org/10.3389/fpsyt.2019.00885
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00885/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00885/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00885/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00885/full
https://loop.frontiersin.org/people/395647
https://loop.frontiersin.org/people/854634/overview
https://loop.frontiersin.org/people/854711/overview
https://loop.frontiersin.org/people/854720/overview
https://loop.frontiersin.org/people/854735/overview
https://loop.frontiersin.org/people/854636/overview
https://loop.frontiersin.org/people/854744/overview
https://loop.frontiersin.org/people/854633/overview 
https://loop.frontiersin.org/people/854746/overview
https://loop.frontiersin.org/people/854723/overview
https://loop.frontiersin.org/people/471970
https://loop.frontiersin.org/people/478503/overview
https://loop.frontiersin.org/people/51938
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2019.00885
https://www.frontiersin.org/journals/psychiatry#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2019.00885&domain=pdf&date_stamp=2019-11-29
https://www.frontiersin.org/journals/psychiatry#articles


Biomarkers in Schizophrenia Based on Proteomics ToolsRodrigues-Amorim et al.

2

pathways and the identification of potential biomarkers. This 
"omics" science recognizes a functional profile of proteins 
expressed in the proteome of individuals by means of high-
throughput methods such as liquid chromatography–tandem 
mass spectrometry (LC-MS/MS) (8, 11). As a multifaceted 
disease, schizophrenia involves changes in protein expression, 
thus also affecting protein networks and signal pathways 
(9). These alterations can be detected by proteomic analyses 
performed on peripheral samples such as plasma. Of particular 
interest is the discovery of new plasma biomarkers associated 
with neuronal alterations (12, 13). One of the handicaps of the 
discovery of new analytes related to mental disorders, such as 
schizophrenia, is the need to work with peripheral samples to 
detect potential brain damages. To increase the likelihood of 
detecting new proteins, we analyzed plasma levels using shotgun 
proteomic techniques (LC-MS/MS) (14).

In this study, the proteome analysis allowed the discovery of 
potential new analytes whose specificity was then evaluated with 
immunoassays. For our research, we carried out a proteomic 
study on plasma samples of patients with schizophrenia in 
comparison with that of healthy subjects, obtaining promising 
findings in the identification of proteins as potential biomarkers 
of schizophrenia.

MATeRIAl AND MeThODS

human Samples
Venous blood samples from 88 participants, 45 patients 
diagnosed with schizophrenia [10 patients with first-episode 
schizophrenia (FES) and 35 patients with chronic schizophrenia] 
and 43 health controls were collected in vacuum tubes containing 
dipotassium ethylenediaminetetraacetic acid (K2EDTA) between 
7:00 and 9:00 hours. To check the presence of these analytes 
in the cerebrospinal fluid (CSF), we also obtained six CSF 
human samples from healthy controls by lumbar puncture. The 
recruitment period lasted 8 months, and samples of these patients 
and control subjects were obtained from the Álvaro Cunqueiro 
Hospital in Vigo, Spain. The diagnosis of schizophrenia was 
reached by psychiatrists based on the fifth edition of the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-5) and on the 
most common terminology used in schizophrenia studies and 
guidelines (15). The study’s inclusion criteria were patients with 
schizophrenia aged 18 years or older who provided a signed 
informed consent compliant with the guidelines of the Helsinki 
Declaration and approved by the ethics committee (Galician 
Network of Research Ethics Committees). Subjects with other 
psychiatric or neurological disorders, a traumatic brain injury, or a 
history of substance abuse were excluded from the study. Pregnant 
or breastfeeding women were also excluded. The control group 
was selected based on the frequency matching method (cases and 
controls have similar distributions of matching variables). Patient 
cohorts were matched by age and sex with control group, which 
was composed of healthy volunteers 18 years of age or older with 
no psychiatric or neurological illnesses. Moreover, the control 
group was also requested to provide a signed informed consent.

Clinical and Demographic Assessment
A demographic questionnaire was administered to all patients 
and healthy volunteers upon their admission to the Psychiatry 
Unit of the Álvaro Cunqueiro Hospital. The Positive and Negative 
Syndrome Scale (PANSS) was also used to evaluate the intensity 
of their positive and negative symptoms, as well as the general 
psychopathology of the patients with schizophrenia. Both 
instruments were performed and assessed by a trained psychologist 
independent from the study. The clinical and demographic 
characteristics of the study participants are shown in Table 2.

Blood Sample Preparation
Venous blood collected in two vacuum tubes containing 
K2EDTA (BD vacutainer; Becton, Dickinson & Co., USA) 
was centrifuged at 1,000 × g for 10 min to separate the blood 
plasma, which was subsequently stored in aliquots at −80 
°C. An aliquot of 450 µl of plasma was then centrifuged at 
16,000  × g for 15 min at 4 °C, and the resulting supernatant 
was collected and stored at −80 °C. Proteins were measured by 
means of a bicinchoninic acid (BCA) assay (Pierce Chemicals, 
Rockford, IL). In addition, a protein enrichment commercial 
kit (ProteoMiner™, Bio-Rad, Hercules, California, USA) was 
used according to the manufacturer’s instructions to equalize 
proteins in a sample with a total protein content of 10 mg. Ten 
microliters of eluted fractions were then loaded onto a standard 
Laemmli buffer 2x polyacrylamide gel, allowing them to stack 
and enter the resolving gel, but not to separate. The gel was 
subsequently cut by hand with a sterile scalpel under a flow 
chamber, and the excised pieces of gel were subjected to in-gel 
digestion consisting in washing the gel pieces sequentially with 
ammonium bicarbonate 25 mM and 50% acetonitrile (ACN)/
ammonium bicarbonate 25 mM in an ultrasonic bath. The 
proteins were later reduced with dithiothreitol (DTT) 10 mM 
for 1 h and alkylated with indoleacetic acid (IAA) 55 mM for 
30 min. Finally, proteins were digested overnight with 40 ng of 
trypsin at 37 °C, and tryptic peptides were extracted from the 
gel matrix in two steps with 0.5% trifluoroacetic acid (TFA) and 
100% ACN.

liquid Chromatography–Tandem Mass 
Spectrometry
The tryptic peptides were then dried in a speed-vacuum 
concentrator at 45 °C (Concentrator plus, Eppendorf, Hamburg, 
Germany), reconstituted in LC/MC-grade water containing 
0.1% (v/v) formic acid, and analyzed by electrospray ionization–
tandem mass spectrometry in a hybrid high-resolution LTQ-
Orbitrap ELITE (Thermo Fisher Scientific, Waltham, MA, USA) 
coupled to an Easy-nLC 1000 liquid chromatography system 
(Thermo Fisher Scientific, Waltham, MA, USA). They were 
subsequently transferred to a reverse phase column (PepMap® 
RSLC C18, 2 µm, 100 Å, 75 µm x 500 mm, Thermo Fisher 
Scientific, Waltham, MA, USA) and eluted with an ACN gradient 
of 5–30% containing 0.1% formic acid, for 240 min and at a flow 
rate of 5 µl/min. The resulting elutes were transferred directly to 
the mass spectrometer, which was set to a positive ion setting 
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in a data-dependent mode. A full mass spectrometry scan was 
performed with a mass-to-charge ratio range of 350–1,600 m/z 
and a resolution of 120,000. A tandem mass spectrometry scan 
was then performed with the top 15 at 18% of the normalized 
collision energy (NCE), with a dynamic exclusion time of 30 s, a 
minimum signal threshold of 1,000, a resolution of 30,000, and 
an isolation width of 1.50 Da.

Search and Analysis of Protein Databases
A bioinformatic analysis of MS/MS raw data was performed 
using the MaxQuant 1.6.1.0 software (http://www.coxdocs.
org/doku.php?id = maxquant:start). Protein identification was 
carried out using the UniProtKB/Swiss-Prot human proteome 
(release 2018_04). For the quantitative analysis, we considered 
an false discovery rate (FDR) <0.01 for proteins with at least 
two matching unique peptides (17). Searches were performed 
by applying the following group-specific parameters: trypsin/P 
was set as the digestion enzyme with a maximum of two 
missing cleavages, and up to five modifications per peptide 
were permitted; the methionine (M) oxidation and protein 
N-terminal acetylation were set as variable modifications; 
minimal peptide length was set to seven amino acids; and 
the label-free quantification (LFQ) ratio count was set to two 
with normalization. Following this workflow, the MaxQuant 
package was used to create tables in.txt format, which were then 
analyzed with the Perseus 1.6.1.1 software (http://www.coxdocs.
org/doku.php?id = perseus:start) (18). Given that our research 
hypothesis was based on the specific functions carried out by 
proteins at the level of the central nervous system (CNS), such as 
neuronal, synaptic, and neurotransmission processes, the table 
(proteinGroups.txt) generated by MaxQuant was uploaded in 
Perseus, and the data were filtered based on categorical columns 
to remove potential contaminants and reverse hits, and to exclude 
proteins exclusively identified by site. The LFQ intensities were 
subsequently transformed into logarithms, and missing data 
are replaced by imputation of missing values according to a 
normal distribution (width: 0.3; downshift: 1.8). The Perseus 
table was finally exported to Excel, where functional proteins 
were characterized based on their activity, molecular function, 
biological processes, and location. The UniProt (https://www.
uniprot.org/) and Ensemble (https://www.ensembl.org/) 
databases were also consulted to obtain specific information on 
the proteins, and the STRING 10.5 online platform was used to 
identify protein interaction networks.

Western Blot Analysis
Aliquots of plasma samples of both the patients with 
schizophrenia and the healthy controls, and aliquots of CSF of 
six controls were mixed with 2X volume of Laemmli buffer 2X 
(Bio-Rad, California, USA) (950 µl of Laemmli buffer and 50 µl 
of β-mercaptoethanol) and boiled at 95 °C for 5 min. Previous 
measurement of the plasma and CSF proteins (total proteins) 
allowed for determining the equivalent amount of proteins 
required for each sample (10 µg of proteins). Fraction samples 
were loaded in 6–14% Bis-Tris polyacrylamide gels, and an 
electrophoresis was performed in a PowerPac™ universal power 

supply (Bio-Rad, California, USA) at 60 V for 30 min, and at 100 
V for another 90 min. The proteins were immediately transferred 
to polyvinylidene difluoride membranes (Immun-Blot® 
polyvinylidene fluoride (PVDF) membrane, Bio-Rad, California, 
USA) contained in a PowerPac™ universal power supply (Bio-
Rad, California, USA) set at 0.25 A for 60 min (for two gels). 
The membranes were blocked with 5% milk in a tris-buffered 
saline solution with Tween (TBST) for 20 min and washed 
three times with the same TBST solution. The membranes were 
then incubated overnight at 4 °C over stirrers with a primary 
antibody: anti-drebrin (C-8) mouse monoclonal antibody 
1:1,000 (sc-374269, Santa Cruz Biotechnology, Inc., OR, USA); 
anti–glia maturation factor beta (GMF-β) rabbit polyclonal 
antibody 1:1,000 (PA5-70673, Thermo Fisher Scientific, 
Rockford, USA); anti–Rab3 GTPase-activating protein catalytic 
subunit (RAB3GAP1) rabbit polyclonal antibody 1:1,000 (PA5-
37026, Thermo Fisher Scientific, Rockford, USA); anti-attractin 
(9H8) mouse monoclonal antibody 1:1,000 (LF-MA0146, 
Thermo Fisher Scientific, Rockford, USA); or anti–brain-derived 
neurotrophic factor (BDNF) rabbit polyclonal antibody 1:2,000 
(SAB2108004, Sigma-Aldrich, St. Louis, USA). After washing 
them three times with TBST, the membranes were incubated with 
the appropriate secondary antibody 1:10,000 (GE Healthcare Life 
Sciences, UK) for 60 min over a stirrer. The membranes were 
then washed again twice with TBST and once with TBS. The 
ChemiDoc XRS+ system (Bio-Rad, California, USA) was then 
used to analyze the chemiluminescence of the membranes with 
the ECL™ Prime Western Blotting System (Sigma-Aldrich, St. 
Louis, USA). Image Lab 6.0 software (Bio-Rad, California, USA) 
was used to analyze the blot images acquired, and a densitometric 
band quantification was performed by means of the ImageJ 1.5k 
software (National Institutes of Health, USA).

Statistical Analysis
The GraphPad Prism 7 software (GraphPad Software Inc., San 
Diego, CA, EUA) was used to manage the resulting data and to 
perform the statistical analysis. The LFQ proteomics analysis was 
carried out in the Perseus 1.6.1.1 software. A two-sample Student’s 
t-test was used to analyze differences in LFQ protein intensities 
between the patients with schizophrenia and the controls, and 
the FDR Q values were corrected using the Benjamini–Hochberg 
method (Q-value threshold ≤0.05). The mean age of both cohorts 
was compared with the Mann–Whitney U test, and the differences 
between sex ratios were analyzed with Fisher’s exact test. To 
determine whether there are significant differences in means 
between schizophrenia subgroups (FES and chronic schizophrenia) 
and control group it was applied one-way ANOVA followed by 
Bonferroni post-hoc test. Effect size estimates (Hedges’ g) were 
calculated using means, standard deviations, and sample size, and 
were interpreted according to Cohen guidelines, with an effect 
size of 0.2, 0.5, and 0.8 (small, medium, and large, respectively). 
In addition, the correlation between the PANSS scores, duration 
of illness, and age of illness onset, and the relative protein units 
obtained in both cohorts (schizophrenia and controls) was 
analyzed by means of a Pearson correlation analysis. Statistically 
significant results are assumed considering a P value ≤ 0.05.
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ReSUlTS
We performed a case–control study comparing a cohort of 
patients with schizophrenia with a cohort of health subjects 
whose parameters closely matched those of the schizophrenia 
group. Our research hypothesis focused on identifying proteins 
linked to specific functions carried out at the level of the CNS, 
such as neuronal (neuroinflammation, neurodegeneration), 
neurotransmission (exocytosis of neurotransmitters), and 
synaptic activity (synaptic plasticity). Thus, the design of our 
proteomics experiment considered both statistical and theoretical 
principles (19). Plasma proteomics enabled the identification 
of a large number of proteins as we performed a proteomic 
analysis with an appropriate workflow including processes 
such as sample preparation, data analysis, and the assessment 
of cohesive results with a view to export this new knowledge to 
the clinical practice. Our comparison of the demographic and 
clinical data of 45 patients with schizophrenia and 43 healthy 
controls revealed no significant differences between both 
cohorts in terms of age (P = 0.4593 Mann–Whitney U test) 
and sex (P = 1.0000 Fisher’s exact test). The raw data obtained 
with the Thermo Orbitrap MS were analyzed in the MaxQuant 
software, with a total of 1,302 proteins being screened. An 
essential criterion established for our analysis was that the 
proteins had to be directly correlated with specific functions 
in the CNS, in particular relating to psychoneuroimmune 
signaling pathways. The MaxQuant database (proteinGroups.

txt) was converted into an Excel file (XLS) on the basis of this 
criterion, and a careful analysis of each protein was carried out 
according to its name, encoding gene, molecular, and biological 
functions, and subcellular location, using the UniProt database 
as a reference. Following this analysis, 34 proteins that met 
our criteria were screened. A two-sample test (Student’s t-test, 
minimum fold-change [S0] = 2; FDR = 0.01) was performed 
in the Perseus software. The FDR Q values were corrected with 
the Benjamini–Hochberg method (Supplementary Table 1) 
and represented logarithmically (Log10 [FDR q value]) with a 
Q-value threshold ≤ 0.05 (Supplementary Figure 1).

Alterations of Psychoneuroimmune 
Pathways in Patients With Schizophrenia
The available evidence suggests that schizophrenia causes a 
dysfunction in synaptic, neurotransmission, and neuronal 
patterns (20–22). Based on this, our analytical findings report 
other proteomic perspectives, founded on biological connections, 
protein networks, and specific pathways (Figure  1). Protein–
protein interaction (PPI) maps were analyzed by STRING 
Interactome, which enabled us to understand protein networks 
and to identify a cluster of proteins involved in the coordination 
of the biological pathways previously mentioned. Thus, the 
STRING PPI network connectivity reported a P value = 7.19e−8, 
demonstrating that the proteins are at least partially biologically 
connected as a group. The characteristics of STRING network 

FIGURe 1 | Analysis and characterization of selected proteins. (A) Heat-map representation of the proteins selected (34 proteins of interest) that converges on the 
mapping of the 5 proteins analyzed. The rows link the proteins according to their mean values (number of clusters = 300; maximum number of interactions = 10; 
and number of restarts = 1). Upregulated proteins are represented in blue, and downregulated proteins in brown. The numbering of the columns corresponds to our 
encoding of individuals. (B) Protein–protein interaction mapping by STRING tool. Study proteins are marked with a red asterisk. (C) STRING network analysis.
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include number of nodes, number of edges, average node degree, 
average local clustering coefficient, and PPI enrichment P value 
(Figure 1). Of the total of 34 proteins screened, 5 proteins 
associated with psychoneuroimmune pathways in schizophrenia 
were analyzed, which could be potential new analytes: drebrin, 
GMF-β, BDNF, RAB3GAP1, and attractin. These proteins are 
involved in critical neurobiological processes closely linked 
to schizophrenia. Finally, heat-mapping of these five proteins 
proved the existence of a biological connection between them. 
In this map, upregulated proteins were represented in blue and 
downregulated proteins in brown (Figure 1).

Psychoneuroimmune pathways are undoubtedly correlated 
with schizophrenia. We selected these proteins based on their 
functions on the CNS. However, to understand how CNS-
originated proteins leaked to peripheral blood, we analyzed CSF 
samples of six controls by Western blot, proving that drebrin, 
GMF-β, BDNF, RAB3GAP1, and attractin are present in the 
CSF and can cross the blood–brain barrier (BBB), and can be 
found in peripheral blood (Figure 2). Moreover, we analyzed the 
correlation between levels of proteins in CSF and plasma samples 
of controls. Thus, we established that levels of proteins in CSF and 
plasma are comparable due to the lack of statistical significance 
(1.000 ± 0.10 vs. 1.000 ± 0.42, Pattractin = 0.9999; 1.000 ± 0.12 
vs. 1.000 ± 0.39, PBDNF = 0.8205; 1.000 ± 0.20 vs. 1.000 ± 0.42, 
Pdrebrin = 0.9997; 1.000 ± 0.12 vs. 1.000 ± 0.49, PGMFβ = 0.8009; 
and 1.000 ± 0.13 vs. 1.000 ± 0.59, PRAB3GAP1 = 0.9999).

Thus, to verify the role of these five proteins in schizophrenia, 
we analyzed changes in plasma protein levels using the Western 

blot (Figure 3). The plasma levels of the selected proteins in 
both the patients with schizophrenia and the healthy controls 
were measured and calculated based on the mean percentage 
of control values. Upon quantification, this analysis revealed a 
significant decrease in the levels of GMF-β (0.8357 ± 0.30 vs. 
1.000 ± 0.49, P = 0.0256), BDNF (0.7571 ± 0.30 vs. 1.000  ± 
0.39, P = 0.0008), and the 115-kDa isoform of RAB3GAP1 
(0.2717 ± 0.45 vs. 1.000 ± 1.07, P = 0.0002) in schizophrenic 
patients as compared to healthy volunteers. Moreover, the effect 
size (Hedges’ g) of GMF-β was 0.407 with a 95% confidence 
interval (CI) = −0.016–0.829; BDNF was 0.700 with a CI = 
0.37–1.131; and 115-kDa isoform of RAB3GAP1 was 0.895 with 
a CI = 0.456–1.333. Attractin, drebrin, and the RAB3GAP1 all 
presented a P value >0.05 (1.052 ± 0.31 vs. 1.000 ± 0.42, P = 
0.5345; 1.070 ± 0.29 vs. 1.000 ± 0.42, P = 0.3917; and 0.9547 ± 
0.32 vs. 1.000 ± 0.59, P = 0.6729, respectively), thus revealing 
an absence of significant statistical correlation. The 115-kDa 
isoform of RAB3GAP1 was detected in Western blot analysis, 
and its presence was also confirmed in the Excel database 
generated by the Proteome Discoverer software (Rab3 GTPase-
activating protein catalytic subunit isoform X1; Homo sapiens).

On the other hand, we subdivided the group of patients 
with schizophrenia into two groups: FES group and chronic 
schizophrenia group. Then, we analyzed changes in proteins levels 
of both groups of patients compared to healthy subjects (Table 1). 
One-way ANOVA test after P-value adjustment (Bonferroni post-
hoc test) detected levels of BDNF statistically significant (F(2,85) = 
7.194, P = 0.0014) being lower in the FES group (0.6449 ± 0.24 

FIGURe 2 | Schematic representation of central nervous system (CNS)–originated proteins analyzed in cerebrospinal fluid (CSF). Proteins involved in 
psychoneuroimmune pathways and CNS-originated are detected in CSF samples and pass through the blood–brain barrier into peripheral blood. BDNF, brain-
derived neurotrophic factor; GMF-β, glia maturation factor beta; RAB3GAP1, 115-kDa isoform of Rab3 GTPase-activating protein catalytic subunit.
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vs. 1.000 ± 0.39, P = 0.0031) compared to chronic schizophrenia 
(0.7986 ± 0.32 vs. 1.000 ± 0.39, P = 0.0131). The 115-kDa isoform 
of RAB3GAP1 also presented relevant results (F(2,85) = 7.918, P = 
0.0008) with a statistical significance in FES group (0.1372 ± 0.43 
vs. 1.000 ± 1.07, P = 0.0080) and chronic schizophrenia group 
(0.3166 ± 0.45 vs. 1.000 ± 1.07, P = 0.0020). The Bonferroni multiple 

comparisons test revealed a significant result in the GMF-β levels 
in the group of chronic schizophrenia (0.8066 ± 0.32 vs. 1.000 ± 
0.49, P = 0.0453). Attractin, drebrin, and the RAB3GAP1 levels 
did not yield correlation with the severity of the disease (Table 1).

We subsequently analyzed correlations between levels of 
proteins with statistical significance and symptomatology 

FIGURe 3 | Western blot of the plasma of patients with schizophrenia and healthy controls. A significant decrease in the levels of GMF-β (P = 0.0256), BDNF (P = 
0.0008), and the 115-kDa isoform of RAB3GAP1 (P = 0.0002) was observed in schizophrenic patients (n = 45) as compared to the controls (n = 43). No significant 
correlation was detected with the attractin (P = 0.5345), drebrin (P = 0.3917), and RAB3GAP1 (P = 0.6729) proteins. Relative units refer to the mean percentage of 
control values.

TABle 1 | One-way ANOVA and bonferroni multiple comparisons test results.

Parameter FeS Chronic SCZ Controls

N 10 35 43
GMF-β1 0.8877 ± 0.25 0.8066 ± 0.32 1.000 ± 0.49
P-value Bonferroni post-hoc test 0.5257 0.0453*

One-way ANOVA F(2,85) = 2.814, P = 0.0669
BDNF1 0.6449 ± 0.24 0.7986 ± 0.32 1.000 ± 0.39
P-value Bonferroni post-hoc test 0.0031* 0.0131*
One-way ANOVA F(2,85) = 7.194, P = 0.0014*
115-kDa isoform RAB3GAP11 0.1372 ± 0.43 0.3166 ± 0.45 1.000 ± 1.07
P-value Bonferroni post-hoc test 0.0080* 0.0020*
One-way ANOVA F(2,85) = 7.918, P = 0.0008*
RAB3GAP11 0.9618 ± 0.31 0.9524 ± 0.33 1.000 ± 0.59
P-value Bonferroni post-hoc test >0.9999 >0.9999
One-way ANOVA F(2,85) = 0.0901, P = 0.9139
Drebrin1 1.2494 ± 0.25 1.010 ± 0.28 1.000 ± 0.41
P-value Bonferroni post-hoc test 0.0993 >0.9999
One-way ANOVA F(2,85) = 2.122, P = 0.1269
Attractin1 1.2426 ± 0.31 0.9885 ± 0.29 1.000 ± 0.42
P-value Bonferroni post-hoc test 0.1238 >0.9999
One-way ANOVA F(2,85) = 2.080, P = 0.1322

One-way ANOVA followed by Bonferroni post-hoc test: comparison of patients groups with control group. *Statistical significance: P ≤ 0.05. 1Relative units of plasma 
levels (mean ± SD). FES, first-episode schizophrenia; SCZ, schizophrenia; GMF-β, glia maturation factor beta; BDNF, brain-derived neurotrophic factor; RAB3GAP1, 
Rab3 GTPase-activating protein catalytic subunit. N- number of participants.
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(PANSS scores), age of illness onset, and duration of illness 
(Supplementary Table 2). No statistical significance was found 
between the protein levels and these parameters.

DISCUSSION
Large-scale study of protein expression using high-resolution 
proteomics can be used for the discovery of disease biomarkers 
in patient plasma samples (23). The use of instruments such 
as high-resolution mass spectrometry (e.g. Orbitrap) together 
with enhancements in LFQ and the precise preparation of 
samples has allowed for improving protein detection with an 
excellent accuracy (24). In addition, it may be concluded that 
schizophrenia is a very complex disease that combines intrinsic 
and extrinsic factors responsible for synaptic deficits, neuronal 
dysfunctions, and immune and neurotransmission alterations 
(25–27). One of the handicaps in the detection and research 
of molecular brain events, such as synaptic activity, plasticity, 
neuroinflammation, or neurodegeneration, is how to detect 
these changes in patients with an active disease. To predict these 
cerebral events, we used deep proteomic techniques aimed at 
detecting proteins or changes in the patients’ plasma samples. 
Human plasma is the largest and deepest sample of the entire 
set of proteins that characterizes the proteome, containing 
the typical plasma proteins, additionally tissue proteins, and 
immunoglobulin sequences (28). In the last years, several studies 
have been analyzing the blood plasma and serum proteome of 
patients with schizophrenia (8, 29). Focusing in these studies, 
most are matched case–control studies whose sample size average 
oscillates between 30 patients with schizophrenia (cases group) 
and 32 healthy volunteers (control group) (30–38). Moreover, 
LFQ of proteins by LC-MS/MS is the most common technique 
to analyze the proteome whose range of proteins with altered 
abundance varies between 6 and 35 (15 proteins on average). 
Additionally, multiplex immunoassays have also been widely 
used; however, limitations of multiplexing itself or related to the 
specificity for protein isoforms make them incompatible with 
some investigations, whereby the MS-based proteomics becomes 
the preferred technique due to its unprecedented accuracy (29, 
39). Finally, the main findings reported by these studies suggest 
alterations in inflammatory and immune response, coagulation 
cascade, glucose and lipid metabolism, and structural proteins 
(29). Despite the high sensitivity and specificity of LC/MS-MS 
approaches, none of the studies contrasted and validated 
their results with other techniques such as enzyme-linked 
immunosorbent assays (ELISA) or Western blot.

Synaptic deficits are associated with abnormal glial–neuronal 
connections, as well as with genetic, immunological, and 
environmental factors that may contribute to imbalances in 
synaptic homeostasis and, consequently, to a worsening of the 
symptoms of schizophrenia (20). Drebrin is an actin-binding 
protein that regulates synaptic plasticity and whose absence 
is associated with abnormal synaptic dysfunction (40). The 
BDNF protein is the most abundant neurotrophin in the CNS 
and a key regulator of synaptic plasticity (41). GMF-β, on the 
other hand, is correlated with glial and neural dysfunctions. This 

protein is expressed in the microglia, and in the CNS neurons, 
astrocytes, and oligodendrocytes, and is considered a growth 
and differentiation factor (42, 43). GMF-β is also associated 
with neuroinflammative and neurodegenerative disorders (43). 
Attractin is a soluble protein released by activating T lymphocytes, 
and linked to immune cell interaction (44). In the CNS, attractin 
contributes to progressive neurodegeneration associated to 
neuroinflammation where T lymphocytes release attractin, 
which results in neuronal cell death and hypomyelination (45, 
46). Finally, RAB3GAP1 is a key regulator of the exocytosis 
of neurotransmitters and hormones (47). These five proteins 
regulate crucial processes involved in proper brain activity. 
Additionally, there is an association between these proteins and 
neuroinflammatory and neurodegenerative conditions such as 
multiple sclerosis and Alzheimer’s and Parkinson’s diseases (43, 
48). For example, a decrease in BDNF expression was correlated 
with neuronal loss in neurodegenerative diseases, including 
Parkinson’s disease or Alzheimer’s disease (49, 50). On the other 
hand, RAB3GAP1 also plays an important role in the autophagic 
pathway that results in the intercellular accumulation of proteins, 
whose dysregulation is related with several conditions such 
as cancer and cardiovascular or neurodegenerative diseases 
(51). Moreover, other studies reveal a significant reduction of 
drebrin that may be a potential indicator of impaired dendritic 
arborization and synaptic dysfunction in neurodegenerative 
diseases as Alzheimer’s disease (52, 53). Regarding attractin, this 
protein is involved in neuroprotection through the regulation 
of myelination, neuroinflammation, and metabolism of reactive 
oxygen species (ROS) (45, 54). Thus, abnormal levels of attractin 
are associated with neurodegenerative processes (45). Finally, 
GMF modulates the glial activation induced by beta-amyloid, 
inflammatory cytokine production, and neuronal damage, 
whose upregulation of its expression generates inflammation in 
neurodegenerative diseases (55, 56).

In our study, we detected by LC-MS/MS that these 
proteins, specifically BDNF, GMF-β, and the 115-kDa isoform 
of RAB3GAP1, are downregulated in schizophrenia, with 
significantly reduced levels being detected in the plasma of 
schizophrenic patients. Additionally, we found a significant 
weight Hedges’ g of 0.407 for GMF-β; 0.700 for BDNF; and 0.895 
for 115-kDa isoform of RAB3GAP1, whose results have shown a 
consistent effect and substantially significant. Specifically, levels 
of BDNF were lower in the FES group. It was described in FEP 
that there were found associations between reduced BDNF gene 
expression levels in severe mental disorders, associated with 
increased inflammation and smaller hippocampal volume (57). 
We corroborated by LC-MS/MS and Western blot that plasmatic 
BDNF is decreased in both FES and chronic schizophrenia. 
GMF-β protein is a protein implicated in differentiation of brain 
cells and stimulation of neural regeneration. We described that 
GMF-β plasmatic had decreased levels in the group of patients 
with chronic schizophrenia. Finally, RAB3GAP1 is a protein 
that participates in neurodevelopmental processes such as 
proliferation, migration, and differentiation before synapse 
formation with several isoforms. We described that levels of 115-
kDa isoform of RAB3GAP1 were reduced in both groups. This 
may lead to a loss of brain functions associated with synaptic, 
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neuronal, and neurotransmission deficits. The loss of grey 
matter may be explained by a reduction in the levels of synaptic 
activity, thus justifying the neurodevelopment hypothesis of 
schizophrenia (58). Synaptic plasticity is essential for memory 
and learning processes, and is involved in the complex task of 
neuronal organization within the brain (normal brain maturation) 
(59). Therefore, cognitive dysfunction in schizophrenia 
characterized as "dysconnectivity" involves abnormalities in 
synaptic plasticity, transmitter receptors (number, composition, 
and phosphorylation status), and neuronal structure (e.g. axonal 
fibers) (60).

Being able to find potential plasma biomarkers that are 
capable of predicting changes in synaptic pruning can open a 
new pathway for the diagnosis and treatment of schizophrenia. 
Starting from the analysis by LC-MS/MS, we predict five 
candidates that may be relevant to demonstrate alterations 
between the clinical development of schizophrenia and plasma. 
Although the expression of these five proteins is broad, the main 
place of expression of all of them is the CNS. To demonstrate 
that these five proteins are able to bind to the BBB and reach the 
plasma, we analyze their presence in CSF samples (Figure 2).

Regarding the disease’s clinical symptomatology, schizophrenic 
patients that participated in our study experienced more 
pronounced negative symptoms (Table 2). The available evidence 
suggests that negative symptoms are a relevant multidimensional 
construct in both chronic schizophrenia and FES (61). The 
presence of negative symptoms at early stages of the disease 
associated with poor pre-morbid adjustment is a predictive factor 
for medium-term severe negative symptoms (62). Furthermore, 
psychopathological models report impaired insight in relation 
to the severity of the positive symptoms, as their intensity tends 
to fluctuate with each psychotic episode, although positive 
symptomatology tends to improve over time (as opposed to 
negative symptomatology) with antipsychotic treatment (63). 
Moreover, cognitive dysfunction starts during adolescence, 
and its onset is accompanied by the first signs of schizophrenia 
worsening with chronicity of the disease (64). However, no 
statistical significance was found between the levels of the studied 
proteins and the PANSS scores.

Our study has some limitations that should be mentioned. 
First of all, our sample size with regard to the FES group is small, 

which consequently limits its statistical power and warrants the 
need for future research with a larger number of FES patients to 
achieve robust evidence. Secondly, our analysis did not consider 
the difference between antipsychotic drugs. However, the fact is 
that the patients were admitted to the psychiatric ward allowing 
the control of the treatment adherence. Despite these limitations, 
this study yielded significant results that allowed for channeling 
the search of an analyte panel for schizophrenia. In conclusion, 
there is a great potential for BDNF, GMF-β, and the 115-kDa 
isoform of RAB3GAP1 proteins to act as possible biomarkers of 
schizophrenia, and they may even differentiate early stages (e.g. 
BDNF) from later stages (e.g. GMF-β) of the disease.

Cognitive disorders and neuroinflammatory phenomena 
occur years before the FES, associated with an increase in the 
synthesis of dopamine in the striatum (64). Our study opens 
the door to detecting cognitive alterations in a simple way in 
plasma samples. Being able to measure potential biomarkers 
of cognitive status in peripheral samples opens up a very novel 
way of research in the treatment and diagnosis of schizophrenia, 
which in the future would greatly improve patient quality of care.
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7–49; PANSS general range, 16–112; PANSS total range, 30–210 (16). Statistical significance, P ≤0.05.
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