Orthogonal Coordination Chemistry of PTA toward Ru(II) and Zn (II) (PTA = 1,3,5-Triaza-7-phosphaadamantane) for the Construction of 1D and 2D Metal-Mediated Porphyrin Networks

Federica Battistin, Alessio Vidal, Paolo Cavigli, Gabriele Balducci,* Elisabetta Iengo, and Enzo Alessio*

Cite This: Inorg. Chem. 2020, 59, 4068-4079

Read Online

ACCESS	\|lll Metrics \& More	国 Article Recommendations	(s) Supporting Information

Abstract

This work demonstrates that PTA (1,3,5-triaza-7-phosphaadamantane) behaves as an orthogonal ligand between $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$, since it selectively binds through the P atom to ruthenium and through one or more of the N atoms to zinc. This property of PTA was exploited for preparing the two monomeric porphyrin adducts with axially bound PTA, $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right]$ (1 , TPP = meso-tetraphenylporphyrin) and $[\mathrm{Zn}(\mathrm{TPP})(\mathrm{PTA}-\kappa N)]$ (3). Next, we prepared a number of heterobimetallic $\mathrm{Ru} / \mathrm{Zn}$ porphyrin polymeric networksand two discrete molecular systems-mediated by P, N-bridging PTA in which either both metals reside inside a porphyrin core, or one metal belongs to a porphyrin, either $\mathrm{Ru}($ TPP) or $\mathrm{Zn}($ TPP $)$, and the other to a complex or salt of the complementary metal (i.e., cis,cis,trans- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{PTA}-\mathrm{KP})_{2}\right]$ (5), trans- $\left[\mathrm{RuCl}_{2}(\mathrm{PTA}-\mathrm{KP})_{4}\right](7), \mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$, and $\left.\mathrm{ZnCl}_{2}\right)$. The molecular compounds 1, 3, trans $-\left\{\left\{\mathrm{RuCl}_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{4}\right]$ ($\left.\mathbf{8}\right)$, and $\left[\left\{\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)\left(\mathrm{PTA}-\kappa^{2} P, N\right)\right\}\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}\right]$ (11), as well as the polymeric species $\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\mathrm{K}^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}\right]_{\infty}(4)$, cis, cis,trans-[\{ $\left.\left.\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PTA}-\mathrm{K}^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}\right]_{\infty}(6)$, trans-$\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{PTA}-\kappa^{2} \mathrm{P}, \mathrm{N}\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{2}\right]_{\infty}$ (9), and $\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\kappa^{3} \mathrm{P}, 2 \mathrm{~N}\right)_{2}\right\}\left\{\mathrm{Zn}_{9}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}(\mathrm{OH})_{2}\right\}\right]_{\infty}$ (10), were structurally characterized by single crystal X-ray diffraction. Compounds $\mathbf{4}, \mathbf{6}, 9$ and 10 are the first examples of solid-state porphyrin networks mediated by PTA. In $4,6,8,9$, and 11 the bridging PTA has the $\kappa^{2} P, N$ binding mode, whereas in the 2 D polymeric layers of $\mathbf{1 0}$ it has the triple-bridging mode $\kappa^{3} P, 2 N$. The large number of compounds with the six-coordinate $\mathrm{Zn}(\mathrm{TPP})$ (the three polymeric networks of 4,6 and 9 , out of five compounds) strongly suggests that the stereoelectronic features of PTA are particularly well-suited for this relatively rare type of coordination. Interestingly, the similar 1D polymeric chains 4 and 6 have different shapes (zigzag in $\mathbf{4}$ vs "Greek frame" in 6) because the $\left\{\right.$ trans- $\left.\mathrm{Ru}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\right\}$ fragment bridges two Zn (TPP) units with anti geometry in 4 and with syn geometry in 6 . Orthogonal "Greek frame" 1D chains make the polymeric network of 9 . Having firmly established the binding preferences of PTA toward $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$, we are confident that in the future a variety of $\mathrm{Ru} / \mathrm{Zn}$ solid-state networks can be produced by changing the nature of the partners. In particular, there are several inert $\mathrm{Ru}(\mathrm{II})$ compounds that feature two or more P-bonded PTA ligands that might be exploited as connectors of well-defined geometry for the rational design of solid-state networks with Zn -porphyrins (or other Zn compounds).

INTRODUCTION

The cage-like 1,3,5-triaza-7-phosphaadamantane (PTA, Chart 1), is an amphiphilic, air-stable, neutral ligand of low steric

Chart 1. Schematic Structure of PTA and Its Possible Coordination Modes as a Bridging Ligand through P (Red Arrow) and through \mathbf{N} Atoms (Blue Arrow) ${ }^{a}$

demand (cone angle 103°) characterized by a high solubility in water (ca. $235 \mathrm{~g} / \mathrm{L}$). For this reason, PTA and related species-whose coordination chemistry has been thoroughly reviewed by Peruzzini and co-workers-have been largely investigated as supporting ligands for applications in homogeneous aqueous biphasic catalysis and medicinal inorganic chemistry. ${ }^{1-3}$

PTA typically binds strongly to most transition metal ions through the soft P atom in a monodentate fashion ($\mathrm{PTA}-\kappa$ P). However, having also three hard N donor atoms, it is actually a

[^0]${ }^{a}$ Left: $\left(\kappa^{2} P, N\right)$. Center: $\left(\kappa^{3} P, 2 N\right)$. Right: $\left(\kappa^{4} P, 3 N\right)$.

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of PTA (top) and $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right]$ (1) (bottom).
heteropolytopic PN_{3} ligand and might also potentially bridge two or more metal ions with different HSAB preferences (Chart 1). ${ }^{1}$

The bridging $\kappa P, N$ coordination mode of PTA was found to be rather common, even though its first example, the heterobimetallic coordination polymer $[\{\mathrm{RuCp}(\mathrm{dmso}-\kappa S)$ -(PTA- $\left.\left.\left.\kappa^{2} P, N\right)_{2}\right\}\left\{\mathrm{AgCl}_{2}\right\}\right]_{\infty}$, was described by Romerosa, Peruzzini and co-workers only in 2005. ${ }^{4,5}$ Subsequently, Romerosa and co-workers described a series of water-soluble 1 D ruthenium-metal coordination polymers featuring a $\mathrm{Ru}-$ $\mathrm{CN}-\mathrm{Ru}-\mathrm{M}$ backbone $(\mathrm{M}=\mathrm{Au}, \mathrm{Ni}, \mathrm{Cd}, \mathrm{Co}) .{ }^{6}$ They are formed by inert $\left[\left\{\operatorname{RuCp}(\mathrm{PTA})_{2}\right\}(\mu-\mathrm{CN})\left\{\operatorname{RuCp}(\mathrm{PTA})_{2}\right\}\right]^{+}$ moieties connected at both ends through bridging PTA$\kappa^{2} P, N$ ligands to metal anions (i.e., $\left[\mathrm{Au}(\mathrm{CN})_{4}\right]^{-},\left[\mathrm{NiCl}_{3}\right]^{-}$, $\left[\mathrm{CdCl}_{3}\right]^{-},\left[\mathrm{CoCl}_{3}\right]^{-}$). In addition, besides two discrete molecular entities featuring a $\left\{\operatorname{Re}(\mathrm{III})\left(\mathrm{PTA}-\kappa^{2} P, N\right) \mathrm{M}(\mathrm{II})\right\}$ moiety $(\mathrm{M}=\mathrm{Cu}, \mathrm{Zn}){ }^{7}$ many other examples of PTA-driven polymeric networks with $\operatorname{Ag}(\mathrm{I}),{ }^{8,9}$ and $\mathrm{Cu}(\mathrm{I})^{10}$-often with different ancillary ligands-were reported, mainly by Kirillov, Pombeiro and co-workers. In these structures PTA assumes double ($\kappa^{2} P, N$), triple ($\kappa^{3} P, 2 N$), and even quadruple ($\kappa^{4} P, 3 N$) bridging coordination modes. An example of homometallic mixed-valence $\mathrm{Cu}(\mathrm{I} / \mathrm{II})$ polymeric network, in which PTA binds to $\mathrm{Cu}(\mathrm{I})$ with the soft P atom and to $\mathrm{Cu}(\mathrm{II})$ with the hard N atom was also described. ${ }^{11}$ Taken together, the results with $\operatorname{Ag}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{I})$ suggest that these metal ions are rather promiscuous toward PTA, without a marked preference for N or P-bonding.

There are instead relatively few examples of complexes containing exclusively N -bonded PTA (PTA- κN). They concern hard metal ions such as Mn (II) and $\mathrm{Co}(\mathrm{II}),{ }^{12,13}$ or the d^{10} metal ion $\mathrm{Zn}(\mathrm{II})$. After the first $\mathrm{Zn}-\mathrm{PTA}$ complexthe distorted tetrahedral $\left[\mathrm{ZnCl}_{2}(\mathrm{PTA}-\kappa N)_{2}\right]$-was described in 2009 by Pombeiro and co-workers, ${ }^{14}$ Reek, Kleij et al. investigated the reactivity of PTA with a number of squareplanar Zn (salphen) complexes (salphen $=N, N^{\prime}$-bis-(salicylidene)imine-1,2-phenylenediamine) in the context of supramolecular catalysis. It was found that PTA binds to zinc exclusively through the N atoms and can act as a bridge between two or even three $\mathrm{Zn}($ salphen) units, giving $\left[\{\mathrm{Zn}(\text { salphen })\}_{2}\left(\mathrm{PTA}-\kappa^{2} N\right)\right]$ and $\left[\{\mathrm{Zn}(\text { salphen })\}_{3}\right.$ (PTA$\left.\left.\kappa^{3} N\right)\right]$ adducts in which the zinc ions have a distorted square planar geometry. ${ }^{15}$

In the past we and others have explored the coordination chemistry of PTA toward Ru compounds (where it binds through P exclusively). ${ }^{16,17} \mathrm{We}$ have also largely exploited the axial coordination of Ru and Zn porphyrins toward
polydentate pyridyl ligands for the construction of numerous supramolecular assemblies. ${ }^{18,19}$ Considering that, according to the literature, PTA binds always through P to ruthenium and through N to zinc, we reasoned that it might be exploited as an orthogonal bridging ligand for the preparation of heterobimetallic supramolecular assemblies and/or polymeric networks containing $\mathrm{Ru}-$ and Zn -porphyrins. In addition, the presence of PTA might improve their solubility in water or at least in protic solvents.

Phosphine ligands have high association constants with $\mathrm{Ru}-$ porphyrins, in the range of 10^{6} to $10^{8} \mathrm{M}^{-1,20}$ whereas N ligands, in particular hard tertiary amines, have lower constants. For example, it has been reported that $\mathrm{Ph}_{2} \mathrm{P}$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NEt}_{2}$ binds to ruthenium porphyrins exclusively through P and the NEt_{2} group remains dangling. ${ }^{21} \mathrm{Zn}$ porphyrins make less robust axial bonds with N -ligands (compared to Ru), that depend also on N hybridization. For example, the association constant of pyridine with Zn (TPP) (TPP = meso-tetraphenylporphyrin) was found to be 7.7×10^{3} $\mathrm{M}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right)$, whereas under the same-or very similar-conditions amines (including tertiary amines) have ca. 10-fold larger association constants. ${ }^{22,23}$ By comparison, hexamethylenetetramine (HTMA) -the all-nitrogen analogue of PTA-was found to make stronger axial bonds with $\mathrm{Zn}-$ porphyrins compared to pyridyl functions (probably also because of its low steric demand), ${ }^{24}$ and binding constants in the range 10^{5} to $10^{6} \mathrm{M}^{-1}$ were measured for the axial N binding of PTA to square planar Zn (salphen) complexes in toluene. ${ }^{15}$

The interactions of PTA with $\mathrm{Ru}-$ and Zn -porphyrins have not been investigated before. Thus, in this work we first established the coordination mode of this ligand toward the neutral model metallo-porphyrins $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$ and Zn (TPP), obtaining the monomeric adducts $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-$ $\kappa P)_{2}$] (1) and $[\mathrm{Zn}($ TPP $)($ PTA- $\kappa N)$] (3), in which PTA is axially bound to the metal inside the porphyrin. Then, we prepared and structurally characterized a number of heterobimetallic $\mathrm{Ru} / \mathrm{Zn}$ porphyrin polymeric networks mediated by P, N-bridging PTA (PTA- $\kappa^{2} P, N$) and, in one case, (PTA$\left.\kappa^{3} P, 2 N\right)$. In such assemblies either both metal centers reside inside a porphyrin core or one of the two belongs to a coordination compound. Our findings demonstrate that indeed PTA behaves as a selective orthogonal ligand, binding to Ru exclusively through the P atom and to Zn exclusively through the N atoms.

RESULTS AND DISCUSSION

Reactivity of [Ru(TPP)(CO)] toward PTA. It is wellknown from the literature that whereas pyridine or azole ligands (N) replace the labile solvent molecule trans to CO in $[\mathrm{Ru}($ por $)(\mathrm{CO})(\mathrm{S})]$ compounds (e.g., por $=\mathrm{TPP} ; \mathrm{S}=\mathrm{MeOH}$ or EtOH, typically not indicated in the formula), affording derivatives of the general formula $[\mathrm{Ru}(\operatorname{por})(\mathrm{CO})(\mathrm{N})],{ }^{25-28}$ most phosphine and phosphite ligands (P) under mild conditions replace easily also the carbonyl ligand yielding disubstituted compounds of formula $\left[\mathrm{Ru}(\text { por })(\mathrm{P})_{2}\right]^{20,29-35}$ Monosubstituted $[\mathrm{Ru}(\mathrm{por})(\mathrm{CO})(\mathrm{P})]$ intermediates with tertiary phosphines have been occasionally isolated, ${ }^{31}$ whereas in most other cases, due to the weakening of the carbonyl ligand by the phosphine trans effect, they could not be isolated but were characterized spectroscopically in solution. ${ }^{20 a}$ To our knowledge, with the exception of a private communication from Sanders and co-workers, ${ }^{36}$ no X-ray structure of such an intermediate has been reported yet.

We found that PTA reacts with $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$ as do most other phosphines. When treated with a slight excess of PTA in chloroform solution at room temperature, $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$ rapidly affords $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right](\mathbf{1})$ in high yield. Axial coordination of two trans PTA moieties, bound through the P atom, was clearly evident from NMR spectroscopy (Figure 1). The ${ }^{31} \mathrm{P}$ resonance, which is not significantly influenced by the porphyrin shielding cone, occurs as a singlet at -50.6 ppm , i.e., in the typical region for mutually trans PTAs coordinated to $\mathrm{Ru}(\mathrm{II}) .{ }^{16 \mathrm{c}}$ The ${ }^{1} \mathrm{H}$ resonances of the PTA methylene protons, and those of the $\mathrm{PCH}_{2} \mathrm{~N}$ protons in particular, are shifted to lower frequencies compared to free PTA because the protons fall in the shielding cone of the porphyrin. Thus, the $\mathrm{NCH}_{2} \mathrm{~N}$ protons resonate as two well-resolved doublets (6 H each) at 3.21 e $2.55 \mathrm{ppm},{ }^{37}$ whereas the $\mathrm{PCH}_{2} \mathrm{~N}$ protons, closer to the macrocycle, give a singlet (12 H) at -0.26 ppm . The assignments were confirmed by the HSQC spectrum (Figure S3), since the corresponding carbon atoms have characteristic and well-resolved resonances that are only marginally affected by coordination. ${ }^{1}$ The $\beta \mathrm{H}$ singlet of TPP is shifted to lower frequencies by ca. 0.35 ppm by the replacement of CO with two PTAs. Even though the chemical shifts of the phenyl signals are not particularly affected, by virtue of the increased symmetry the $o \mathrm{H}$ resonance-that was split into two wellresolved doublets in the spectrum of $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$-is a sharp doublet in that of $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right]$ (Figure 1 and Figure S 1). Consistent with what found with similar $[\mathrm{Ru}-$ (por) $(\mathrm{P})_{2}$] adducts, ${ }^{20,29-35}$ the Soret band in the electronic absorption spectrum of $\mathbf{1}$ is considerably red-shifted compared to $[\mathrm{Ru}(T P P)(\mathrm{CO})]$ (431 vs 408 nm).

The geometry of 1 was confirmed by single crystal X-ray analysis (Figure 2). The Ru-P distance in $\mathbf{1}$ compares well with those in similar $\left[\mathrm{Ru}(\mathrm{por})(\mathrm{P})_{2}\right]$ compounds as well as with those in $\mathrm{Ru}(\mathrm{II})$ coordination compounds that feature the $\left\{\right.$ trans $\left.-\mathrm{Ru}(\text { PTA- } \kappa \text { P })_{2}\right\}$ fragment (Table 1). ${ }^{16,20,31}$

Finally, compound 1 was rapidly obtained at room temperature also upon addition of two equiv of PTA to a CDCl_{3} solution of $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})(\mathrm{py})]$ (py = pyridine), thus demonstrating that, besides ethanol, PTA also readily replaces axially bound pyridine.

Regretfully, compound 1 was found to be completely insoluble in water, even at acidic pH where protonation of PTA would be expected to improve solubility. For instance, the

Figure 2. ORTEP representation (50\% probability ellipsoids) of the solid state molecular structure of $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right] \cdot 2 \mathrm{CHCl}_{3}(\mathbf{1}$. $2 \mathrm{CHCl}_{3}$). Primed atoms are symmetry mates via $(1-x, 1-y, 1-z)$. Only one of the two symmetry related CHCl_{3} crystallization molecules is shown. The H atoms of the complex are omitted for clarity. The Ph1 and Ph2 labels allow one to visualize on the figure the dihedral angles reported in Table S2.
$\mathrm{Ru}(0)$ cluster $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mathrm{PTA})_{3}$ can be extracted from a chloroform solution into acidic water ($\mathrm{pH}<4$). ${ }^{38}$

An NMR titration of PTA into a CDCl_{3} solution of $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$ allowed us to detect the resonances of the elusive intermediate species $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})(\mathrm{PTA}-\kappa P)]$ (2). The PTA singlet of 2 in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Figure S4) is remarkably shifted compared to 1 and falls at -60.5 ppm, i.e. in the typical spectral region of PTA trans to CO in $\mathrm{Ru}(\mathrm{II})$ compounds. ${ }^{16}$ The ${ }^{1} \mathrm{H}$ NMR features of 2 (Figure S5) are rather similar to those of $\mathbf{1}$ in terms of chemical shifts, the most noticeable difference being the split resonance of the $o \mathrm{H}$ and $m \mathrm{H}$ protons due to the absence of the macrocycle mirror plane (as in the precursor) that makes the α-and β-side of the porphyrin inequivalent. The solution CO stretching frequency in 2 falls at $1989 \mathrm{~cm}^{-1} .{ }^{39}$

Interaction of PTA with $\mathbf{Z n}$ (TPP). The interaction of PTA with the model zinc porphyrin $\mathrm{Zn}(\mathrm{TPP})$ was investigated in chloroform solution. The occurrence of the axial binding of PTA to Zn (TPP) was evident from an NMR titration, in which the PTA/ $\mathrm{Zn}(\mathrm{TPP})$ ratio ranged from 0.5 to 5 . For each PTA/ Zn ratio the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ resonance of PTA occurred as a singlet at ca. -102.1 ppm (i.e., the same chemical shift of free PTA). Whereas the ${ }^{1} \mathrm{H}$ resonances of $\mathrm{Zn}($ TPP) were only slightly affected, those of PTA were broadened and shifted to lower frequencies compared to the free ligand (Figure S6). At PTA/ $\mathrm{Zn}(\mathrm{TPP})=0.5$, the PTA protons gave two equally intense broad resonances, a singlet at ca. 0.9 ppm and a doublet centered at ca. 0.1 ppm . Upon increasing the $\mathrm{PTA} / \mathrm{Zn}$ ratio, the upfield shift of the PTA resonances progressively decreased.

The NMR findings are consistent with the occurrence of relatively weak and reversible axial interactions between PTA and Zn (TPP), in an equilibrium that is fast on the NMR time scale: the chemical shifts of the PTA resonances are a weighed average between those of PTA axially bound to $\mathrm{Zn}(\mathrm{TPP})$, and thus upfield shifted, and those of the free ligand. Actually, assuming that such interaction involves the N atoms of PTA,

Table 1. Ru-(PTAKP) Bond Lengths in the X-ray Structurally Characterized Compounds

compound	$\mathrm{Ru}-\mathrm{P}$ distance (\AA)	
$\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa \mathrm{P})_{2}\right](\mathbf{1})$	$2.3253(7)$	ref
$\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{dpm})_{2}\right](\mathrm{dpm}=$ diphenylphosphinomethane $)$	$2.398(3)$	
$\left[\mathrm{Ru}(\mathrm{OEP})\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{OEP}=$ octaethylporphyrin $)$	$2.428($ average $)$	
$\left[\mathrm{Ru}(\mathrm{OEP})(\text { dpap })_{2}\right]($ dpap $=$ diphenyl phenylacetylene phosphine $)$	$2.3777(5)$	31 a
$\left[\mathrm{Ru}(\mathrm{DPP})(\text { dpap })_{2}\right]\left(\mathrm{DPP}=5,15\right.$-bis $\left(3^{\prime}, 5^{\prime}\right.$-di-tert-butyl)phenyl-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin $)$	$2.340(5)-2.3623(10)$	31 c
$\left[\mathrm{Ru}(\mathrm{TPP})(\text { dpap })_{2}\right]$	20 c	
$\mathrm{Ru}(\mathrm{II})$ compounds with $\left\{\right.$ trans-Ru $\left.(\mathrm{PTA}-\kappa P)_{2}\right\}$ fragment	$2.3597(10)-2.3784(10)$	20 c

multiple equilibria can occur as in the case of Zn (salphen) -(PTA- κN) adducts, where PTA can bind axially up to three Zn (salphen) units. ${ }^{15}$ In addition, even though zinc porphyrins are expected to bind preferentially one axial N ligand making square pyramidal adducts, the formation of octahedral products with two axial ligands is not uncommon and cannot be excluded. ${ }^{24,40-45}$ Thus, the NMR spectrum is expected to depend also on the concentration and temperature, in addition to the PTA/Zn ratio. To be noted that, consistent with Ncoordination of PTA to Zn (TPP) (and contrary to what observed for $\mathbf{1}$), in the ${ }^{1} \mathrm{H}$ NMR spectrum at high $\mathrm{Zn}(\mathrm{TPP})$ / PTA ratio the resonance of the $\mathrm{NCH}_{2} \mathrm{~N}$ protons is shifted more upfield than the $\mathrm{NCH}_{2} \mathrm{P}$ resonance (Figures S6 and S7).

Slow diffusion of diethyl ether onto the chloroform solution of the PTA $/ \mathrm{Zn}($ TPP $)=0.5$ mixture afforded crystals of the discrete $[\mathrm{Zn}(\mathrm{TPP})(\mathrm{PTA}-\kappa N)]$ adduct (3), whose X-ray structure is shown in Figure 3. As clear also from the lattice representation (Figure S13), zinc is five-coordinate (i.e., binds to a single PTA molecule), and each PTA is bound to a single Zn (TPP) unit.

Figure 3. ORTEP representation (50\% probability ellipsoids) of the crystal structure of complex $[\mathrm{Zn}($ TPP $)(\mathrm{PTA}-\kappa N)] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CHCl}_{3}$ (3. $\left.\mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CHCl}_{3}\right)$. For the sake of clarity, H atoms, one disordered water, and one CHCl_{3} crystallization molecule are omitted. The $\mathrm{Ph} 1-\mathrm{Ph} 4$ labels allow one to visualize on the figure the dihedral angles reported in Table S3.

As already observed for N -coordination of PTA, as well as for protonation and alkylation, the N21-C bond distances are slightly elongated-compared to the other $\mathrm{N}-\mathrm{C}$ distancesupon coordination to Zn . The axial $\mathrm{Zn}-\mathrm{N}$ (PTA) bond length is longer than in the distorted tetrahedral complex $\left[\mathrm{ZnCl}_{2}(\text { PTA }-\kappa N)_{2}\right]^{14}$ (and in similar complexes with $\mathrm{O}=$ PTA and $S=P T A),{ }^{46}$ but compares rather well with those found in the square-pyramidal Zn (salphen)-(РТА- κN) adducts where PTA occupies the axial position (Table 2). ${ }^{15}$

PTA-Bridged Heterobimetallic $\mathrm{Ru} / \mathrm{Zn}$ Compounds. The above results indicate that the axial binding of PTA toward Ru - and Zn -porphyrins is truly orthogonal and might be exploited to create heterodinuclear supramolecular porphyrin assemblies connected by bridging PTA moieties.
Thus, we investigated the interaction between [Ru (TPP)-(PTA- κ P) $)_{2}$ ($\mathbf{1}$) and $\mathrm{Zn}($ TPP $)$. An NMR titration of Zn (TPP) into a CDCl_{3} solution of 1 , in which the $\mathrm{Zn}(\mathrm{TPP}) / 1$ ratio ranged from 1 to 4 (Figure S8) showed that the PTA resonances were broadened and gradually shifted to lower frequencies upon increasing the number of Zn (TPP) equivalents. Conversely, the resonances of the two porphyrins, as well as the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ resonance of PTA, were only marginally affected. These findings are consistent with the establishment of an axial $\mathrm{Zn}-(\mathrm{PTA}-\kappa N)$ labile interaction between the stable and inert $\mathrm{Ru}-(\mathrm{PTA}-\kappa P)$ moieties and Zn (TPP). In further agreement with this hypothesis the final spectrum of this series was substantially coincident with that obtained by adding 2 equiv of PTA to a $1: 4$ mixture of $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$ and Zn (TPP) (Figures S 9 and S10), indicating that PTA discriminates between Ru and Zn even when it is not preventively bound to Ru and is in the presence of a stoichiometric excess of Zn .

X-ray quality single crystals of the 1D polymeric compound $\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}\right]_{\infty}$ (4) were obtained by slow diffusion of n-hexane onto a chloroform solution of a mixture containing 2 equiv of $\mathrm{Zn}(\mathrm{TPP})$ per mole of 1 . The crystal structure of compound 4 consists of parallel zigzag polymeric chains, oriented along the crystallographic c axis, each formed by a sequence of alternating Ru (TPP) and Zn (TPP) units (Figure 4).

Table 2. $\mathrm{Zn}-($ РTA- $\kappa N)$ and $\mathrm{Zn}-(\mathrm{HTMA}-\kappa N)$ Bond Lengths in the X-ray Structurally Characterized Compounds

compound	axial $\mathrm{Zn}-\mathrm{N}$ distance (\AA)	ref
[Zn (TPP) (PTA- κN) $]$ (3)	2.186(2)	this work
$\left[\mathrm{ZnCl}_{2}(\mathrm{PTA}-\kappa N)_{2}\right]$	2.055(3)-2.101(3)	14
$\left[\mathrm{ZnCl}_{2}(\mathrm{O}=\mathrm{PTA}-\kappa N)\left(\mathrm{OH}_{2}\right)\right]$	2.0931(10)	46
$\left[\{\mathrm{Zn}(\text { salphen })\}_{2}\left(\mathrm{PTA}-\kappa^{2} N\right)\right]$	2.103(6), 2.172(7)	15
$\left[\{\mathrm{Zn}(\text { salphen })\}_{3}\left(\mathrm{PTA}-\kappa^{3} N\right)\right]$	2.194(4), 2.201(4), 2.200(3)	15
[Zn(TOHPP)(HTMA) ${ }^{\text {] }}$] (TOHPP = tetra(4-hydroxyphenyl)porphyrin)	2.520(2)	24
$\left[\mathrm{Zn}(\mathrm{TCPP})(\mathrm{HTMA})_{2}\right]($ TCPP $=$ tetra(4-carboxyphenyl)porphyrin)	2.510(2)	24
[Zn(TPyP)(HTMA)] ${ }^{\text {(TPyP }}=$ tetra(4'-pyridyl) porphyrin)	2.189(3)	24

Figure 4. ORTEP representation (50\% probability ellipsoids) of the "monomeric" unit of the polymeric zigzag chains which constitute the crystal structure of compound $\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}-\right.$ (TPP) $\}]_{\infty}$ (4) (hydrogen atoms and minor population of one disordered phenyl group omitted for clarity). ${ }^{47}$ The connections of the monomeric unit with the infinite polymeric 1 D chain are also evidenced. The Ph 1 and Ph 2 labels allow one to visualize on the figure the dihedral angles reported in Table S4.

Adjacent $\mathrm{Ru} / \mathrm{Zn}$ units are connected by a PTA bridging ligand which coordinates to Ru through the phosphorus atom and to Zn through one of the nitrogen atoms (Figures S14S16). Thus, both Ru and Zn are six-coordinate and feature two equal axial ligands. Each $\left\{\right.$ trans $\left.-\mathrm{Ru}(\mathrm{PTA})_{2}\right\}$ unit binds two zinc atoms with anti geometry, thus generating the zigzag motif. Since the equatorial environment of Ru and Zn is identical and the P / N bonding modes of the PTA ligand are nearly geometrically equivalent, the symmetry of the observed diffraction pattern (space group $C 2 / c$) does not distinguish the two metal ions and the corresponding PTA binding modes. This leads to a crystallographically independent fragment in which a single metal site (M) is equally partitioned between Ru and Zn and, correspondingly, two symmetry related binding sites (L) of the PTA are partitioned at 50% between P and N. Consistently, the M-L bond distance of 2.3800(7) \AA is intermediate between that of the $\mathrm{Ru}-($ PTA- κ P) bond in $\left[\mathrm{Ru}(\right.$ TPP $\left.)(\mathrm{PTA}-\kappa P)_{2}\right](1,2.3253(7) \AA$, see above) and that of the $\mathrm{Zn}-(\mathrm{PTA}-\kappa N)$ bond in the six-coordinate $\{\mathrm{Zn}(\mathrm{TPP})$ -(PTA- $\left.\left.\kappa^{2} P, N\right)_{2}\right\}$ fragment (2.534(2) \AA, see below compound 6). It is to be noted that the $\mathrm{Zn}-(\mathrm{PTA}-\kappa N)$ bond length is remarkably shorter for five-coordinate [$\mathrm{Zn}($ TPP $)(\mathrm{PTA}-\kappa N)$] (3, Table 2). For comparison, the $\mathrm{Zn}-\mathrm{N}$ bond lengths in similar six-coordinate zinc porphyrin compounds with HTMA, $\left[\mathrm{Zn}(\right.$ TOHPP $\left.)(\mathrm{HTMA})_{2}\right]$ and $\left[\mathrm{Zn}(\right.$ TCPP $\left.)(\text { HTMA })_{2}\right]$ (TOHPP $=$ tetra(4-hydroxyphenyl)porphyrin, TCPP $=$ tetra-(4-carboxyphenyl)porphyrin), are remarkably larger than in the five-coordinate $[\mathrm{Zn}(\mathrm{TPyP})(\mathrm{HTMA})]$ (TPyP $=$ tetra $\left(4^{\prime}-\right.$ pyridyl)porphyrin) (Table 2). ${ }^{24}$ When dissolved in chloroform, compound 4 disassembles into the components, as indicated by the NMR spectra (e.g., the ${ }^{31} \mathrm{P}$ NMR spectrum in CDCl_{3} is coincident with that of $\mathbf{1}$, see Experimentals).

Next, we addressed the preparation of PTA-bridged $\mathrm{Ru} / \mathrm{Zn}$ species containing a single metallo-porphyrin, either Ru (TPP) or $\mathrm{Zn}(\mathrm{TPP})$, and a complex of the complementary metal, i.e. Zn (II) or Ru (II), respectively. As a first example we choose the symmetrical and coordinatively saturated Ru-PTA complex cis, cis,trans- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{PTA}-\kappa P)_{2}\right](5)^{16 c}$ that features the same $\left\{\right.$ trans $\left.-\mathrm{Ru}(\mathrm{PTA}-\kappa P)_{2}\right\}$ fragment as 1 . The results of an

NMR titration of Zn (TPP) (from 2 to 4 equiv) into a CDCl_{3} solution of 5 were similar to those described above with 1 , i.e., upfield shift and broadening of the PTA proton resonances (Figure S11). Also in this case, the ${ }^{31} \mathrm{P}$ resonance was not particularly affected by the addition of Zn (TPP) and occurred as a singlet at -48.9 ppm (to be compared with -51.0 ppm in the free complex), indicating that the Ru complex remains intact.

X-ray quality single crystals of the 1D polymeric compound cis,cis,trans- $\left[\left\{\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}\right]_{\infty}$ (6) were obtained upon diffusion of diethyl ether onto a chloroform solution of a $2: 1$ mixture of $\mathrm{Zn}(\mathrm{TPP})$ and 5. The crystal structure of compound 6 (Figure 5) is similar to

Figure 5. ORTEP representation (50\% probability ellipsoids) of the "monomeric" unit of the polymeric $\mathrm{Ru}-\mathrm{Zn}$ chains which constitute the crystal structure of compound cis,cis,trans- $\left[\left\{\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{PTA}-\right.\right.$ $\left.\left.\left.\kappa^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\} \cdot 9.2\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}\left(6 \cdot 9.2\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$. The connections of the monomeric unit with the infinite polymeric 1D chain are also evidenced. Disordered cocrystallized water molecules (that do not interact with the chains) and hydrogen atoms are omitted for clarity. Only half of the Ru and Zn units are crystallographically independent. In the Ru complex, the trans C 2 carbonyl and Cl 2 ligands exchange their positions around a 2 -fold axis due to disorder: only one of the two identical populations is represented. ${ }^{48}$ Labels Ph 1 and Ph 2 allow one to visualize on the figure the dihedral angles reported in Table S5.
that of 4 and consists of parallel polymeric chains in which the Zn atom of each $\mathrm{Zn}(\mathrm{TPP})$ is six-coordinate and binds axially two PTA ligands belonging to different Ru complexes. However, since each Ru complex bridges two Zn (TPP) units with syn geometry, the resulting chain has "Greek frame" shape (rather than zigzag as in 4) (Figure S17). The two polymeric chains of $\mathbf{4}$ and $\mathbf{6}$ are compared in Figure 6.

Conversely, the crystallization of Zn (TPP) with another symmetrical $\mathrm{Ru}-\mathrm{PTA}$ complex, trans- $\left[\mathrm{RuCl}_{2}(\mathrm{PTA}-\kappa P)_{4}\right]$ (7), ${ }^{16,17}$ afforded different results, depending on the $\mathrm{Zn} / \mathrm{PTA}$ ratio adopted. Using a stoichiometric or a slight excess of Zn (TPP) (i.e., $\mathrm{Zn} / \mathrm{PTA}=1$ or 1.5) the discrete molecular species trans- $\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{4}\right]$ (8, Figure 7 and Figures S19-S21), in which each one of the four coplanar PTA ligands of 7 is axially bound through an N atom to a fivecoordinate Zn (TPP), was obtained.

The four porphyrins in 8 lay alternatively above and below the equatorial plane of the Ru complex, generating a very compact arrangement (Figure S21) that closely resembles that of the porphyrin pentamer $\left[\mathrm{Zn}\left(3^{\prime} \mathrm{TPyP}\right)\{\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})\}_{4}\right]$ ($3^{\prime} \mathrm{TPyP}=5,10,15,20$-tetra(3^{\prime}-pyridyl)porphyrin) described by us 20 years ago. ${ }^{49}$ Similarly to what found for 6 , when

Figure 6. Zigzag and "Greek frame" polymeric chains of $[\{\mathrm{Ru}(\mathrm{TPP})$ $\left.\left.\left(\text { PTA }-\kappa^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}\right]_{\infty} \quad(4$, top) and cis,cis,trans-$\left[\left\{\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\} \cdot 9.2\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}\left(6 \cdot 9.2\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$, bottom), respectively, with the $\left\{\right.$ trans $\left.-\mathrm{Ru}(\mathrm{PTA})_{2}\right\}$ fragments isooriented (crystallization molecules omitted). Color code: $\mathrm{Ru}=$ light purple, $\mathrm{Zn}=$ green, $P=$ yellow, $N=$ blue, $\mathrm{O}=$ red, $\mathrm{Cl}=$ orange.

Figure 7. ORTEP representation (50% probability ellipsoids) of the molecule of compound trans- $\left[\left\{\mathrm{RuCl}_{2}\left(\mu \text {-PTA- } \kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{4}\right]$. $8 / 3 \mathrm{CHCl}_{3} \cdot 2 n$-hexane $\left(8 \cdot 8 / 3 \mathrm{CHCl}_{3} \cdot 2 n\right.$-hexane) in the crystal structure. The phenyl rings, hydrogen atoms, CHCl_{3}, and n-hexane solvent molecules are omitted for clarity. The bonds of the two porphyrins that lay below the equatorial plane of the Ru complex and of the two PTA moieties that are partially overlapped by the two upward porphyrins are in gray.
redissolved in CDCl_{3} the crystals of 8 give a singlet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $-51.1 \mathrm{ppm}(\mathrm{cfr}-50.6 \mathrm{ppm}$ in 7$)$. Conversely, when a defect of Zn (TPP) was used ($\mathrm{Zn} / \mathrm{PTA}$ $=0.5)$ crystals of the polymeric network trans $-\left[\left\{\mathrm{RuCl}_{2}\right.\right.$ (PTA$\left.\left.\left.\kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{2}\right]_{\infty}$ (9) were obtained. In 9, each Ru center is surrounded by four Zn (TPP) units with a geometry very similar to that found in $\mathbf{8}$. However, in this case the Zn atoms are six-coordinate, thus originating a 3 D polymeric network (Figure 8), with a texture of orthogonal 1D threads that intersect each other at every Ru center (Figure 9). Each

1D thread of the network, originated by a $\{$ trans $-\mathrm{Ru}($ PTA$\left.\left.\kappa^{2} P, N\right)_{2}\right\}$ fragment, has the "Greek frame" shape found in 6.

Consistent with what observed above (Table 2), the axial $\mathrm{Zn}-\mathrm{N}$ bond length in six-coordinate 9 (2.4869(2) \AA) is similar to that found in $6(2.534(2) \AA)$, and remarkably longer than that in five-coordinate 8 (2.242(6) \AA).

The crystallization of $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right]$ (1) with a ca. 8:1 excess of $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ afforded crystals of $[\{\mathrm{Ru}($ TPP $)$ -$\left.\left(\mathrm{PTA}-\kappa^{3} \mathrm{P}, 2 \mathrm{~N}\right)_{2}\right\}\left\{\mathrm{Zn}_{9}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}(\mathrm{OH})_{2}\right\}$. $\left.3 \mathrm{CHCl}_{3}\right]_{\infty}\left(\mathbf{1 0} \cdot 3 \mathrm{CHCl}_{3}\right)$. The crystal structure of compound 10 (Figure 10) can be described as a stack of 2D polymeric layers, almost perfectly parallel to the plane defined by the b axis and the diagonal of the ac face of the unit cell. Each polymeric layer contains the Ru porphyrin and an intricate neutral Zn -acetate cluster in 1:1 ratio (for the description of the Zn_{9} cluster see the Supporting Information). The Ru and the central Zn atom $(\mathrm{Zn} 4)$ sit on inversion points, so that only half of the Ru porphyrin and Zn cluster are crystallographically independent. Four Zn atoms of each cluster are N -bound to four PTA ligands of different Ru (TPP) units, and correspondingly, each Ru porphyrin connects with four Zn clusters, two for each axial PTA ligand (Figure 11). Thus, in this case PTA has a triple-bridging $\kappa^{3} P, 2 N$ binding mode.

Due to the layered structure, the unit cell contains a cavity whose volume amounts to 16% of the total (see Experimental Section).

By changing the nature of the zinc salt a remarkably different compound was obtained. In fact, diffusion of n-hexane into a chloroform/ethanol solution of a 1:2 mixture of 1 with ZnCl_{2} afforded crystals of the dinuclear compound $[\{\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-$ $\left.\left.\kappa P)\left(\mathrm{PTA}-\kappa^{2} P, N\right)\right\}\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}\right]$ (11) in which one of the two trans PTA- κP ligands of $\mathbf{1}$ binds through an N atom to a $\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$ fragment (Figure 12). The distorted tetrahedral coordination environment of the Zn atom is similar to that found in $\left[\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{PTA}=\mathrm{O})\right]$. ${ }^{46}$ The crystal structure consists of an arrangement of parallel 1D sequences of molecules of complex 11, oriented along the [101] direction, with a shape that closely resembles the "Greek frame" found in 6 and 9 (Figure S25). Regretfully, due to the low quality of the X-ray data (see also the Experimental Section for details) the expected slight elongation of the PTA $\mathrm{C}-\mathrm{N} 11(\mathrm{Zn})$ bond distances could not be detected. ${ }^{50}$

CONCLUSIONS

In this work, we demonstrated that PTA (1,3,5-triaza-7phosphaadamantane) behaves as an orthogonal ligand between $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$, since it selectively binds through the P atom to ruthenium and through one or more of the N atoms to zinc. This property of PTA was first exploited by us for preparing the two monomeric porphyrin adducts $[\mathrm{Ru}(\mathrm{TPP})$ -$\left.(\mathrm{PTA}-\kappa P)_{2}\right](\mathbf{1})$ and $[\mathrm{Zn}(\mathrm{TPP})(\mathrm{PTA}-\kappa N)]$ (3), in which PTA is axially bound to the inner metal. Then, we prepared a number of heterobimetallic $\mathrm{Ru} / \mathrm{Zn}$ porphyrin polymeric networks-and two discrete species-mediated by P, N-bridging PTA in which either both metals reside inside a porphyrin core, or one metal belongs to a porphyrin, either Ru (TPP) or Zn (TPP), and the other to a complex or salt of the complementary metal (i.e., cis,cis,trans- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\right.$ (PTA$\left.\kappa P)_{2}\right](5)$, trans- $\left[\mathrm{RuCl}_{2}(\mathrm{PTA}-\kappa P)_{4}\right](7), \mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$, and ZnCl_{2}). Both the molecular compounds 1, 3, trans-$\left.\left[\mathrm{RuCl}_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{4}\right]$ (8), and $[\{\mathrm{Ru}(\mathrm{TPP})$ -$\left.\left.(\mathrm{PTA}-\kappa P)\left(\mathrm{PTA}-\kappa^{2} P, N\right)\right\}\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}\right]$ (11), and the polymeric species $\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}\right]_{\infty}(4)$,

Figure 8. Crystal structure of compound trans- $\left[\left\{\operatorname{RuCl}_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{2}\right]_{\infty}(9)$: View along the b cell axis of six 1D chains (parallel to b and normal to the page), evidencing the parallel and interconnected planes formed by the Ru atoms. The interchain connections are built by PTA-ZnTPP-PTA bridges. When viewed along this direction, the plane of each porphyrin is normal to the page. The Ru atoms along the 1D chains are alternatively connected also to pairs of Ru atoms in adjacent threads that lay in the plane above and below, respectively. Color code: Ru (light purple), Zn (green), P (yellow), N (blue).

Figure 9. Schematic crystal structure of compound trans-$\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{2}\right]_{\infty}$ (9): Perspective view (porphyrins omitted) of two orthogonal $\left\{\operatorname{Ru}\left(\mathrm{PTA}-\kappa^{2} P, N\right) \mathrm{Zn}\right\}_{\infty}$ 1D chains (red and blue) crossing at a Ru center in the crystal structure of complex 9. The Zn atom is located halfway between the pairs of PTA ligands of any two neighboring Ru moieties.
cis,cis,trans- $\left[\left\{\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\{\mathrm{Zn}(\mathrm{TPP})\}\right]_{\infty}\right.$ (6), trans- $\left[\left\{\operatorname{RuCl}_{2}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{2}\right]_{\infty}$ (9), and $[\{\mathrm{Ru}-$ (TPP) (PTA- $\left.\left.{ }^{3} P, 2 N\right)_{2}\right\}\left\{\mathrm{Zn}_{9}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{CH}_{3} \mathrm{OH}\right)-\right.$ $\left.\left.{ }_{2}(\mathrm{OH})_{2}\right\}\right]_{\infty}(\mathbf{1 0})$ have been structurally characterized by single crystal X-ray diffraction. The number of compounds with the relatively rare six-coordinate Zn (TPP) (three, the polymeric
networks of 4, $\mathbf{6}$, and 9 , out of five) is largely above-average (see ref 45), strongly suggesting that the stereoelectronic features of PTA are particularly well-suited for this type of coordination. In 4, 6, 8, 9, and 11 the bridging PTA has the $\kappa^{2} P, N$ binding mode, whereas in the 2D polymeric layers of $\mathbf{1 0}$ it has the triple-bridging mode $\kappa^{3} P, 2 N$. In one case, we demonstrated that, by tuning the PTA/ Zn (TPP) ratio, it is possible to control the number of axial $\mathrm{Zn}-\mathrm{N}$ coordination bonds and thus to switch from a molecular species (8, fivecoordinate Zn) to a 2 D polymeric network (9 , six-coordinate Zn). Similarly, we are confident that also in the case of 11 by operating at higher $\mathrm{Ru} / \mathrm{ZnCl}_{2}$ ratios a second PTA ligand (from a different 1) is likely to replace the residual water molecule on the Zn fragment, thus affording a polymeric network upon crystallization. Interestingly, we also found that when $\mathrm{Zn}($ TPP) is sandwiched between two $\{$ trans -Ru (PTA$\left.\left.\kappa^{2} P, N\right)_{2}\right\}$ fragments, similar 1D polymeric chains with two different shapes-zigzag in $\mathbf{4}$ vs "Greek frame" in $\mathbf{6}$ and 9 -are obtained depending on whether the connecting bonds of each Ru fragment have an anti (4) or syn geometry (6 and 9).

Due to the rather weak and labile nature of the $\mathrm{Zn}-\mathrm{N}(\mathrm{PTA})$ bond, and consistent with literature data about $\mathrm{Zn}-\mathrm{PTA}$

Figure 10. Stick representation of a portion of one of the 2 D parallel polymeric layers that constitute the crystal structure of compound $\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\kappa^{3} \mathrm{P}, 2 \mathrm{~N}\right)_{2}\right\}\left\{\mathrm{Zn}_{9}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}(\mathrm{OH})_{2}\right\} \cdot 3 \mathrm{CHCl}_{3}\right]_{\infty}\left(\mathbf{1 0} \cdot 3 \mathrm{CHCl}_{3}\right)$. Color code: Ru (light purple), Zn (green), P (yellow), N (blue), O (red).

Figure 11. ORTEP representation of a fragment of the structure of compound [\{Ru(TPP) (PTA- $\left.\left.\kappa^{3} P, 2 N\right)_{2}\right\}\left\{\right.$ Zn $_{9}$ $\left.\left.\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}(\mathrm{OH})_{2}\right\} \cdot 3 \mathrm{CHCl}_{3}\right]_{\infty}\left(\mathbf{1 0} \cdot 3 \mathrm{CHCl}_{3}\right)$ showing one $\left\{\operatorname{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\mathrm{K}^{3} P, 2 N\right)_{2}\right\}$ unit with two polynuclear Zn moieties, each one connected to two N atoms of one of the PTA axial ligands. The two $\mathrm{N}-\mathrm{Zn}$ bonds connecting the second (lower) PTA ligand to corresponding Zn clusters are also shown, together with the four connections of each Zn cluster with the N atoms of PTA ligands belonging to four distinct $\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\kappa^{3} P, 2 N\right)_{2}\right\}\right.$ units. Labels Ph1 and Ph2 allow one to visualize on the figure the dihedral angles reported in Table S8. Color code: Ru (light purple), Zn (green), P (yellow), N (blue), O (red).

Figure 12. ORTEP representation (50% probability ellipsoids) of compound $\left[\left\{\mathrm{Ru}(\mathrm{TPP})(\right.\right.$ PTA $\left.-\kappa P)\left(\mathrm{PTA}-\kappa^{2} P, N\right)\right\}\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$. $\left.0.6 \mathrm{CHCl}_{3}\right]\left(11 \cdot 0.6 \mathrm{CHCl}_{3}\right)$. Only the major population $(\mathrm{SOF}=0.3)$ of the disordered $\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$ group has been represented. Primed labels indicate symmetry mates. Hydrogen atoms and a disordered CHCl_{3} crystallization molecule are omitted for clarity. Labels Ph1 and Ph 2 allow one to visualize on the figure the dihedral angles reported in Table S9. Color code: Ru (light purple), Zn (green), P (yellow), N (blue), Cl (orange).
adducts, ${ }^{14,15,46}$ the compounds are not stable in solution and disassemble into the mononuclear fragments in concentrationdependent equilibria. Thus, their main interest resides in solidstate features. Porphyrin MOFs^{51}-of which compounds 4, 6, 9 , and 10 are the first examples mediated by PTA-are extensively investigated in several fields, such as lightharvesting, guest inclusion, photodynamic therapy, and (photo)catalysis. ${ }^{52}$

We believe that the examples reported in this work represent robust proofs-of-concept that firmly establish the binding preferences of PTA toward $\mathrm{Ru}(\mathrm{II})$ and Zn (II), and are confident that a variety of discrete species and networks can be produced by changing the nature of the Ru and Zn partners and their ratio. In particular, there are several inert $\mathrm{Ru}(\mathrm{II})$ compounds (in addition to 5 and 7) that feature two or more P-bonded PTA ligands that might be exploited as linkers of well-defined geometry for the rational design of solid state networks with Zn -porphyrins (or other Zn compounds). The remaining ancillary ligands on the Ru center would allow to fine-tune the properties of the network, e.g., by providing interactions for the selective binding of host molecules. Finally, the uncoordinated N atoms of PTA in the networks might undergo protonation, thus introducing positive charges and the possibility of making additional electrostatic and H -bonding interactions.

EXPERIMENTAL SECTION

Materials. All chemicals, including TLC silica gel plates, were purchased from Sigma-Aldrich and used as received. Solvents were of reagent grade. The ruthenium precursor cis,cis,trans-$\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{PTA}-\kappa P)_{2}\right](5){ }^{16 c}$ trans- $\left[\mathrm{RuCl}_{2}(\mathrm{PTA}-\kappa P)_{4}\right](7),{ }^{16,17}$ and the porphyrins TPP, ${ }^{53}[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})],{ }^{54}$ and $\mathrm{Zn}(\mathrm{TPP})$ were synthesized and purified as previously reported by us or by others. ${ }^{55}$

Instrumental Methods. Mono- and bidimensional (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC) NMR spectra were recorded at room temperature on a Varian 400 or 500 spectrometer (${ }^{1} \mathrm{H}: 400$ or 500 $\mathrm{MHz},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}: 161$ or 202 MHz). ${ }^{1} \mathrm{H}$ chemical shifts in CDCl_{3} were referenced to the peak of residual nondeuterated solvent ($\delta=7.26$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts were measured relative to external 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ at 0.00 ppm . ESI mass spectra were collected in the positive mode on a PerkinElmer APII spectrometer at 5600 eV . The UV-vis spectra were obtained on an Agilent Cary 60 spectrophotometer, using 1.0 cm path-length quartz cuvettes (3.0 mL). Chloroform spectra in the CO stretching region were recorded between CaF_{2} windows (0.5 mm spacer) on a PerkinElmer Fourier-transform IR/ Raman 2000 instrument in the transmission mode. Elemental analyses were performed on a Thermo Flash 2000 CHNS/O analyzer in the Department of Chemistry of the University of Bologna (Italy).

X-ray Diffraction. Data collections were performed at the X-ray diffraction beamline (XRD1) of the Elettra Synchrotron of Trieste (Italy) equipped with a Pilatus 2 M image plate detector.
Collection temperature was 100 K (nitrogen stream supplied through an Oxford Cryostream 700); the wavelength of the monochromatic X-ray beam was $0.700 \AA$ and the diffractograms were obtained with the rotating crystal method. The crystals were dipped in N-paratone and mounted on the goniometer head with a nylon loop. The diffraction data were indexed, integrated and scaled using the XDS code. ${ }^{56}$ The structures were solved by the dual space algorithm implemented in the SHELXT code. ${ }^{57}$ Fourier analysis and refinement were performed by the full-matrix least-squares methods based on F^{2} implemented in SHELXL. ${ }^{58}$ The Coot program was used for modeling. ${ }^{59}$ Anisotropic thermal motion was allowed for all nonhydrogen atoms. Hydrogen atoms were placed at calculated positions with isotropic factors $U=1.2 \times U_{\mathrm{eq}}$, where U_{eq} is the equivalent isotropic thermal factor of the bonded non hydrogen atom. Crystal data and details of refinements are given in the Supporting Information.

In the case of compound 6, an initial refinement of the structure afforded an R value of 12.78% and two Fourier peaks at unreasonable positions; a first intense peak was found at about $0.90 \AA$ from the Ru atom, while a second less intense peak was located between the N atoms of two PTA ligands of adjacent chains, making completely unreasonable bonding angles. This made us suspect the presence of a lattice translocation defect (LTD). ${ }^{60}$ This suspicion was reinforced by the inspection of the diffractograms, where alternating rows of well-
defined and streaky spots were apparent. A translocation vector $(0,1 / 2,1 / 2)$ could be found by assuming that the intense peak near the Ru site was due to another Ru atom of the translocated lattice and by matching the distance of the LTD peak from the Ru site (at $\left.\left(1 / 2,0.79,{ }^{1} / 2\right)\right)$. The measured reflection intensities were then corrected according to eq 3 in ref 60 . An optimal value of 0.094 for the translocated cell fraction could be found by trial and error until the intensities of the two peaks due to the LTD were reduced to negligible values.

For compound 9, no Fourier peaks of appreciable intensity could be located inside the mentioned cavity, which was then assumed to contain heavily disordered methanol solvent molecules and modeled with the Squeeze procedure of the PLATON code. ${ }^{61}$ The "squeezed" electronic charge was 148 (in electron charge units), corresponding to about eight methanol solvent molecules.

In the asymmetric unit of the crystal structure of complex 11, the $\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$ group is very close to a 2-fold axis, thus ruling out the possibility that it is present on both PTA ligands of the same Ru complex: in this case, two $\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$ groups of adjacent Ru complexes would overlap (Figure S25). For this reason, we refined a model in which the $\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$ has a total occupation factor of 0.5 , which ensures a $\mathrm{Ru}: \mathrm{Zn}$ ratio of $1: 1$ (also the Ru atom sits on a special position with occupation factor 0.5). An additional complication is that the $\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$ group is disordered over two positions, which led to a further partition of the 0.5 occupation factor into two populations with occupations of 0.3 and 0.2 , respectively (Figure S26).

Synthesis of the Complexes. $\left[R u(T P P)(P T A-\kappa P)_{2}\right]$ (1). A 20 mg amount of $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})](0.027 \mathrm{mmol})$ was dissolved in 8 mL of chloroform, obtaining a clear red-purple solution. Upon addition of 2.4 equiv of PTA (10 mg) the solution became immediately darker. The solution was concentrated to ca. 2 mL . Slow evaporation of the solvent afforded within a few hours X -ray quality purple crystals of $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right] \cdot 2 \mathrm{CHCl}_{3}$ that were filtered after 24 h , washed with diethyl ether and dried in vacuo. (Yield $25.0 \mathrm{mg}, 90 \%$). Anal. Calcd for $\left[\mathrm{C}_{56} \mathrm{H}_{52} \mathrm{~N}_{10} \mathrm{P}_{2} \mathrm{Ru}\right] \cdot 2\left(\mathrm{CHCl}_{3}\right)\left(M_{\mathrm{w}}: 1266.9\right): \mathrm{C} 54.99$; H 4.30; N 11.06. Found: C 54.90; H 4.36; N 11.12. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{ppm}): 8.34(\mathrm{~s}, 8 \mathrm{H}, \beta), 8.06(\mathrm{~m}, 8 \mathrm{H}, o), 7.67(\mathrm{~m}, 12 \mathrm{H}, m+p), 3.20$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}, 6 \mathrm{H} \mathrm{NCH} \mathrm{N}), 2.55(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 6 \mathrm{H} \mathrm{NCH} 2 \mathrm{~N}),-$ 0.26 (br s, $12 \mathrm{H} \mathrm{NCH}_{2} \mathrm{P}$). Selected ${ }^{13} \mathrm{C}$ NMR signals (from the HSQC spectrum) in $\mathrm{CDCl}_{3}, \delta(\mathrm{ppm}): 133.8(o), 131.9(\beta), 126.8(m+p)$, $71.3\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 45.0\left(\mathrm{NCH}_{2} \mathrm{P}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}):-$ 50.6 ($\mathrm{s}, 2 \mathrm{P}$, mutually trans PTAs). ESI mass spectrum $(\mathrm{m} / \mathrm{z}): 1020.1$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 874.1\left([\mathrm{M}-\mathrm{PTA}+\mathrm{H}]^{+}\right), 718.1\left([\mathrm{M}-2 \mathrm{PTA}+\mathrm{H}]^{+}\right) . \mathrm{UV}-$ vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }}\left(\varepsilon, \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)=431$ (125400), 523 (8300), 554 (5400) nm.
$[R u(T P P)(C O)(P T A-\kappa P)]$ (2). As noted in the text, this elusive intermediate was observed during the titration of $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$ with PTA but could not be isolated. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm})$: $8.62(\mathrm{~s}, 8 \mathrm{H}, \beta), 8.24,8.02\left(\mathrm{~m}, 8 \mathrm{H}, o+o^{\prime}\right), 7.68\left(\mathrm{~m}, 12 \mathrm{H}, m+m^{\prime}+p\right)$, $3.11(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 3 \mathrm{H} \mathrm{NCH} \mathrm{N}$) , $2.39(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 3 \mathrm{H}$ $\mathrm{NCH}_{2} \mathrm{~N}$), -0.71 (br s, $\left.6 \mathrm{H} \mathrm{NCH} \mathrm{N}_{2} \mathrm{P}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta$ (ppm): -60.5 (s, 1P, PTA trans CO). Selected IR absorption (chloroform solution, cm^{-1}): $1989\left(\nu_{\mathrm{CO}}\right)$.

The following preparations were performed on a small scale (maximum $5-6 \mathrm{mg}$ of the limiting reagent) with the specific aim of obtaining X-ray quality single crystals by slow diffusion of a precipitating solvent into ca. millimolar solutions of the reagents in the indicated molar ratios. Yields were not measured. The ${ }^{1} \mathrm{H}$ NMR spectra of the adducts are not reported, since-due to the labile nature of the $\mathrm{Zn}-\mathrm{N}$ bonds-they depend on the concentration. In the NMR titrations, the metalloporphyrin concentration was ca. 5 mM .
[$\mathrm{Zn}(T P P)(P T A-\kappa N)] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CHCl}_{3}\left(3 \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CHCl}_{3}\right)$. Crystals of $3 \cdot \mathrm{H}_{2} \mathrm{O} \cdot$ CHCl_{3} were obtained by slow diffusion of diethyl ether into a ca. 5 mM chloroform solution of a $2: 1 \mathrm{Zn}(\mathrm{TPP}) / \mathrm{PTA}$ mixture. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-102.1(\mathrm{~s})$.
$\left[\left\{R u(T P P)\left(P T A-\kappa^{2} P, N\right)_{2}\right\}\{Z n(T P P)\}\right]_{\infty}$ (4). X-ray quality crystals of 4 were obtained upon diffusion of n-hexane into a chloroform solution
of a ca. 3 mM 2:1 mixture of $\mathrm{Zn}(\mathrm{TPP})$ and 1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-50.1(\mathrm{~s})$.
cis, cis, trans- $\left[\left\{\mathrm{RuCl} 2_{2}(\mathrm{CO})_{2}\left(P T A-\kappa^{2} \mathrm{P}, \mathrm{N}\right)_{2}\right\}\{\mathrm{Zn}(\mathrm{TPP})\} \cdot 9.2\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}$ (6. 9.2 ($\left.\mathrm{H}_{2} \mathrm{O}\right)$). X-ray quality crystals of $6 \cdot 9.2\left(\mathrm{H}_{2} \mathrm{O}\right)$ were obtained upon diffusion of diethyl ether into a chloroform solution of a $1: 2$ mixture of cis,cis,trans- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{PTA}-\kappa P)_{2}\right](5,6.1 \mathrm{mg}, 0.011 \mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{TPP})\left(2.5 \mathrm{mg}, 2\right.$ equiv). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-49.0$ (s).
trans- $\left[\left\{R u C I_{2}\left(P T A-\kappa^{2} P, N\right)_{4}\right\}\{Z n(T P P)\}_{4}\right] \cdot{ }_{3}{ }_{3} \mathrm{CHCl}_{3} \cdot 2 n$-hexane $\left(8 \cdot{ }^{8} / 3 \mathrm{CHCl}_{3} \cdot 2 n\right.$-hexane). X-ray quality crystals of $8 \cdot 8 / 3 \mathrm{CHCl}_{3} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{14}$ were obtained upon diffusion of n-hexane into 5 mL of a $1: 4$ chloroform solution of trans- $\left[\mathrm{RuCl}_{2}(\mathrm{PTA}-\kappa P)_{4}\right] \quad(7,5.3 \mathrm{mg}, 0.0062$ $\mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{TPP})\left(17.9 \mathrm{mg}, 4\right.$ equiv). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): -51.1 (s).
trans- $\left[\left\{R u \mathrm{Cl}_{2}\left(\mathrm{PTA}-\kappa^{2} \mathrm{P}, \mathrm{N}\right)_{4}\right\}\{\mathrm{Zn}(\mathrm{TPP})\}_{2} \cdot 4 \mathrm{CHCl}_{3}\right]_{\infty}\left(9 \cdot 4 \mathrm{CHCl}_{3}\right)$. X-ray quality crystals of $9 \cdot 4 \mathrm{CHCl}_{3} \cdot$ were obtained upon diffusion of hexane into 4 mL of a 1:2 chloroform solution of trans- $\left[\mathrm{RuCl}_{2}(\mathrm{PTA}-\kappa P)_{4}\right]$ (7, $5.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{TPP})\left(8.4 \mathrm{mg}, 2\right.$ equiv). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta\left(\mathrm{ppm}_{3}\right):-50.7(\mathrm{~s})$.
$\left[\left\{\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PTA}-\kappa^{3} \mathrm{P}, 2 \mathrm{~N}\right)_{2}\right\}\left\{\mathrm{Zn}_{9}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}(\mathrm{OH})_{2}\right\}\right.$. $\left.3 \mathrm{CHCl}_{3}\right]_{\infty}\left(10 \cdot 3 \mathrm{CHCl}_{3}\right)$. X-ray quality crystals of $\mathbf{1 0} \cdot 3\left(\mathrm{CHCl}_{3}\right)$ were obtained by slow diffusion of n-hexane into 3 mL of a $5: 1$ chloroform/ methanol solution of a ca. $8: 1$ mixture of $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $\left[\mathrm{Ru}(\mathrm{TPP})(\text { PTA }-\kappa P)_{2}\right](1,3 \mathrm{mg}, 0.0023 \mathrm{mmol})$.
$\left[\left\{R u(T P P)(P T A-\kappa P)\left(P T A-\kappa^{2} P, N\right)\right\}\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\} \cdot 0.6 \mathrm{CHCl}_{3}\right] \quad$ (11. $\left.0.6 \mathrm{CHCl}_{3}\right)$. X-ray quality crystals of $11 \cdot 0.6 \mathrm{CHCl}_{3}$ were obtained by slow diffusion of n-hexane onto 2.4 mL of a $5: 1$ chloroform/ethanol solution of a $1: 2$ mixture of $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{PTA}-\kappa P)_{2}\right](1,3 \mathrm{mg}, 0.0023$ mmol) and ZnCl_{2}.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00080.

Details of X-ray data collection and refinement for compounds $1,3,4,6,8-11$, mono- and bidimensional NMR spectra of the reported compounds, additional drawings for the X-ray structures, a description of the Zn -acetate cluster of compound $\mathbf{1 0}$, and additional comments on the X-ray structure of compound 11 (PDF)

Accession Codes

CCDC 1964277, 1964280-1964285, and 1964342 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request/cif, or by emailing data_request@ccdc.cam.ac. uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

AUTHOR INFORMATION

Corresponding Authors

Gabriele Balducci - Department of Chemical and
Pharmaceutical Sciences, University of Trieste 34127 Trieste,
Italy; © orcid.org/0000-0002-0007-0880; Email: balducci@ units.it
Enzo Alessio - Department of Chemical and Pharmaceutical
Sciences, University of Trieste 34127 Trieste, Italy;
© orcid.org/0000-0002-4908-9400; Email: alessi@units.it

Authors

Federica Battistin - Department of Chemical and
Pharmaceutical Sciences, University of Trieste 34127 Trieste, Italy

Alessio Vidal - Department of Chemical and Pharmaceutical Sciences, University of Trieste 34127 Trieste, Italy
Paolo Cavigli - Department of Chemical and Pharmaceutical Sciences, University of Trieste 34127 Trieste, Italy
Elisabetta Iengo - Department of Chemical and Pharmaceutical Sciences, University of Trieste 34127 Trieste, Italy
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.inorgchem.0c00080

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the University of Trieste (E.I., FRA 2016 E.A. FRA 2018), Fondazione Beneficentia Stiftung (E.A.), and FSE-S3 (Ph.D. fellowship to A.V.) is gratefully acknowledged. We wish to thank BASF Italia Srl, for a generous donation of hydrated ruthenium chloride, and Prof. Silvano Geremia of our Department, for identifying the presence of a lattice translocation defect in the crystals of compound 6 and for helpful suggestions for solving the X-ray structure.

- REFERENCES

(1) (a) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. Coordination Chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA). Transition Metal Complexes and Related Catalytic, Medicinal and Photoluminescent Applications. Coord. Chem. Rev. 2004, 248, 955-993. (b) Bravo, J.; Bolaño, S.; Gonsalvi, L.; Peruzzini, M. Coordination Chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA) and Derivatives. Part II. The Quest for Tailored Ligands, Complexes and Related Applications. Coord. Chem. Rev. 2010, 254, 555-607. (c) Guerriero, A.; Peruzzini, M.; Gonsalvi, L. Coordination Chemistry of 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (PTA) and Derivatives. Part III. Variations on a Theme: Novel Architectures, Materials and Applications. Coord. Chem. Rev. 2018, 355, 328-361.
(2) Crochet, P.; Cadierno, V. Arene-ruthenium(II) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media. Dalton Trans. 2014, 43, 12447-12462.
(3) Murray, B. S.; Babak, M. V.; Hartinger, C. G.; Dyson, P. J. The development of RAPTA compounds for the treatment of tumors. Coord. Chem. Rev. 2016, 306, 86-114.
(4) Lidrissi, C.; Romerosa, A.; Saoud, M.; Serrano-Ruiz, M.; Gonsalvi, L.; Peruzzini, M. Stable, Water-Soluble PTA-Based Ru-Ag Organometallic Polymers. Angew. Chem., Int. Ed. 2005, 44, 25682572.
(5) Interestingly, Romerosa and co-workers very recently described a similar 1D $\mathrm{Ru}-\mathrm{Ag}$ polymer with Cl in the place of DMSO, $\mathrm{Na}\left[\left\{\mathrm{RuCpCl}\left(\mathrm{PTA}-\kappa^{2} P, N\right)_{2}\right\}\left\{\mathrm{AgCl}_{2}\right\}\right]_{\infty}:$ Sierra-Martin, B.; SerranoRuiz, M.; Scalambra, F.; Fernandez-Barbero, A.; Romerosa, A. Novel Ruthenium-Silver PTA-Based Polymers and Their Behavior in Water. Polymers 2019, 11, 1249.
(6) (a) Serrano-Ruiz, M.; Romerosa, A.; Sierra-Martin, B.; Fernandez-Barbero, A. A Water Soluble Diruthenium-Gold Organometallic Microgel. Angew. Chem., Int. Ed. 2008, 47, 8665-8669. (b) Scalambra, F.; Serrano-Ruiz, M.; Romerosa, A. First WaterSoluble Backbone $\mathrm{Ru}-\mathrm{Ru}-\mathrm{Ni}$ Heterometallic Organometallic Polymer. Macromol. Rapid Commun. 2015, 36, 689-693. (c) Scalambra, F.; Serrano-Ruiz, M.; Gudat, D.; Romerosa, A. Amorphization of a $\mathrm{Ru}-\mathrm{Ru}-\mathrm{Cd}$ Coordination Polymer at Low Pressure. ChemistrySelect 2016, 1 (5), 901-905. (d) Scalambra, F.; Serrano-Ruiz, M.; Romerosa, A. Water driven formation of channels: unusual solidstate structural transformation of a heterometallic polymer. Dalton Trans. 2018, 47, 3588-3595. (e) Sierra-Martin, B.; Serrano-Ruiz, M.; García-Sakai, V.; Scalambra, F.; Romerosa, A.; Fernandez-Barbero, A.

Self-Organization and Swelling of Ruthenium-Metal Coordination Polymers with PTA (Metal =Ag, Au, Co). Polymers 2018, 10, 528. (f) Scalambra, F.; Rudić, S.; Romerosa, A. Molecular Insights into Bulk and Porous $\kappa^{2} P, N$-PTA Metal-Organic Polymers by Simultaneous Raman Spectroscopy and Inelastic Neutron Scattering. Eur. J. Inorg. Chem. 2019, 2019, 1155-1161.
(7) Tu, X.; Nichol, G. S.; Zheng, Z. Zn (II) and $\mathrm{Cu}(\mathrm{II})$ Complexes with the Cluster-based Ligand $\left[\mathrm{Re}_{6}\left(\mu_{3}-\mathrm{Se}_{8}\right)_{8}\left(\mathrm{PEt}_{3}\right)_{5}(\mathrm{PTA})\right]\left(\mathrm{SbF}_{6}\right)_{2}$ (PTA $=1,3,5-$ Triaza-7-phosphaadamantane). J. Cluster Sci. 2009, 20, 93-103.
(8) Mohr, F.; Falvello, L. R.; Laguna, M. A Silver(I) Coordination Polymer Containing Tridentate N - and P -Coordinating 1,3,5-Triaza-7-phosphaadamantane (PTA) Ligands. Eur. J. Inorg. Chem. 2006, 2006, 3152-3154.
(9) (a) Lis, A.; Guedes da Silva, M. F. C.; Kirillov, A. M.; Smoleński, P.; Pombeiro, A. J. L. Design of Silver(I)-PTA Coordination Polymers through Controlled N,P-Coordination of 1,3,5-Triaza-7phosphaadamantane (PTA) with Arylcarboxylates. Cryst. Growth Des. 2010, 10, 5244-5253. (b) Kirillov, A. M.; Wieczorek, S. W.; Guedes da Silva, M. F. C.; Sokolnicki, J.; Smoleński, P.; Pombeiro, A. J. L. Crystal engineering with 1,3,5-triaza-7-phosphaadamantane (PTA): first PTA-driven 3D metal-organic frameworks. CrystEngComm 2011, 13, 6329-6333. (c) Jaros, S. W.; Guedes da Silva, M. F. C.; Florek, M.; Oliveira, M. C.; Smoleński, P.; Pombeiro, A. J. L.; Kirillov, A. M. Aliphatic Dicarboxylate Directed Assembly of Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Networks: Topological Versatility and Antimicrobial Activity. Cryst. Growth Des. 2014, 14, 5408-5417. (d) Jaros, S. W.; Guedes da Silva, M. F. C.; Florek, M.; Smoleński, P.; Pombeiro, A. J. L.; Kirillov, A. M. Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Polymers Driven by Substituted Glutarate and Malonate Building Blocks: Self-Assembly Synthesis, Structural Features, and Antimicrobial Properties. Inorg. Chem. 2016, 55, 5886-5894. (e) Jaros, S. W.; Guedes da Silva, M. F. C.; Król, J.; Conceição Oliveira, M.; Smoleński, P.; Pombeiro, A. J. L.; Kirillov, A. M. Bioactive Silver-Organic Networks Assembled from 1,3,5-Triaza-7-phosphaadamantane and Flexible Cyclohexanecarboxylate Blocks. Inorg. Chem. 2016, 55, 1486-1496.
(10) Jaremko, Ł.; Kirillov, A. M.; Smoleński, P.; Pombeiro, A. J. L. Engineering Coordination and Supramolecular Copper-Organic Networks by Aqueous Medium Self-Assembly with 1,3,5-Triaza-7phosphaadamantane (PTA). Cryst. Growth Des. 2009, 9, 3006-3010. (11) Smoleński, P.; Kłak, J.; Nesterov, D. S.; Kirillov, A. M. Unique Mixed-Valence $\mathrm{Cu}(\mathrm{I}) / \mathrm{Cu}(\mathrm{II})$ Coordination Polymer with New Topology of Bitubular 1D Chains Driven by 1,3,5-Triaza-7phosphaadamantane (PTA). Cryst. Growth Des. 2012, 12, 58525857.
(12) Frost, B. J.; Bautista, C. M.; Huang, R.; Shearer, J. Manganese Complexes of 1,3,5-Triaza-7-phosphaadamantane (PTA): The First Nitrogen-Bound Transition-Metal Complex of PTA. Inorg. Chem. 2006, 45, 3481-3483.
(13) Smoleński, P.; Kochel, A. Synthesis of the first monodentate Sand O-coordinating 1,3,5-triaza-7-phosphaadamantane-7-chalcogenides $\left[\mathrm{CoCl}(\mathrm{bpy})_{2}(\mathrm{Z}-\mathrm{PTA}=\mathrm{Z})\right] \mathrm{X}\left(\mathrm{Z}=\mathrm{S}, \mathrm{O} ;\right.$ bpy $=2,2^{\prime}$-bipyridine; $\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}$) and $\left[\mathrm{CoCl}(\text { bpy })_{2}(N-\mathrm{PTA})\right] \mathrm{BF}_{4}(\mathrm{PTA}=1,3,5$-triaza- $7-$ phosphaadamantane). Polyhedron 2010, 29, 1561-1566.
(14) Smoleński, P.; Benisvy, L.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Syntheses and Crystal Structures of the First Zinc Complex with 1,3,5-Triaza-7-phosphaadamantane (PTA), $\left[\mathrm{ZnCl}_{2}(\mathrm{PTA})_{2}\right]$, and of the Hybrid Organic-Inorganic Salts of N -Methyl-1,3,5-triaza-7-phosphaadamantane with Tetrahalozinc [PTA$\mathrm{Me}]_{2}\left[\mathrm{ZnI}_{2} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{I}, \mathrm{Cl})$. Eur. J. Inorg. Chem. 2009, 2009, 11811186.
(15) Anselmo, D.; Gramage-Doria, R.; Besset, T.; EscárcegaBobadilla, M. V.; Salassa, G.; Escudero-Adán, E. C.; Martínez Belmonte, M.; Martin, E.; Reek, J. N. H.; Kleij, A. W. Supramolecular bulky phosphines comprising 1,3,5-triaza-7-phosphaadamantane and Zn (salphen)s: structural features and application in hydrosilylation catalysis. Dalton Trans. 2013, 42, 7595-7603.
(16) (a) Battistin, F.; Balducci, G.; Iengo, E.; Demitri, N.; Alessio, E. Neutral Ru (II)-PTA and Ru (II)-PTA-dmso Complexes (PTA = 1,3,5-triaza-7-phosphaadamantane) as Precursors for the Preparation of Highly Water-soluble Derivatives Eur. Eur. J. Inorg. Chem. 2016, 2016, 2850-2860. (b) Battistin, F.; Scaletti, F.; Balducci, G.; Pillozzi, S.; Arcangeli, A.; Messori, L.; Alessio, E. Water-soluble Ru(II)- and Ru (III)-halide-PTA Complexes (PTA $=$ 1,3,5-triaza-7-phosphaadamantane): Chemical and Biological Properties. J. Inorg. Biochem. 2016, 160, 180-188. (c) Battistin, F.; Balducci, G.; Milani, B.; Alessio, E. Water-Soluble Ruthenium(II) Carbonyls with 1,3,5-Triaza-7-Phosphoadamantane. Inorg. Chem. 2018, 57, 6991-7005.
(17) (a) Darensbourg, D. J.; Joó, F.; Kannisto, M.; Kathó, A.; Reibenspies, J. H.; Daigle, D. J. Water-Soluble Organometallic Compounds. 4. Catalytic Hydrogenation of Aldehydes in an Aqueous Two-Phase Solvent System Using a 1,3,5-Triaza-7-phosphaadamantane Complex of Ruthenium. Inorg. Chem. 1994, 33, 200-208. (b) Mebi, C. A.; Frost, B. J. Isomerization of trans- $\left[\mathrm{Ru}(\mathrm{PTA})_{4} \mathrm{Cl}_{2}\right]$ to cis- $\left[\mathrm{Ru}(\mathrm{PTA})_{4} \mathrm{Cl}_{2}\right]$ in Water and Organic Solvent: Revisiting the Chemistry of $\left[\mathrm{Ru}(\mathrm{PTA})_{4} \mathrm{Cl}_{2}\right]$. Inorg. Chem. 2007, 46, 7115-7120. (c) Girotti, R.; Romerosa, A.; Mañas, S.; Serrano-Ruiz, M.; Perutz, R. N . Visible-Light Photoisomerization and Photoaquation of trans[$\mathrm{Ru}(1,3,5 \text {-triaza-7-phosphaadamantane })_{4} \mathrm{Cl}_{2}$] in Organic Solvent and Water. Inorg. Chem. 2009, 48, 3692-3698. (d) Udvardy, A.; Benyei, A. C.; Katho, A. The dual role of cis- $\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{4}\right]$ in the synthesis of new water-soluble Ru (II)-phosphane complexes and in the catalysis of redox isomerization of allylic alcohols in aqueous organic biphasic systems. J. Organomet. Chem. 2012, 717, 116-122.
(18) (a) Alessio, E.; Macchi, M.; Heath, S.; Marzilli, L. G. A novel open-box shaped pentamer of vertically linked porphyrins that selectively recognizes S -bonded $\mathrm{Me}_{2} \mathrm{SO}$ complexes. Chem. Commun. 1996, 1411-1412. (b) Alessio, E.; Geremia, S.; Mestroni, S.; Iengo, E.; Srnova, I.; Slouf, M. Solution and solid state structure of a canted, side-to-face, bis-porphyrin adduct. Inorg. Chem. 1999, 38, 869-875.
(19) (a) Iengo, E.; Zangrando, E.; Minatel, R.; Alessio, E. Metallacycles of porphyrins as building blocks in the construction of higher order assemblies through axial coordination of bridging ligands: solution and solid state characterization of molecular sandwiches and molecular wires. J. Am. Chem. Soc. 2002, 124, 1003-1013. (b) Iengo, E.; Gatti, T.; Zangrando, E.; Indelli, M. T.; Scandola, F.; Alessio, E. Concerted motions in supramolecular systems: metal-mediated assemblies of porphyrins that behave like nanometric step-machines. Chem. Commun. 2011, 47, 1616-1618. (c) Alessio, E.; Casanova, M.; Zangrando, E.; Iengo, E. Modular selfassembled multiporphyrin cages with tunable shape. Chem. Commun. 2012, 48, 5112-5115. (d) Iengo, E.; Cavigli, P.; Milano, D.; Tecilla, P. Metal mediated self-assembled porphyrin metallacycles: Synthesis and multipurpose applications. Inorg. Chim. Acta 2014, 417, 59-78.
(20) (a) Stulz, E.; Maue, M.; Feeder, N.; Teat, S. J.; Ng, Y. F.; Bond, A. D.; Darling, S.; Sanders, J. K. M. Phosphine and Phosphonite Complexes of a Ruthenium(II) Porphyrin. 1. Synthesis, Structure, and Solution State Studies. Inorg. Chem. 2002, 41, 5255-5268. (b) Stulz, E.; Scott, S. M.; Bond, A. D.; Otto, S.; Sanders, J. K. M. Complexation of Diphenyl(phenylacetenyl)phosphine to Rhodium(III) Tetraphenyl Porphyrins: Synthesis and Structural, Spectroscopic, and Thermodynamic Studies. Inorg. Chem. 2003, 42, 3086-3096. (c) Bond, A. D.; Sanders, J. K. M.; Stulz, E. Ruthenium(II) and rhodium(III) porphyrin phosphine complexes: influence of substitution pattern on structure and electronic properties. New J. Chem. 2011, 35, 26912696.
(21) Domazetis, G.; James, B. R.; Dolphin, D. Ruthenium(II) Porphyrin Complexes: NMR Spectral Evidence for Out-of-Plane Ruthenium, and for Seven-Coordinate Species. Inorg. Chim. Acta 1981, 54, L47-L49.
(22) Mizutani, T.; Wada, K.; Kitagawa, S. Molecular Recognition of Amines and Amino Esters by Zinc Porphyrin Receptors: Binding Mechanisms and Solvent Effects. J. Org. Chem. 2000, 65, 6097-6106. (23) Rukin, P. S.; Kashchenko, P. A.; Malyavskaya, A. Yu.; Bagaturyants, A. A.; Alfimov, M. V. Experimental and Theoretical

Study of the Interaction of Volatile Amines with Zinc Porphyrins. Nanotechnol. Russ. 2014, 9, 136-144.
(24) Vinodu, M.; Goldberg, I. Complexes of hexamethylenetetramine with zinc-tetraarylporphyrins, and their assembly modes in crystals as clathrates and hydrogen-bonding network polymers. New J. Chem. 2004, 28, 1250-1254.
(25) Eaton, S. S.; Eaton, G. R.; Holm, R. H. Inter- and Intramolecular Ligand Exchange Reactions of Ruthenium(II) Carbonyl Porphine Complexes with Nitrogen Bases. J. Organomet. Chem. 1972, 39, 179-195.
(26) Little, R. G.; Ibers, J. A. Structure of (Tetraphenylporphinato)-(carbonyl)(pyridine)ruthenium(II)-1.5-Toluene. J. Am. Chem. Soc. 1973, 95, 8583-8590.
(27) Antipas, A.; Buchler, J. W.; Gouterman, M.; Smith, P. D. Porphyrins. 36. Synthesis and optical and electronic properties of some ruthenium and osmium octaethylporphyrins. J. Am. Chem. Soc. 1978, 100, 3015-3024.
(28) Slebodnick, C.; Seok, W. K.; Kim, K.; Ibers, J. A. Syntheses and characterization of the ruthenium carbonyl porphyrin complexes $\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})(1-\mathrm{Melm})$ and $\mathrm{Ru}(\mathrm{a}-\mathrm{PocPivP})(\mathrm{CO})(1-\mathrm{Melm})$. Inorg. Chim. Acta 1996, 243, 57-65.
(29) Chow, B. C.; Cohen, I. A. Derivatives of Tetraphenylporphineruthenium(II). Bioinorg. Chem. 1971, 1, 57-63.
(30) Boschi, T.; Bontempelli, G.; Mazzocchin, G.-A. Synthesis and Electrochemical Behaviour of Novel Ruthenium(II) Tetraphenylporphynate Derivatives. Inorg. Chim. Acta 1979, 37, 155-160.
(31) (a) Ball, R. G.; Domazetis, G.; Dolphin, D.; James, B. R.; Trotter, J. Studies of Ruthenium(II) Porphyrins Containing Tertiary Diphosphine Ligands, Including the Crystal Structure of (5,10,15,20-Tetraphenylporphinato)bis(bis(diphenylphosphino)methane)-ruthenium(II)-Dichloromethane. Inorg. Chem. 1981, 20, 1556-1562. (b) Barley, M.; Becker, J. Y.; Domazetis, G.; Dolphin, D.; James, B. R. Synthesis and redox chemistry of octaethylporphyrin complexes of ruthenium(II) and ruthenium(III). Can. J. Chem. 1983, 61, 23892396. (c) Ariel, S.; Dolphin, D.; Domazetis, G.; James, B. R.; Leung, T. W.; Rettig, S. J.; Trotter, J.; Williams, G. M. Preparation and characterization of some ruthenium(II) porphyrins containing tertiary phosphine axial ligands, including the crystal structure of (octaethylporphinato)bis(triphenylphosphine)ruthenium(II). Can. J. Chem. 1984, 62, 755-762.
(32) Massoudipour, M.; Pandey, K. K. Preparation and Characterization of Ruthenium(II) Porphyrins. Inorg. Chim. Acta 1989, 160, 115-118.
(33) (a) Stulz, E.; Scott, S. M.; Ng, Y.-F.; Bond, A. D.; Teat, S. J.; Darling, S. L.; Feeder, N.; Sanders, J. K. M. Construction of Multiporphyrin Arrays Using Ruthenium and Rhodium Coordination to Phosphines. Inorg. Chem. 2003, 42, 6564-6574. (b) Stulz, E.; Maue, M.; Scott, S. M.; Mann, B. E.; Sanders, J. K. M. Ru(II) and $\mathrm{Rh}($ III) porphyrin complexes of primary phosphine-substituted porphyrins. New J. Chem. 2004, 28, 1066-1072.
(34) (a) Xie, J.; Huang, J.-S.; Zhu, N.; Zhou, Z.-Y.; Che, C.-M. Primary and Secondary Phosphane Complexes of Metalloporphyrins: Isolation, Spectroscopy, and X-ray Crystal Structures of Ruthenium and Osmium Porphyrins Binding Phenyl- or Diphenylphosphane. Chem. - Eur. J. 2005, 11, 2405-2416. (b) Huang, J.-S.; Yu, G.-A.; Xie, J.; Zhu, N.; Che, C.-M. One-Pot Synthesis of Metal Primary Phosphine Complexes from $\mathrm{O}=\mathrm{PCl}_{2} \mathrm{R}$ or $\mathrm{PCl}_{2} \mathrm{R}$. Isolation and Characterization of Primary Alkylphosphine Complexes of a Metalloporphyrin. Inorg. Chem. 2006, 45, 5724-5726.
(35) According to some authors (e.g., refs 20a, 29, and 31c, PPh_{3} is an exception and the preparations of $\left[\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ or $\left[\mathrm{Ru}(\mathrm{OEP})\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{OEP}=$ octaethylporphyrin) require extensive boiling of the reactants in chloroform or toluene, whereas according to others (ref 30) $\left[\mathrm{Ru}(\mathrm{TPP})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is obtained within 1 h at room temperature.
(36) Darling, S.; Sanders, J. K. M.; Davies, J. E. CSD Communication (private communication), 1999.
(37) The original AB spin system of the $\mathrm{NCH}_{2} \mathrm{~N}$ protons becomes an AX system in $\mathbf{1}$ by virtue of the increased spread of chemical shifts.
(38) Darensbourg, D. J.; Beckford, F. A.; Reibenspies, J. H. WaterSoluble Organometallic Compounds. 8. Synthesis, Spectral Properties, and Crystal Structures of 1,3,5-Triaza-7-phosphaadamantane (PTA) Derivatives of Metal Carbonyl Clusters: $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mathrm{PTA})_{3}$ and $\mathrm{Ir}_{4}(\mathrm{CO})_{7}(\mathrm{PTA})_{5}$. J. Cluster Sci. 2000, 11, 95-107.
(39) Consistent with the expected weakening of the $\mathrm{Ru}-\mathrm{CO}$ bond, the CO stretching frequency in the intermediate 2 falls at remarkably higher wavelengths compared to $[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})]$ (1989 vs 1949 cm^{-1}, with a $\Delta \nu$ of $40 \mathrm{~cm}^{-1}$). For comparison, in a series of $[\mathrm{Ru}(\mathrm{DPP})(\mathrm{CO})(\mathrm{P})]$ compounds $\Delta \nu$ of $18-39 \mathrm{~cm}^{-1}$-compared to $[\mathrm{Ru}(\mathrm{DPP})(\mathrm{CO})]$-were observed, ${ }^{20 a}$ and CO stretching frequencies (solid state) of 1952 and $1956 \mathrm{~cm}^{-1}$ were reported for $[\mathrm{Ru}(\mathrm{OEP})$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{Ru}(\mathrm{TPP})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$, respectively. ${ }^{31 \mathrm{~b}, \mathrm{c}}$
(40) Byrn, M. P.; Curtis, C. J.; Hsiou, Y.; Khan, S. I.; Sawin, P. A.; Tendick, S. K.; Terzis, A.; Strouse, C. E. Porphyrin Sponges: Conservation of Host Structure in over 200 Porphyrin-Based Lattice Clathrates. J. Am. Chem. Soc. 1993, 115, 9480-9497.
(41) Shukla, A. D.; Dave, P. C.; Suresh, E.; Das, A.; Dastidar, P. Multicomponent Zn -tetraphenylporphyrins: syntheses, characterization and their self assembly in the solid state. J. Chem. Soc., Dalton Trans. 2000, 4459-4463.
(42) Ozarowski, A.; Lee, H. M.; Balch, A. L. Crystal Environments Probed by EPR Spectroscopy. Variations in the EPR Spectra of Co ${ }^{\text {II }}$ (octaethylporphyrin) Doped in Crystalline Diamagnetic Hosts and a Reassessment of the Electronic Structure of Four-Coordinate Cobalt(II). J. Am. Chem. Soc. 2003, 125, 12606-12614.
(43) Kleij, A. W.; Kuil, M.; Tooke, D. M.; Spek, A. L.; Reek, J. N. H. Template-Assisted Ligand Encapsulation; the Impact of an Unusual Coordination Geometry on a Supramolecular PyridylphosphineZn(II)porphyrin Assembly. Inorg. Chem. 2005, 44, 7696-7698.
(44) Nasri, S.; Zahou, I.; Turowska-Tyrk, I.; Roisnel, T.; Loiseau, F.; Saint-Amant, E.; Nasri, H. Synthesis, Electronic Spectroscopy, Cyclic Voltammetry, Photophysics, Electrical Properties and X-ray Molecular Structures of meso-\{Tetrakis[4-(benzoyloxy)phenyl]porphyrinato\} zinc(II) Complexes with Aza Ligands. Eur. J. Inorg. Chem. 2016, 2016, 5004-5019.
(45) A search on the Cambridge Structural Database, March 2019, afforded 382 hits for X-ray structures of $[\mathrm{Zn}($ por $)(\mathrm{N})]$ vs 18 hits for $\left[\mathrm{Zn}(\operatorname{por})(\mathrm{N})_{2}\right]$. See in Cambridge Structural Database: Allen, F. H. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 380-388.
(46) Frost, B. J.; Lee, W.-C.; Pal, K.; Kim, T. H.; Van Derveer, D.; Rabinovich, D. Synthesis, structure, and coordination chemistry of O $=$ PTA and $\mathrm{S}=$ PTA with group 12 metals (PTA $=1,3,5$-triaza-7phosphaadamantane). Polyhedron 2010, 29, 2373-2380.
(47) Rul corresponds to the M site in Figure $\mathrm{S} 16, \mathrm{Znl}$ and Znl^{\prime} are its symmetry images via $(1-x, y, 3 / 2-z)$ and $(x, 1-y,-1 / 2+z)$, respectively. Similarly, P31 corresponds to the L site in Figure S16, whereas P31 ${ }^{\prime}, \mathrm{N} 32, \mathrm{~N} 32^{\prime}$, and N32" are symmetry images of that site via $(1-x, 1-y, 1-z),\left(1-x, y,{ }^{3} / 2-z\right),\left(x, 1-y,{ }^{1} / 2+z\right),(x, 1-$ $y,-1 / 2+z)$, respectively. $\mathrm{N} 21^{\prime}$ and $\mathrm{N} 22^{\prime}$ are symmetry images of N 21 and N 22 via $(1-x, y, 3 / 2-z)$ and $(x, 1-y, 1 / 2+z)$, respectively.
(48) Primed atoms indicate symmetry images of corresponding non primed atoms $\left(\mathrm{N}^{\prime}{ }^{\prime}(1-x, 1-y, 1-z), \mathrm{N}^{\prime}(1-x, 1-y, 1-z)\right.$, $\mathrm{N} 11^{\prime}(1-x, 1-y, 1-z), \mathrm{P} 1^{\prime}\left(1-x, y,{ }^{1} / 2-z\right), \mathrm{N} 11^{\prime \prime}\left(1-x, y,{ }^{1} / 2\right.$ $-z), \mathrm{Znl}^{\prime}(1-x, y, 1 / 2-z)$).
(49) Alessio, E.; Geremia, S.; Mestroni, S.; Srnova, I.; Slouf, M.; Gianferrara, T.; Prodi, A. Porphyrin "flying saucers": solid state and solution structure of a novel pentameric array of axially-ligated canted porphyrins. Inorg. Chem. 1999, 38, 2527-2529.
(50) Due to the low quality of the X-ray data, the observed electron density map of the disordered $\left\{\mathrm{ZnCl}_{2}\left(\mathrm{OH}_{2}\right)\right\}$ fragment could be modeled also by a $\mathrm{ZnCl}_{3}{ }^{-}$fragment. Protonation of the opposite PTA ligand $\left(\mathrm{PTAH}^{+}\right)$would balance the negative charge, yielding the zwitterionic molecule $[\{\mathrm{Ru}($ TPP) (PTAH- κ P) (PTA$\left.\left.\left.\kappa^{2} P, N\right)\right\}^{+}\left\{\mathrm{ZnCl}_{3}\right\}^{-}\right]$(see Supporting Information for further details). (51) The pioneering work of Israel Goldberg in studying microporous structures based on porphyrin building units cannot be easily cited, due to its vastness. It can perhaps be best appreciated by
reading this commemorative article, and the references cited therein: Titi, H. M.; Konar, S. The Voyage of Goldberg: Supramolecular Chemistry and Memories. Cryst. Growth Des. 2019, 19, 3603-3606.
(52) (a) Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. Light-harvesting metal-organic frameworks (MOFs): Efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc. 2011, 133, 1585815861. (b) Gao, W.-Y.; Chrzanowski, M.; Ma, S. Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem. Soc. Rev. 2014, 43, 5841-5866. (c) Guo, Z.; Chen, B. Recent developments in metal-metalloporphyrin frameworks. Dalton Trans. 2015, 44, 14574-14583. (d) So, M. C.; Wiederrecht, G. P.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 2015, 51, 3501-3510. (e) Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804-6849. (f) Lismont, M.; Dreesen, L.; Wuttke, S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Funct. Mater. 2017, 27, 1606314. (g) Zhang, J.; Wang, J.; Long, S.; Peh, S. B.; Dong, J.; Wang, Y.; Karmakar, A.; Yuan, Y. D.; Cheng, Y.; Zhao, D. Luminescent Metal-Organic Frameworks for the Detection and Discrimination of o-Xylene from Xylene Isomers. Inorg. Chem. 2018, 57, 13631-13639. (h) Chen, K.; Wu, C.-D. Designed fabrication of biomimetic metal-organic frameworks for catalytic applications. Coord. Chem. Rev. 2019, 378, 445-465. (i) Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO_{2} reduction under visible radiation: A review of strategies and applications. Catal. Today 2020, 340, 209224.
(53) Alessio, E.; Macchi, M.; Heath, S. L.; Marzilli, L. G. Ordered supramolecular porphyrin arrays from a building block approach utilizing pyridylporphyrins and peripheral ruthenium complexes and identification of a new type of mixed-metal building block. Inorg. Chem. 1997, 36, 5614-5623.
(54) Vidal, A.; Battistin, F.; Iengo, E.; Milani, B.; Alessio, E. The insertion of ruthenium into porphyrins revisited and improved: proof of concept results with a Ru (II) mono-carbonyl compound, and the spectacular effect of propionic acid. Eur. J. Inorg. Chem. 2019, 2019, 2883-2890.
(55) Sanders, J. K. M.; Bampos, N.; Clyde-Watson, Z.; Darling, S. L.; Hawley, J. C.; Kim, H.-J.; Mak, C. C.; Webb, S. J. Axial Coordination Chemistry of Metalloporphyrins. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guillard, R., Eds.; Academic Press: New York, 2000; Vol. 3, pp 1-48.
(56) Kabsch, W. XSD. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 125-132.
(57) Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3-8.
(58) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.
(59) Emsley, P.; Cowtan, K. Coot: Model-Building Tools for Molecular Graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2126-2132.
(60) Wang, J.; Kamtekar, S.; Berman, A. J.; Steitz, T. A. Correction of X-ray intensities from single crystals containing lattice-translocation defects. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2005, 61, 67-74.
(61) Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, D65, 148-155.

[^0]: Received: January 9, 2020
 Published: February 26, 2020

