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Purpose: Archetypal analysis, a form of unsupervised machine learning, identifies
archetypal patterns within a visual field (VF) dataset such that any VF is described as
a weighted sum of its archetypes (ATs) and has been used to quantify VF defects in
glaucoma. We applied archetypal analysis to VFs affected by nonglaucomatous optic
neuropathy caused by idiopathic intracranial hypertension (IIH).

Methods: We created an AT model from 2862 VFs prospectively collected from
330 eyes in the IIH Treatment Trial (IIHTT). We compared baseline IIH AT patterns with
their descriptive VF classifications from the IIHTT.

Results: The optimum IIH AT model yielded 14 ATs resembling VF patterns reported in
the IIHTT. BaselineVFs contained four or fewermeaningful ATs in 147 (89%)of studyeyes.
AT2 (mild general VF depression pattern) demonstrated the greatest number of study
eyes with meaningful AT weight at baseline (n = 114), followed by AT1 (n = 91). Other
ATs captured patterns of blind spot enlargement, hemianopia, arcuate, nasal defects,
andmore nonspecific patterns of general VF depression. Of all ATs, AT1 (normal pattern)
had the strongest correlation with mean deviation (r = 0.69, P < 0.001). For 65 of the
93 VFs with a dominant AT, this AT matched the expert classification.

Conclusions: Archetypal analysis identifies quantifiable, archetypal VF defects that
resemble those commonly seen in IIH.

Translational Relevance: Archetypal analysis provides a quantitative, objective
method of measuring and monitoring disease-specific regional VF defects in IIH.

Introduction

Visual field (VF) testing is used to diagnose and
monitor most optic neuropathies. Changes in thresh-
old perimetry detected through trend or event-based
analyses are often used to determine change in visual
function. Many commonly used methods, including
assessing change in mean deviation (MD), however, do
not provide details of regional VF defects.1,2 Experts

categorize specific patterns of VF loss, but clini-
cal interpretation is descriptive and qualitative. Thus
longitudinal analyses are subjective, leading to conflict-
ing opinions. Supervised learning algorithms have been
used in glaucoma to monitor disease-specific deficits,
but the results of these algorithms frequently disagree
with one another.3,4 Each applies ad hoc rules depend-
ing on the stage of disease, and no universally accepted
approach exists.5 Furthermore, subtle patterns of
regional VF loss can be missed, some disease-specific
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deficits are not tracked, and the algorithms are often
arbitrarily weighted to preferred regions such as the
central field.

A new approach to VF analysis uses archety-
pal analysis (AA), an unsupervised machine learning
technique. Previously, AA has been used in a variety
of settings pertaining to physics and engineering, such
as the analysis of air pollution data, and the assess-
ment of the head and face for military mask fitting.6,7
AA processes a heterogeneous dataset and identifies
representative patterns along the outer edges of the
data space (the edges of which are known collectively
as the “convex hull”). These representative patterns
referred to as “archetypes” (ATs), and together they
comprise amathematically determinedmodel such that
any observation within the dataset can be described as
a weighted combination of these ATs.6–8 When AA is
applied to a dataset of VFs taken from eyes affected
by a specific disease, AA can identify the distinct
types of VF patterns seen in this disease (as they
are represented within the dataset) as ATs.8,9 AA has
already successfully identified patterns of VF loss in
glaucoma that were very similar to expert-determined
patterns reported in the Ocular Hypertension Treat-
ment Study.4,8,10–13 Once an archetypal model (with
each AT representing a different type of VF pattern
or regional defect) is generated for a dataset of VFs,
any VF can be decomposed into its specific compo-
nent ATs, each with a relative percent weight.8,10,13 A
given VF can thus be described as a weighted sum of
all ATs within the model, with higher percent weights
attributed to those ATs which are most highly repre-
sented within the given VF pattern. AA therefore
provides quantification of specific patterns of regional
VF loss.

To date, AA has not been applied to evaluate
nonglaucomatous optic neuropathies, where functional
improvement can be achieved with therapy unlike in
glaucoma, where the goal is prevention of further loss
of function.14–18 Idiopathic intracranial hypertension
(IIH) is one such disorder, where visual dysfunction,
recovery, and response to therapy are common, but
visual deficits vary widely.14,17 AA has the potential
to provide quantifiable metrics that can be used to
monitor therapy and measure improvement or worsen-
ing in IIH VF patterns. This could reduce depen-
dence on subjective clinician VF interpretation and
improve the accuracy and uniformity of VF analy-
sis. Here, we apply AA to the VF dataset from the
Idiopathic Intracranial Hypertension Treatment Trial
(IIHTT).17 We assessed whether AA can independently
reveal patterns of VF loss in IIH that resemble known
VF defects typically seen in IIH and quantify these
patterns of VF loss.

Methods

This study was approved by the Institutional Review
Board of the Icahn School of Medicine atMount Sinai.
The IIHTT followed the tenets of the Declaration
of Helsinki; informed consent was obtained from the
subjects after explanation of the nature and possible
consequences of the study; the research was approved
by the institutional human experimentation committee
or institutional review board; and a Data Safety and
Monitoring Committee was in place to monitor the
ethical conduct of the study and the accumulation of
data for evidence of adverse and beneficial treatment
effects.

Datasets

This study used data from the National Eye
Institute–sponsored IIHTT, collected from 165 IIH
subjects (330 eyes) with mild VF loss (MD of −2 to −7
dB required as inclusion criteria) whowere randomized
to a supervised weight loss diet with acetazolamide or
the same diet with placebo.17 The mean age of partic-
ipants was 29 years (range 18–52 years), and 97.6%
of participants were female. Mean body mass index
was 39.9 (range 24.9 to 71.2), and mean CSF opening
pressure on lumbar puncture was 343.5mmH20 (range
210–670 mmH2O). Papilledema was graded according
to the Frisén scale, with a grade of 2 being the most
common (at least grade 1 required for study entry).19
The VFs were conducted by trained, certified techni-
cians with quality control by an expert visual field
reading center (VFRC).20,21 The eye with worse MD at
presentation was labeled the “study eye,” and the other
eye was considered the “non-study eye.”For study eyes
at baseline, the average MD was −3.5 ± 1.1 dB in
study eyes and −2.3 ± 1.1 dB in non-study eyes (±
standard deviation). Visual acuitywasmeasured via the
Early TreatmentDiabetic Retinopathy Study (ETDRS)
method, with a score of 85 letters equal to 20/20. The
visual acuity was 20/20 or better in 70.9% of study eyes
and 77.0% of non-study eyes at baseline. Subjects had
reliable VFs performed on Humphrey Field Analyzer
24-2 SITAStandard testing at six visits according to the
following schedule: two VFs were performed for each
eye at baseline, one VF at each additional visit at one,
two, three, four, and five and two VFs at six months.
The MD and pattern standard deviation (PSD) values
(decibels [dB]) were reported for each VF at each visit
for each eye.

Additional VFs were performed if the results were
suggestive of treatment failure (see below) or were
considered unreliable by the IIHTT Visual Field
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Reading Center. All VF tests required adequate gaze
tracking and reliability standards of fixation loss errors
<33% and false-positive errors <15% to be included.
At any time during the IIHTT, treatment failure was
determined if the MD decreased by ≥2 dB from
presentation when baseline MD was ≤−3.5 dB or
if MD decreased by ≥3 dB from presentation when
baseline MD was between −3.5 and −7 dB, which was
confirmed on repeat VF testing. Performance failures
were identified based on VF worsening that could
not be reproduced on subsequent VF exams, indicat-
ing that this apparent worsening could be explained
by lack of effort, attention, or concentration rather
than true clinical worsening. The IIHTT Visual Field
Reading Center and study leadership identified seven
study subjects as treatment failures and 35 subjects as
performance failures.20

This IIHTT dataset contained a total of 2933
VFs taken over multiple time points, from baseline to
one year. VFs marked as “unreliable” were removed,
leaving 2862 VFs from both eyes remaining that were
used to generate the IIH ATs. For our further analy-
ses, we excluded visits occurring after sixmonths, defin-
ing an “outcome visit” as the six-month visit for all
eyes. If the subject was a treatment failure, we substi-
tuted the VF taken at the treatment failure visit for
all other visits through six months. Because subjects
were treated with a variety of interventions including
surgery, which could alter the outcome, we excluded
VFs taken at any other visit occurring after confir-
mation of treatment failure. For performance failures,
only the reliable confirmatory VFs were included. For
all eyes, if multiple reliable VFs existed for a single
time point, we used the average TD values at each
point location for that time. This process left 1683 VFs
remaining (839 from study eyes and 844 from non-
study eyes), which were used in the remainder of the
analysis.

A separate dataset of 568 VFs, collected from 61
normal eyes of 61 subjects with repeated 24-2 VF
tests performed at the University of Iowa was used
as a control group to establish the normal fluctua-
tion of IIH AT weights (see below for an explana-
tion of AT weights) among healthy eyes. The mean age
of participants was 61.22 years (range 42–79 years),
and 63.3% were women. Participants were included if
they met the following criteria: (1) no history of eye
disease except refractive error (no more optical correc-
tion than 5Diopter of sphere or 3Diopter of cylinder),
(2) no history of diabetes mellitus or systemic arterial
hypertension, (3) a normal ophthalmologic examina-
tion including 20/25 or better Snellen acuity, (4) good
fixation (losses < 20%) by gaze tracking or perimetrist
observation, and (5) false-positive and false-negative
rates of less than 10% on perimetry.22

Figure 1. RSS plot created for selection of idiopathic intracranial
hypertension ATmodel. The final number of ATs for our 14-ATmodel
was selected based on the point at which the curve begins to flatten
in order to avoid overfitting.

Archetypal Analysis

We used the open-source software package
“archetypes” within the R statistical programming
environment (R Development Core Team 2008) to
perform AA on 2862 VFs from the IIHTT. Total
deviation (TD) values (extracted from these 24-2 VFs)
from all visits occurring up to one year were included
as input data for the generation of our AT model. We
used 10-fold cross validation to select the number of
ATs (such that all data was divided into 10 subsets,
with each being used as the testing set once, and the
others serving as the training set) for our model. Using
TD values from our dataset of IIH VFs, we calculated
the residual sum of squares (RSS) for models using two
to 20 archetypes. We plotted the number of archetypes
against their RSS values and selected the final model
based on the value where the RSS curve flattened
to avoid overfitting (Fig. 1). The weights for all ATs
within the IIH model for each VF summed to 100%.
For comparison, we also applied AA to our dataset of
568 healthy control VFs to create a set of control ATs,
and to establish normal fluctuation in ON weighting
coefficients among healthy eyes over time.

Defining Threshold Value for a Meaningful
Weight andWeight Change

We defined the minimum AT weighting coefficient
necessary to represent a minimum meaningful AT
weight, as well as the minimum AT weight change
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necessary to represent meaningful change in vision
as (1) a value greater than the upper limit of the
95% confidence interval (CI) for any of the abnor-
mal IIH ATs weights calculated for control eyes, and
(2) a value greater than the upper limit of the 95%
CI for any IIH AT weight changes calculated for
control eyes. To accomplish this, we decomposed all
control VFs into the IIH ATs and calculated both the
mean weight of each IIH AT for control eyes and the
mean weight change of each IIH AT for control eyes,
averaging VFs performed over one year. The great-
est upper limit of the 95% CI for any abnormal IIH
AT weight among control eyes was >5% (excluding
AT1, a normal AT), and the greatest upper limit of the
95% CI for any IIH AT weight change among control
eyes was 7%. Because all control VFs were classified as
normal, AT weight changes that fell within confidence
intervals were considered to represent normal fluctu-
ation, not reflective of meaningful weight change. We
also factored in the probability that 1/14 ATs could
show >7% weight. We chose a very conservative value
of ≥9% to represent a meaningful weight or weight
change for any IIH AT.

Visual Field Decomposition, and Statistical
Analyses

After selection of a 14-AT model for our IIH VF
dataset, we decomposed all baseline and one-month
IIH VFs into their component ATs. We tabulated the
number of study eyes and non-study eyes with relevant
AT weight (≥9%) at baseline. The χ2 analysis was
used to assess for significant difference between the
treatment groups with regard to frequency of study
eyes with any AT weight ≥9% at baseline. Wilcoxon
tests were used to assess for any significant differ-
ence in mean AT weights between individual treatment
groups for study eyes at baseline. Spearman’s corre-
lation was used to test for any significant relation-
ship between each individual AT weight and MD,
PSD, visual acuity, and Frisén grade among study eyes.
Spearman’s correlation was also used to evaluate the
relationship between baseline study eye AT Sum scores
(to be described), MD, and PSD.

Development of Composite Baseline AT Sum
Score

We created a composite score (AT Sum) that could
represent a measure of VF dysfunction and reflect
peripheral and central VF deficits at a single time point.
To calculate this score, we assigned a positive sign to
all weighting coefficients for normal or less abnormal

ATs (ATs 1, 11, 7, 2, 8, 4 and 12; those with higher
average TD values), and a negative sign to the weight-
ing coefficients for the more abnormal ATs (ATs 5, 3, 6,
9, 10, 13, and 14; those with lower average TD values).
For an individual VF, the AT sum score is equal to
the sum of these 14 adjusted weighting coefficients,
with lower values representing worse VF function, and
higher values representing superior VF function. In
contrast to MD, the AT sum is representative of all
abnormal regional deficits and not dominated by the
central VF points.

Comparison of ATs to Known IIH VF Patterns

Two authors (MK and MW) categorized the 14
IIH ATs using the same approach used by the VFRC
for classifying the IIHTT visual fields.20,21 Although
masked to the IIHTT expert categorizations, we
applied these classifications to the dominantAT (≥50%
weight) of the baseline visual fields for all IIHTT eyes.
We compared these dominant ATs to the expert classi-
fications already determined by the VFRC, noting if
the results were the same, partially the same (contain-
ing similar clinically relevant features), or different.

Results

Development of a 14-AT Model for IIH

The optimal AT model created from the IIHTT VF
dataset (using the RSS criteria described in methods)
(Fig. 1) had 14 archetypes. The IIH model showed
a wide range of ATs, each with a specific average
TD value, and weighting coefficient relative to the
frequency of each AT within the dataset (Fig. 2). AT1,
a normal AT, had the highest relative weight at 30.89%.
This was followed by AT2, a mild general depression
pattern AT, with a relative weight of 23.85%. Based
on this 14-AT model, all study eye VFs were decom-
posed into their component IIH ATs; with each VF
represented by 14 AT weighting coefficients, summing
to 100%.

In addition, we created a 12-AT model for the
dataset of 568 VFs taken from healthy “control” eyes
with normal vision (Supplementary Fig. S1). Control
ATs were distinct from IIH-specific ATs. The major-
ity of control ATs were consistent with normal vision.
As such for the IIH ATs, AT1 was the most frequent
AT (highest relative weight, 14.9%) and also had the
highest average TD value (3.25 dB) in control eye visual
fields.
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Figure 2. These are the 14 ATs we derived from the IIHTT dataset (including all eyes and examination dates up to one year). These ATs are
shown in order of relative weight, representing their frequencywithin the dataset. The scale at the bottomdenotes the TD values associated
with each of the varying shades of red within each AT (range −35 to 5.0 dB). Each AT is displayed along with its corresponding average TD
value (in dB) and relative weight (RW) within the dataset. AvgTD, average total deviation.

Baseline ArchetypeWeights

The average number of ATs with meaningful
weighting contained within each baseline VF was 3.2
± 1. Eighty-nine percent (N = 147) of baseline VFs
could be decomposed into four ATs or less, and none
contained more than 5 ATs (Fig. 3). The frequency of
study eyes (N = 165) with meaningful weight (≥ 9%)
for each AT at baseline (Fig. 4) shows that the ATs
with the poorest average TD values (except AT11 with
mildly abnormal TD) were less common at baseline (in
keeping with the mild average MD values seen at study
entry). Non-study eyes (N=165) showed a similar
distribution of baseline AT weights (Supplementary
Fig. S2). AT2 demonstrated the greatest number of
study eyes with meaningful weighting at baseline (N
= 114), followed by AT1 (N = 95). The mean weights
at baseline for all AT for all study eyes are summa-
rized in Supplementary Table S1. AT2 showed the
highest mean weight for any baseline AT (23.9%; 95%

Figure 3. Frequency of baseline study eye visual fields containing
listed number of archetypes with meaningful weight (≥ 9%).
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Figure 4. Frequency of study eyes with archetype weight ≥ 9% at
baseline (for each archetype as listed).

CI 20.9%–26.9%), followed by AT1 at 14.7% (95% CI
12.6%–16.7%).

Correlation of ATWeights With Other Clinical
Features At Baseline

At baseline, AT1 weight demonstrated the
strongest overall correlation with MD (r = 0.69, P <

0.001; Fig. 5A), and AT2 demonstrated the strongest
correlation with PSD (r = −0.68, P < 0.001; Fig. 5B).
AT1 and PSD were mildly correlated, (r = −0.34,
P < 0.001), and AT2 was not correlated with MD.
MD and PSD correlated more modestly with select
additional baseline AT weights (Supplementary Tables
S2 and S3). Baseline AT Sum scores for all study eyes
correlated mildly with PSD at baseline (r = −0.37, P <

0.001; Fig. 6A), and moderately with MD at baseline
(r = 0.48, P < 0.001; Fig. 6B). There was no significant
correlation between any individual AT weight and
visual acuity at baseline. Reflecting the large blind
spot in the visual field, both AT7 and AT8 displayed a
mild correlation with Frisén grade at baseline (AT7: r
= 0.37, P < 0.001; AT8: r = 0.37, P < 0.001). Select
additional ATs showedmodest correlations with Frisén
grade; however, none correlated more strongly than
AT7 or AT8 (Supplementary Table S4).

Comparison of ATs to Known IIH VF Patterns

The 14-archetype IIH model showed a wide variety
of visual field patterns similar to those reported in the
IIHTT by VF experts including blind spot enlarge-
ment, arcuate and partial arcuate defect, quadran-

Figure 5. (A) Spearman correlation between AT1weight andmean
deviation (dB) at baseline (r = 0.69, P < 0.001) for study eyes.
(B) Spearman correlation between AT2 weight and pattern standard
deviation (dB) at baseline (r = −0.68, P < 0.001) for study eyes. AT1,
archetype 1; AT2, archetype 2.

tanopia, generalized VF depression, and normal VF.21
We analyzed 93 VFs that met criteria for having
a dominant AT (weight ≥ 50%) at baseline. The
dominant AT classification for 39 (42%) of these VFs
was an exactmatch to the expert category, and 26 (28%)
were a partialmatch. Thus, for 70%of these 93VFs, the
dominantAT displayed at least a partial matchwith the
expert classification (Supplementary Table S5). Differ-
ences in classification occurred in 28 visual fields, 23 of
which were classified by AT2 (mild widespread loss),
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Figure 6. (A) Spearman correlation between AT Sum and pattern standard deviation (dB) at baseline (r= −0.37, P< 0.001) for study eyes.
(B) Spearman correlation between AT Sum and mean deviation (dB) at baseline (r = 0.48, P < 0.001) for study eyes.
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Figure 7. Example of progression of VF andATweight changes between baseline and onemonth in one study eye. At baseline, this eye’s VF
was characterized by a nerve fiber bundle-type defect with enlarged blind spot (the most common type seen in the idiopathic intracranial
hypertension treatment trial). Broken down into ATs, this baseline VF was dominated by AT7 at a weight of 57%, with a partial contribution
from AT8. After receiving acetazolamide, the VF began to improve at one month. Although a small contribution from AT2 and AT3 remain,
we observe a decrease in AT7 weight, as well as a new increase in AT1 (representing a normal VF) weight. Note ATs with weight < 9% not
shown (see methods).

whereas the expert classification for the actual VF was
“superior and inferior partial arcuate defect.”

AA can show minor changes in the VF between
visits. For example, Figure 7 demonstrates the progres-
sion of VF and AT weight changes between baseline
and one month for one study eye. At baseline, the VF
is characterized by a nerve fiber bundle–type defect
with enlarged blind spot (the most common type seen
in the IIHTT). Broken down into ATs, this baseline
VF was dominated by AT7 at a weight of 57%, with
a partial contribution from AT8. At one month, the
VF shows improvement after treatment with acetazo-
lamide. While a small contribution from AT2 and AT3
remain, we observe a decrease in AT7 weight, as well
as a new increase in AT1 (representing a normal VF)
weight.

The two study eyes in Figure 8A and 8B illus-
trate that even when VFs from two different eyes have
comparableMD and PSD values, the decomposed ATs
for individual eyes may be distinct each with specific
regional deficits. Although AT2 weight is high in both
baseline fields, the remaining ATs composing each VF

differ; the eye in Figure 8A, includes AT4, AT6, and
AT13, and the eye in Figure 8B, includes AT9.

Discussion

Through archetypal analysis (AA), we identified
quantifiable, disease-specific patterns or archetypes of
VF deficits in eyes affected by IIH. These patterns
are similar to the descriptive patterns previously
reported in the IIHTT, howeverAA revealed additional
regional deficits not always seen by inspection. AA
is a form of unsupervised machine learning that is
capable of revealing component patterns within a
variety of heterogeneous datasets.4,6–8,10,11 AA has
previously been studied in glaucoma, and has success-
fully identified patterns of glaucomatous VF loss
that closely resemble the expert classifications of VF
defects described in the Ocular Hypertension Treat-
ment Trial.4,8,10–13,23 This study is the first reported
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Figure 8. (A and B) Baseline visual fields from two different study eyes with similar MD and PSD values. AlthoughMD and PSD are compa-
rable in both fields, the composition of AT weights remains noticeably different between the two, with the eye in A showingmore abnormal
ATs.
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application of AA to VF analysis in eyes affected by
a nonglaucomatous optic neuropathy.

Applying AA to a large dataset of VFs collected
during the IIHTT, we created a 14-AT model for
IIH, such that any individual VF within the dataset
could be described by a weighted combination of
these quantifiable archetypal patterns. Interestingly,
although unsupervised machine learning offers the
possibility of identifying previously unknown patterns
within a dataset, practically all ATs derived from this
dataset resembled known VF patterns seen in IIH,
although some were not obvious without AA decom-
position. In addition, in individual VFs with dominant
ATs (> 50% weight), VF patterns associated with each
dominant AT were consistent with original descrip-
tive expert classifications reported for the IIHTT. VF
patterns seen in IIH have been described as localized
nerve fiber bundle defects (including arcuate), enlarged
blind spots, diffuse widespread defects, neurologic-like
defects (including quadrant defects), normal pattern,
and others.14,19,21,24 In the original IIHTT, the most
common VF defect was a partial arcuate defect with
an enlarged blind spot, which was a notable feature of
several of the 14 IIH-specific ATs identified via AA.21
We also applied AA to a dataset of VFs taken from
healthy “control” eyes, resulting in the generation of
12 ATs that reflected normal vision, and which were
notably distinct from the IIH ATs. In addition, decom-
position of control VFs into the IIH ATs enabled us to
establish a threshold AT weight of 9% as representa-
tive of relevant or meaningful weight change, distinct
from normal fluctuations. Collectively, these findings
suggest that these IIH ATs are indeed disease-specific
and further support the assertion that AA can identify
relevant patterns of VF loss, as has been done in
glaucoma.

Expert clinician classification andmonitoring of VF
defects is performed using all the perceived content
in the visual field display. In addition, the detection
and monitoring of different types of regional VF
defects often relies on individual clinician interpreta-
tion, which is qualitative and can vary based on the
interpreter. By contrast, AA decomposes VFs into
multiple archetypes, each with an associated weight-
ing coefficient. This allows more subtle patterns to be
uncovered, even when applying a conservative rule of
including only relevant (≥9% weight) ATs to analyze
a specific VF. AA thus allows potentially important
patterns of VF dysfunction to be seen rather than
just selecting the major pattern features and provides
quantitative measurement of each pattern’s represen-
tation within the entire VF.

Furthermore, global VF indices such as MD and
PSD may fail to fully convey regional changes in VF

function. Thismay occur, in part because althoughMD
is calculated from all of the total deviation points, it
is weighted to the points with less variance, which are
the most central points and biases against the more
variable peripheral locations in the visual field. The
PSD is a pattern-based index representing the extent
of variation within a VF. While eyes with normal
vision will display MD values closer to zero, both those
with either normal or very poor vision can have PSD
values closer to zero.25 We suggest that AA provides an
additional method of assessing the variation in deficits
within a VF.Within our 14-ATmodel, the strong corre-
lation between AT1 weight and MD at baseline was
expected, as AT1 represents a normal VF. As AT1
weight increases, the VF normalizes, andMD increases
concurrently. The moderate correlation between AT
Sum scores and MD at baseline was also expected,
given that the AT Sum score provides an overall repre-
sentation of AA-determinedVF dysfunction at a single
time point. However, the AT sum score correlated only
mildly with PSD. For each AT sum score, we observed
a wide range of associated MD and PSD values. This
was not unexpected because PSD may be close to zero
when the VF is either normal or severely compro-
mised. However, there is considerable variance in IIH
VF function that is unexplained by MD or PSD alone,
because VFs with comparable MD and PSD values
may carry different AT weighting coefficients (Fig. 7).

AA provides a new, quantitative method of identi-
fying component regional VF defects in eyes of IIH
patients with mild VF loss. Prior descriptive interpreta-
tions appear incomplete and may be more fully identi-
fied and quantified by AA for both research and clini-
cal purposes. In our future studies of outcome data
from the IIHTT, we will be exploring the question of
whetherATweights at baseline or early in the treatment
course may predict visual outcome, treatment effect, or
treatment failure.

Conclusion

Archetypal analysis is well suited for the evaluation
of visual fields in IIH, an optic nerve disorder that can
be improved with therapy. AA identifies IIH-specific,
quantifiable patterns of VF loss in this disease. AAmay
thus prove useful in the quantitative monitoring of VF
defects over time. Although these results are encourag-
ing, our analysis was only performed in eyes with mild
VF damage (as was characteristic of those enrolled in
the IIHTT). It is possible that additional patterns of
visual field loss will be found, or the relative weights
of each AT will differ for eyes with more severe IIH.
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Further research will involve application of this 14-AT
model to real-world IIH datasets, with the inclusion of
patients with worse visual field loss. Additional investi-
gations may reveal specific VF features that are predic-
tive of the VF outcome or reflect changes to facilitate
monitoring.
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