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Summary

The human body houses a variety of microbial
ecosystems, such as the microbiotas on the skin, in
the oral cavity and in the digestive tract. The gut
microbiota is one such ecosystem that contains tril-
lions of bacteria, and it is well established that it can
significantly influence host health and diseases. With
the advancement in bioinformatics tools, numerous
comparative studies based on 16S ribosomal RNA
(rRNA) gene sequences, metabolomics, pathological
and epidemical analyses have revealed the correlative
relationship between the abundance of certain taxa
and disease states or amount of certain causative
bioactive compounds. However, the 16S rRNA-based
taxonomic analyses using next-generation sequenc-
ing (NGS) technology essentially detect only the
majority species. Although the entire gut microbiome
consists of 1013 microbial cells, NGS read counts are
given in multiples of 106, making it difficult to deter-
mine the diversity of the entire microbiota. Some
recent studies have reported instances where certain
minority species play a critical role in creating locally
stable conditions for other species by stabilizing the
fundamental microbiota, despite their low abundance.
These minority species act as ‘keystone species’,
which is a species whose effect on the community is

disproportionately large compared to its relative abun-
dance. One of the attributes of keystone species
within the gut microbiota is its extensive enzymatic
capacity for substrates that are rare or difficult to
degrade for other species, such as dietary fibres or
host-derived complex glycans, like human milk
oligosaccharides (HMOs). In this paper, we propose
that more emphasis should be placed on minority taxa
and their possible role as keystone species in gut
microbiota studies by referring to our recent studies
on HMO-mediated microbiota formation in the infant
gut.

Introduction

The gut microbial composition, which significantly influ-
ences host health and diseases (Vijay-Kumar et al.,
2010; Kau et al., 2011; Kinross et al., 2011; Iida et al.,
2013; Sommer and B€ackhed, 2013), changes over time,
with the most drastic changes occurring at the onset and
termination of breastfeeding (Yatsunenko et al., 2012).
Bifidobacteria are the first colonizers in the intestines of
breastfed infants. In many cases, bifidobacteria occupy
more than 70% of the total infant gut microbiota (Tan-
nock et al., 2013; Matsuki et al., 2016; Yamada et al.,
2017). The lack of a bifidobacteria-rich gut microbiota
(bifidus flora) during infancy has been shown to be
linked to a variety of health conditions (Brown et al.,
1989; L�opez-Alarc�on et al., 1997; von Kries et al., 1999;
Olszak et al., 2012; Cox et al., 2014), including diar-
rhoea, allergy, atopic dermatitis, impaired immune
responses and elevated serum cholesterol levels (Kal-
liom€aki et al., 2001; Di Gioia et al., 2014) that continue
throughout adulthood. Thus, a thorough understanding
of the mechanisms that shape and modulate the infant
bifidus flora within the gut microbiota is an important
approach to address long-term health problems.
The key modulator within breast milk is human milk

oligosaccharides (HMOs). Despite being the third most
abundant solid component in breast milk after lactose
(Lac) and lipids, HMOs have no nutritional value for
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infants because of their resistance to pancreatic diges-
tion (Kunz et al., 2000; Urashima et al., 2012). Several
groups, including our own, have found the gene sets
coding for enzymes that degrade HMOs (Sela et al.,
2008; Garrido et al., 2016; James et al., 2016;
Katayama, 2016; Matsuki et al., 2016) and have shown
that these genes are limited to the infant gut-associated
bifidobacterial species among gut microbes (Ruiz-
Moyano et al., 2013; Katayama, 2016; Thomson et al.,
2017). These findings suggest that it is highly likely that
HMOs serve as selective nutrients for bifidobacterial
species.
The bifidus flora mainly comprises four bifidobacterial

species, Bifidobacterium breve, Bifidobacterium bifidum,
Bifidobacterium longum subsp. longum (B. longum) and
Bifidobacterium longum subsp. infantis (B. infantis), that
show varied HMO assimilation phenotypes due to their
different genotypes at the species and strain levels.
Although the bifidus flora in the infant gut is a relatively
simple microbial community compared to that of adults
at the genus level, it is highly diverse and complex at
the genotype level. Our previous report shows that within
the bifidus flora, the minority species/strain act as
potential keystone species that promote and maintain
the bifidus flora.
A keystone species is a species whose effect on the

community is disproportionately large compared to its
relative abundance (Paine, 1969; Power et al., 1996)
and it alters their community through a variety of
mechanisms. Most commonly cited examples, such as
sea otters in kelp forests (Estes and Palmisano, 1974)
and starfish in the rocky intertidal (Paine, 1966), are
often apex predators. In the gut microbiota, however,
keystone species primarily affect the community through
altruistic degradation of substrates, which are otherwise
recalcitrant, but are made available for other bacterial
species to consume (Ze et al., 2012, 2013; Goodrich et
al., 2014; Trosvik and de Muinck 2015; Centanni et al.,
2018). One such recalcitrant substrate present in the
infant gut ecosystem is HMOs. In human milk, HMOs with
a variety of structures are included: lacto-N-tetraose (LNT:
Galb1-3GlcNAcb1-3Galb1-4Glc) that contains lacto-N-biose
I (LNB: Galb1-3GlcNAc) residue at the non-reducing
terminus of Lac, fucosylated LNT such as lacto-N-
fucopentaose I (Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glc)
and lacto-N-difucohexaose I (Fuca1-2Galb1-3(Fuca1-4)
GlcNAcb1-3Galb1-4Glc), and fucosylated Lac such as
20-fucosyllactose (Fuca1-2Galb1-4Glc) and 3-fucosyllac-
tose (Galb1-4(Fuca1-3)Glc; Fig. 1). Previously reported
in vitro culture experiments showed that infant gut-asso-
ciated Bifidobacterium species have different HMO
consumption behaviours (Fig. 1). For example, the fuco-
sylated oligosaccharides were well assimilated by B. in-
fantis and B. bifidum. However, the ability to utilize

HMOs of B. longum and B. breve was restricted to LNT
and LNB that is produced through LNT degradation
(Asakuma et al., 2011), and only a limited number of
B. longum and B. breve strains possess the enzyme set
that degrades fucosylated HMOs (James et al., 2016;
Matsuki et al., 2016). Despite their limited ability to
degrade HMOs, B. longum and B. breve are frequently
dominant species in the bifidus flora. This suggests that
it is difficult to describe the mechanism of bifidus flora
formation through in vitro HMO assimilation phenotype
of each species and strain. Thus, we focused on the
altruistic role (cross-feeding) that minority species play
within the gut microbiota.

Case studies

LnbX+�B. longum

A few rare strains of B. longum have the extracellular
enzyme lacto-N-biosidase (LnbX), which degrades LNT
to LNB and Lac (Fig. 1; Sakurama et al., 2013). LnbX
can act not only on LNT, but also on human-derived gly-
coconjugate sugars (Gotoh et al., 2015). We demon-
strated that LnbX+�B. longum strains promote the
growth of other bifidobacteria through cross-feeding of
LNT by-products when co-cultured in medium containing
LNT as a carbon source. To assess the contribution of
LnbX to the bifidus flora formation, we determined the
prevalence of lnbX gene, B. longum (species level) and
Bifidobacterium (genus level) in stools of both exclu-
sively breastfed and mixed-fed (formula- and breastfed)
infants, by quantitative PCR (qPCR). As a result, we
confirmed that the abundance of Bifidobacterium and
B. longum in stools of breastfed infants was significantly
higher than that of mixed-fed infants. While lnbX expres-
sion was detected in five out of 10 (50%) individuals in
the breastfed group, it was detected in only 17% of the
individuals in the mixed-fed group. In addition, we
observed a positive correlation between the abundance
of lnbX and B. longum in the stools of exclusively
breastfed infants. On the other hand, no correlation was
observed between the two factors for the stools of
mixed-fed infants. Interestingly, B. longum carrying the
lnbX gene was, on average, only about 0.2% of the total
B. longum population. These findings suggest that,
although the LnbX+�B. longum strain is a minority spe-
cies, it significantly contributes to the formation of bifidus
flora through cross-feeding of degraded by-products of
LNT (Yamada et al., 2017).

B. bifidum

Bifidobacterium bifidum, which is generally known to be
the minority species in the bifidus flora, expresses vari-
ous glycosidases as cell surface-anchored extracellular
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enzymes (Katayama et al., 2004; Wada et al., 2008;
Ashida et al., 2009; Miwa et al., 2010) and has high via-
bility when cultured with HMOs (Asakuma et al., 2011).
Four strains of B. bifidum isolated from infant stools pro-
duced degradants of HMOs, such as LNB, Lac, fucose
and galactose in culture supernatant during the logarith-
mic growth phase. This suggested that B. bifidum leaves
the degraded mono- and oligosaccharides in the medium

without using them immediately. When B. longum 105-A
strain, which assimilates only LNT, was co-cultured with
B. bifidum in the presence of HMOs, its growth was
remarkably promoted (Gotoh et al., 2018). Stool samples
collected from infants, children and adults were cultured in
the presence or absence of each of the four strains of
B. bifidum in the medium containing glucose (Glc) or
HMOs. The total abundance of bacteria, Bifidobacterium
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Fig. 1. Structures of the four main human milk oligosaccharides (HMOs), and the assimilation pathways and enzymes utilized by each
infant gut-associated bifidobacterial species. Solid arrows indicate species-specific assimilation pathways, and dotted arrows indicate poten-
tial cross-feeding. B. breve and B. longum generally utilize LNT, while both B. infantis and B. bifidum consume a variety of HMOs. B. bifi-
dum possesses cell surface-attached enzymes that allow for extracellular degradation of HMOs. LNB+�B. longum degrades LNT to LNB
and Lac. Degradants produced and left unconsumed by B. bifidum and B. longum may be shared among the other bifidobacteria express-
ing both the GNB/LNB transporters and GNB/LNB phosphorylases. This figure was modified and adapted from the review article by
Katayama (2016).
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(genus level) and B. bifidum (species level) was mea-
sured using qPCR. As a result, when the stool samples
were cultured in the media supplemented with Glc, the
abundance of Bifidobacterium either significantly
decreased or did not change, compared to the group with-
out the addition of B. bifidum. On the other hand, when
cultured with HMOs, the exogenous addition of B. bifidum
significantly increased the total abundance and preva-
lence of species in the Bifidobacterium genus other than
B. bifidum (Table 1). This increase was strongly promoted
in the cultured sample from an infant born through Cae-
sarean section, in which the bifidus flora was not initially
confirmed (Table 1, Infant C). We found that promoting
the growth of preexisting Bifidobacterium was difficult
when only HMOs were added, but the addition of B. bi-
fidum stimulated the formation of the bifidus flora (Gotoh
et al., 2018).

Caveats

Although the two above-mentioned studies indicated that
minority species had a significant effect on microbiota for-
mation, these studies have only examined a small snap-
shot of 24 h. To determine whether a species acts as a
keystone species with confidence, future studies will need
to examine the microbiota over a longer time period and
perform a community time series analysis (Trosvik and de
Muinck, 2015). Furthermore, the role of a keystone spe-
cies is highly context-dependent (Power et al., 1996).
Keystone species may not always be the controlling agent
at all times, but rather only under certain conditions. In the
examples that we raised, the presence of an exclusive
carbon source like HMOs allowed B. bifidum and

LnbX+�B. longum to act as a keystone species in the bifi-
dus flora (Yamada et al., 2017; Gotoh et al., 2018).

Conclusions

In the adult intestine, members of the gut microbiome
exhibit complex cross-feeding. Previous reports show
several examples of microbe–microbe relationships,
such as bidirectional feeding between Bacteroides ova-
tus and Bacteroides vulgatus, which is mediated through
inulin (Rakoff-Nahoum et al., 2016), and between Akker-
mansia muciniphila and Eubacterium hallii, which is medi-
ated through O-glycan degradants derived from mucin
and pseudovitamin B12 (Belzer et al., 2017). Unidirec-
tional feeding was also observed between A. muciniphila
and Anaerostipes caccae, and between B. adolescentis
and Faecalibacterium prausnitzii (Rios-Covian et al.,
2015). These examples show that Actinobacteria, the
phylum to which Bifidobacterium belongs, and Verru-
comicrobia, to which Akkermansia belongs, are minority
phyla in human gut microbiota that influence the abun-
dance of species that belong to other phyla, such as
Bacteroidetes and Firmicutes.
In the infant gut, the most abundant genus is gener-

ally Bifidobacterium, and the carbon source that is the
most available to them comes from HMOs in breast
milk. Interestingly, the four infant gut-associated bifi-
dobacterial species and their multiple strains have
evolved different strategies to degrade HMOs and to
maintain diversity. We demonstrated that B. longum
strains that express lnbX and B. bifidum are potential
keystone species in the establishment of the bifidus
flora by providing HMO degradants for other bacterial

Table 1. Addition of B. bifidum to faecal suspensions incubated in the presence of HMOs enriches the Bifidobacterium population (species
other than B. bifidum) in the culture. Prevalence was calculated by dividing total bifidobacterial 16S rRNA gene counts (except for B. bifidum)
by total bacterial 16S rRNA gene counts. The data were adapted from the paper by Gotoh et al., 2018.

Bifidobacterium
bifidum strain
added to faecal
suspension

Faecal suspension
(Age/Delivery mode)

Child A
(4 years/
vaginal)

Child B
(5 years/
vaginal)

Infant C
(4 months/
caesarean)

Adult D
(30 years/
no data)

Adult E
(39 years/
no data)

None added Total bacteria (copies/ml; 91013) 1.4 � 0.5 1.7 � 0.1 0.78 � 0.01 1.7 � 0.1 2.5 � 0.0
Prevalence of other bifidobacterial
species in total bacteria (%)

0.0050 2.6 0.00034 0.37 5.0

JCM1254 Total bacteria (copies/ml9; 9013) 2.0 � 0.1 2.5 � 0.4 1.7 � 0.0 2.2 � 0.1 2.4 � 0.1
Prevalence of other bifidobacterial
species in total bacteria (%)

0.21 4.3 0.27 2.4 3.6

JCM7004 Total bacteria (copies/ml; 9 1013) 1.6 � 0.1 2.0 � 0.2 1.3 � 0.0 2.2 � 0.1 2.6 � 0.1
Prevalence of other bifidobacterial
species in total bacteria (%)

0.58 3.4 0.81 2.8 4.4

TMC3108 Total bacteria (copies/ml; 91013) 2.2 � 0.8 1.4 � 0.1 1.1 � 0.0 2.1 � 0.1 2.7 � 0.1
Prevalence of other bifidobacterial
species in total bacteria (%)

1.0 4.9 1.6 0.48 4.4

TMC3115 Total bacteria (copies/ml; 91013) 1.3 � 0.0 1.6 � 0.1 1.4 � 0.0 2.0 � 0.1 2.5 � 0.1
Prevalence of other bifidobacterial
species in total bacteria (%)

5.3 1.9 2.0 4.4 3.8
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groups to use. In other words, the cross-feeding
between minority taxa and dominant taxa is an impor-
tant mechanism for the formation and maintenance of a
diverse bifidus flora (Fig. 1). These findings enhance
our understanding of how the bifidus flora is formed
and, by conducting follow-up microbiota studies of differ-
ent individuals, can provide insight into how the physiol-
ogy and ecology of the gut microbiota potentially affect
human health.
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