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SUMMARY

As pluripotent human embryonic stem cells progress toward one germ layer fate, they lose 

the ability to adopt alternative fates. Using a low-dimensional reaction coordinate to monitor 

progression toward ectoderm, we show that a differentiating stem cell’s probability of adopting 

a mesendodermal fate given appropriate signals falls sharply at a point along the ectoderm 

trajectory. We use this reaction coordinate to prospectively isolate and profile differentiating 

cells based on their mesendoderm competence and analyze their RNA sequencing (RNA-seq) 

and assay for transposase-accessible chromatin using sequencing (ATAC-seq) profiles to identify 

transcription factors that control the cell’s mesendoderm competence. By modulating these 
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key transcription factors, we can expand or contract the window of competence to adopt 

the mesendodermal fate along the ectodermal differentiation trajectory. The ability of the 

underlying gene regulatory network to modulate competence is essential for understanding human 

development and controlling the fate choices of stem cells in vitro.

Graphical Abstract

In brief

The competence of human embryonic stem cells to take on mesendoderm fates is lost at 

a particular point along the ectoderm trajectory. Valcourt et al. analyze transcriptomics and 

chromatin accessibility of cell populations before and after competence loss to reveal genes whose 

perturbation can expand or contract mesendoderm competence.

INTRODUCTION

Pluripotent cells have the ability to produce all the cell types of the adult body (Gilbert, 

2000), but they lose this potential as they differentiate. During initial lineage specification, 

cells can change their fate choice upon exposure to signals that induce an alternative 

selection (Berg et al., 2011; Gilbert, 2000; Handyside, 1978; Pedersen et al., 1986), such 

as by transplantation to a different location in the embryo. In time, however, a cell’s fate 

becomes determined, and it is no longer competent to choose a different lineage in response 

to the same external signals (Oron and Ivanova, 2012; Rossant and Lis, 1979; Rossant and 

Vijh, 1980). This changing competence to adopt alternative fates has been pictured on a 

Waddington landscape (Waddington, 1957) as a pluripotent cell moving down into the valley 

corresponding to its chosen fate and being prevented from adopting the alternative fate by 

the barrier that rises between the valleys (Figure 1A). Thus, a cell’s ability to transition 

to the alternative fate depends both on its location along the developmental trajectory and 
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on the position of the barrier. Although lineage specification is relatively well understood 

(Chng et al., 2010; Jang et al., 2016; Kiecker et al., 2016; Mullen et al., 2011; Patthey and 

Gunhaga, 2014; Sheng et al., 2003; Takaoka and Hamada, 2012; Tapscott, 2005; Trompouki 

et al., 2011; Zhang et al., 2010), whether and how competence for adopting alternative 

lineages can be tuned during differentiation is not. Determining how this competence is 

set and modulated is essential for understanding developmental patterning and plasticity. 

The first choice human embryonic stem cells have is between the ectodermal (neural and 

non-neural) and mesendodermal progenitor fates. Here, we studied how the competence 

to select the mesendodermal fate in response to mesendoderm-inducing signals changes 

during ectodermal differentiation of human embryonic stem cells (hESCs) and whether this 

competence can be modulated.

There is a fundamental challenge in understanding the competence of a cell to choose a 

specific fate in response to a signal, because a cell’s fate choice is evident only after the 

expression of fate-specific marker genes. In mouse and humans, the fate markers for the 

germ layers are not expressed until at least 12 h after exposure to the appropriate signals (Li 

et al., 2015; Loh et al., 2016; Smith et al., 2008). Because the gene expression and chromatin 

accessibility state of the cell changes substantially during this period, determining how the 

molecular state of the cell at the time of signal exposure governs its competence to adopt 

alternative fates has been difficult.

To overcome this challenge, we identified a low-dimensional reaction coordinate to 

continuously monitor the progression of live single cells toward the ectodermal fate. 

Along this reaction coordinate, we measured the probability that a cell could transition 

to the mesendodermal fate in response to mesendoderm-inducing signals bone morphogenic 

protein 4 (BMP4) and Activin A. Using this probability distribution, we could prospectively 

sort and characterize cells based on their mesendoderm competence. Computational analysis 

of both the gene expression and chromatin accessibility profiles of these sorted cells allowed 

us to identify candidate genes that we predicted to control this competence. By perturbing 

the levels of these genes, we were able to change the mesendoderm competence along the 

ectodermal differentiation trajectory.

RESULTS

At the population level, hESCs lose mesendoderm competence along the ectodermal 
developmental trajectory

Given the appropriate signals, hESCs in vitro can adopt either mesendodermal or ectodermal 

progenitor fates: BMP4 and activin/NODAL signals induce mesendodermal fates, indicated 

by markers BRACHYURY (T) and SOX17 (Kanai-Azuma et al., 2002; Kavka and Green, 

1997; Xu et al., 2011), and activin/NODAL inhibition promotes ectodermal fates (Smith et 

al., 2008; Figure 1B).

When we exposed hESCs to BMP4 and Activin A (see STAR Methods), the cells uniformly 

expressed BRACHYURY and SOX17 (Figures S1A and S1B). In contrast, inhibiting 

activin/NODAL signaling promoted ectoderm-derived fates, downregulating pluripotency 
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factor OCT4 (POU5F1) and ultimately producing PAX6+ neurectoderm after 96–120 h 

(Figure S1C).

To study the ability of cells to adopt mesendoderm-derived fates in response to BMP4 

and Activin A stimulation (hereinafter referred to as mesendoderm competence) along 

the ectoderm trajectory, we differentiated cells for increasing amounts of time toward the 

ectodermal fate with activin/NODAL inhibition and then treated with BMP4 + Activin A. 

We chose mTeSR as a base media and applied minimal, defined perturbations with signaling 

ligands or inhibitors. Our activin/NODAL inhibition robustly generated ectoderm (Figure 

1C). We chose concentrations of BMP4 and Activin A to be consistent with literature 

reports of conditions that reliably and efficiently generate mesendoderm-derived fates in 

directed differentiation experiments (see STAR Methods; Loh et al., 2014). Consistent with 

previous data from mouse (Li et al., 2013, 2015), we demonstrated that competence to 

adopt mesendoderm-derived fates in response to BMP4 and Activin A decreases at the 

population level as cells differentiate toward the ectodermal fate. Increasing the duration 

of differentiation toward ectoderm reduced the fraction of cells that were mesendoderm 

competent, as shown by BRACHYURY (T) and SOX17 expression, which are not expressed 

by hESCs (Figures 1C, 1D, and S1D–S1F). The temporal decrease in the mesendoderm 

fraction occurred despite the cells’ continued ability to respond to BMP4 and Activin A 

signals throughout this period by phosphorylating SMAD proteins (Figures S1G and S1H). 

These findings suggested that the probability of cells transitioning to the mesendodermal 

fate in response to these signals decreases over the course of ectodermal differentiation. To 

understand how this reduction of probability occurs, we next studied the dynamics of fate 

choice at the single cell level.

Individual cells lose mesendodermal competence at a sharp point along the ectodermal 
trajectory

We sought to directly measure and predict the probability of individual cells along the 

ectodermal differentiation trajectory adopting a mesendodermal fate in response to BMP4 

and Activin A. To do so, we first developed a measure of each live cell’s position along 

the developmental trajectory by choosing a low-dimensional coordinate—in this case, the 

expression levels of key genes—whose dynamics accurately report on the choice of the two 

germ layer lineages. Our recent computational work allows us to identify these key genes for 

a given lineage decision from single-cell gene expression data (Furchtgott et al., 2017; Jang 

et al., 2017; Melton and Ramanathan, 2021; Yao et al., 2017), and we have demonstrated 

the accuracy of this method for germ layer, cortical, and hematopoietic development in these 

works. For the decision between the two germ layer lineages, the genes that allow us to 

continuously monitor the progression of fate choice are the transcription factors (TFs) OCT4 

and SOX2. Further, our previous work in mouse showed that the protein levels of Oct4 

and Sox2 reflect the transitions of pluripotent cells to the mesendodermal or ectodermal 

fates (Furchtgott et al., 2017; Jang et al., 2017; Thomson et al., 2011). We validated that, 

in humans as in mouse, both OCT4 and SOX2 are symmetrically highly expressed in the 

pluripotent stem cell, but they are asymmetrically downregulated in the two lineages. OCT4 

expression is maintained in the mesendoderm while SOX2 is downregulated; in contrast, 

ectoderm differentiation involves SOX2 maintenance and OCT4 downregulation (Thomson 
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et al., 2011). Both TFs are also functionally important for these state transitions: OCT4 

downregulation is necessary for neurectoderm induction (Greber et al., 2011; Thomson et 

al., 2011), and SOX2 downregulation is required for mesendoderm fate selection (Thomson 

et al., 2011). Furthermore, direct conversion to a neural fate silences OCT4 (Thomson et al., 

2011), underscoring the fundamental nature of this reaction coordinate to the fate decision in 

question.

To monitor developmental trajectories in real time, we employed our validated hESC 

line in which one allele each of OCT4 and SOX2 had been tagged with red fluorescent 

protein (RFP) and yellow fluorescent protin (YFP), respectively, at the endogenous 

locus (Zhang et al., 2019; Figures S1I–S1K). Using flow cytometry, we followed the 

developmental trajectories of hESCs as they differentiated toward ectoderm under activin/

NODAL inhibition. When we added BMP4 and Activin A signals at an intermediate stage of 

differentiation (Figure 2A), we could visualize a bifurcation of developmental trajectories: 

the mesendoderm-competent cells adopted OCT4+ SOX2− mesendoderm-derived fates, and 

the cells that were not mesendoderm competent proceeded toward OCT4− SOX2+ ectoderm

derived fates.

Given the bimodal response of the population, we next sought to measure the probability of 

an individual cell adopting a mesendoderm-derived fate along the ectodermal differentiation 

trajectory. To do so, we performed a time-lapse experiment using the OCT4:RFP SOX2:YFP 

hESC line (Figure 2B). Because the cells in all of our experiments were grown on a 

membrane to allow the BMP4 and Activin A signals to access their basolateral receptors 

(see STAR Methods; Zhang et al., 2019), we developed a custom live-cell microscopy 

setup that was capable of imaging cells on the flexible membrane every 15 min for over 

120 h (Figure S1L). Based on the timing of mesendoderm competence loss in our flow 

cytometry experiments, we first differentiated hESCs in this apparatus for 54 h in ectodermal 

differentiation conditions to obtain a heterogeneous population in which some cells had 

lost mesendoderm competence and others had not. We then added BMP4 and Activin A 

signals for 25 h, prompting mesendoderm-competent cells to adopt mesendodermal fates 

and non-mesendoderm-competent cells to adopt ectodermal fates.

Using our time-lapse data, we demonstrated that the OCT4:RFP to SOX2:YFP ratio (OSR) 

decreased with ectoderm differentiation, that OSR was predictive of a cell’s mesendoderm 

competence, and that this measure allowed such prediction days before the expression of 

classical master regulators. We tracked individual cells from pluripotency through ectoderm

directed differentiation and subsequent BMP4 + Activin A signal (Figures 2B and S1M). 

Pluripotent cells were initially tightly localized in OSR space but downregulated OSR at 

different rates upon ectoderm differentiation. Upon addition of BMP4 + Activin A, cells 

diverged sharply over the course of 25 h into two populations: OCT4+ SOX2− mesendoderm 

(yellow cells and tracks in Figure 2B) and OCT4− SOX2+ ectoderm (blue cells and tracks 

in Figure 2B; Figure S1N). Importantly, we found that, even more so than the levels of 

the individual proteins, OSR at the moment of BMP4 and Activin A signal addition was 

predictive of the ultimate fate of the cells with high accuracy. We binned cells by OSR at 

the time of signal addition and measured the fraction of cells that eventually adopted either 

fate (Figure 2C). Each cell carried 0.78 bits of mutual information (the maximum possible 
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value being 1) about its mesendoderm competence state in its OSR at the moment of signal 

addition. Cells with a high OSR were competent to become mesendoderm in response to the 

BMP4 and Activin A signal, and cells with a low OSR were not. The final fates of only 4% 

of cells were wrongly predicted by OSR, while 16% and 8% were wrongly predicted when 

considering only OCT4:RFP or SOX2:YFP, respectively. We further investigated whether 

the cell cycle might affect mesendoderm competence (Pauklin and Vallier, 2013) and found 

that cells in our time-lapse did not show any fate bias based on their position in the cell cycle 

at the time of signal addition (p = 0.66; Figure S1O). Monitoring the dynamics of additional 

computationally identified genes (Furchtgott et al., 2017; Jang et al., 2017) along with OCT4 

and SOX2 could decrease the prediction error below 4%, but given the high accuracy of the 

prediction given OSR and the potential adverse effect on the cells with increasing numbers 

of fluorescent tags, we proceeded with the double-tagged cell line.

From our direct measurements in Figure 2C, we computed the probability of a cell adopting 

a mesendodermal fate given its OSR (Figures 2D and S1P). This probability of adopting 

a mesendodermal fate, p(mesendoderm|OSR), had a sharp transition from 1 to 0 as OSR 

decreased, indicating that there was a defined point along the developmental trajectory at 

which cells lose their mesendoderm competence.

Prospective isolation of cell populations based on mesendoderm competence using the 
OSR

Having computed p(mesendoderm|OSR) for single cells in our time-lapse, we sought to 

predict the mesendoderm competence of cells in a heterogeneous differentiating population. 

Because cells in a population differentiate asynchronously and thus downregulate OSR at 

differing rates, at any given time, t, the cells have a distribution of OSR values defined 

by p(OSR|t). The probability of a given cell with a given OSR adopting a mesendodermal 

fate after BMP4 and Activin A stimulation is p(mesendoderm|OSR), as defined in the last 

section. At the population level, the predicted fraction of cells adopting a mesendodermal 

fate upon signal addition at a particular time is obtained by p(mesendoderm|OSR) multiplied 

by the fraction of cells in the population with that OSR value, p(OSR|t), and summed over 

the OSR of all the cells (Figure 3A):

p mesendoderm|t = ∑
OSR

p mesendoderm|OSR × p OSR|t . (Equation 1)

We next reasoned that we should be able to use our ability to predict mesendoderm 

competence to prospectively isolate competent from non-competent cells from a single 

differentiating population. To this end, we measured p(OSR|t) of a population of 

differentiating hESCs using flow cytometry. Our analysis suggested that the cells in the 

high-OSR region where our computed p(mesendoderm|OSR)≈1 would be competent to 

differentiate into mesendoderm, while those in the low-OSR region where p(mesendoderm|

OSR)≈0 would not (Figure 3B). We will hereafter refer to these populations as “pre

competence loss” and “post-competence loss,” respectively. To validate our predictions, 

we sorted cells based on their OSR using fluorescence-activated cell sorting (FACS) from 

a population that had been subjected to 72 h of ectodermal differentiation (Figure 3C). 

We then added BMP4 and Activin A to the sorted populations for 24 h to compare our 
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predicted mesendoderm competence with the observed fate choice of these cells. From the 

post-competence-loss population, we obtained SOX2+ ectoderm-derived cells whose RNA 

sequencing results showed the exclusive expression of ectodermal genes (Figures 3D and 

S2G). In contrast, treatment of the pre-competence-loss population led to OCT4+ cells 

showing the expression of mesodermal and endodermal genes (Figures 3D and S2G). Given 

that pre-competence-loss cells will lose OCT4 expression and turn on PAX6 in response 

to extended activin/NODAL inhibition (Figures 1C and S1N), these cells are competent 

to form all three germ layers. Sorted populations were essentially pure, shown by counts 

of individual cells stained for OCT4 and SOX2 after treatment with mesendoderm signals 

(Figure 3E). Thus, we were indeed able to prospectively isolate individual cells at points 

before and after the loss of mesendoderm competence.

Key TF families are remodeled upon loss of mesendoderm competence

We next sought to understand how mesendoderm competence is regulated by analyzing the 

gene expression and chromatin accessibility patterns of the pre- and post-competence-loss 

cell populations. To this end, we characterized both populations using RNA sequencing 

(RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq). 

We isolated populations of pre- and post-competence cells using FACS from a single 

heterogeneous population of stem cells that had been subjected to 72 h of ectoderm 

differentiation. As a control, we reserved a small fraction of sorted cells from each 

sample that we then treated with BMP4 and Activin A to confirm the competence of 

that sorted population. We also included a third, mesendoderm-derived population produced 

by subjecting pluripotent stem cells to BMP4 + Activin A for 42 h, which allowed us to 

distinguish lineage-specific changes in expression and chromatin accessibility from changes 

that are shared by cells entering either lineage (Figure S2A). These populations displayed 

significant and concerted changes in both their RNA-seq and ATAC-seq signatures upon the 

loss of mesendoderm competence (Figure 4A).

Differential analysis of our RNA-seq data between the pre- and post-competence-loss 

populations using mesendoderm as an outgroup (see STAR Methods) showed that 544 

genes were upregulated specifically in the post-competence-loss cells, 23 of which were 

TFs (Figures 4B and S2B). We also found 673 genes (32 TFs) that were specifically 

downregulated. In particular, we observed the differential expression of TFs, such as 

SOX9, HESX1, LHX2, FOXB2, TFAP2A, TFAP2C, PKNOX2, zinc finger E-box binding 

homeobox 1 (ZEB1), ZEB2, and GBX2, along with the expected expression pattern of 

OCT4 (Figure S2C). Consistent with our earlier observation (Figures S1G and S1H), the 

differentially expressed genes did not include signaling pathway components (Figure S2D). 

Our data further showed that competence loss occurred prior to the expression of master 

regulators, such as PAX6 and SOX1 (Figure S2C) and that these cells did not display 

signatures of extra-embryonic fates (Figure S2F). The expression pattern of all TFs is plotted 

in Figures 4C and S2E. We also validated our findings with complementary analysis of 

chromatin immunoprecipitation sequencing (ChIP-seq) target enrichment (Figure S2H).

From our ATAC-seq analysis, we observed DNA accessibility peaks that showed 

reproducible, clear changes between groups, alongside many peaks that were present in 
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all samples (Figure S3A). Accessibility, as assayed by read depth, showed clear peaks at 

transcription start sites (Figure S3B). Differential analysis of our ATAC-seq data between 

the pre- and post-competence-loss populations using mesendoderm as an outgroup (see 

STAR Methods) showed thousands of regions that change accessibility between pre- and 

post-competence-loss populations. We found 2,071 regions that were more accessible after 

competence loss and 233 that were less accessible (false discovery rate [FDR] < 0.05; 

Figures 4B and S3C). We also confirmed that we could reproduce expected patterns in 

our ATAC-seq data (Figures S3D and S3E). Interestingly, we did not observe significant 

changes in accessibility at any of the Encyclopedia of DNA Elements (ENCODE)-annotated 

candidate regulatory elements of pluripotency genes, such as OCT4, SOX2, NANOG, 

KLF4, and MYC (Figure S3F).

To find TFs that potentially bind to the differentially accessible regions, we searched for 

sequence motifs that were enriched at these loci. We found more than 20 such motifs, 

many of which matched the known DNA-binding motifs of the differentially expressed 

TF families we had identified, including motifs that were similar to those bound by SOX, 

forkhead box (FOX), AP-2, AP-1, TAATTA-binding homeobox-like, PKNOX/MEIS, ZEB, 

and POU family TFs (Figure 4D), the latter of which includes OCT4 as a member. As a 

complementary analysis, we determined which known sequence motifs could best explain 

the changes in chromatin accessibility that we observed across the point of competence loss 

(Figure 4E).

We clustered the known binding motifs of the differentially expressed TFs by calculating 

a measure of similarity between each pair of motifs (see STAR Methods), and we found 

that many such TFs shared similar binding motifs (Figure 4F). These clusters correspond to 

major TF families—including the FOX, SOX, AP-2, PKNOX/MEIS, ZEB, and homeobox

like TAATTA-binding TF families—and multiple members of each family are differentially 

expressed. Each of these major TF family DNA-binding motifs was also enriched in the 

ATAC-seq analysis, indicating that the expression changes of these TFs have clear signatures 

in the chromatin accessibility data. Taken together, the gene expression and chromatin 

accessibility data revealed that a small, core set of TFs from key families are remodeled 

upon loss of mesendodermal competence (Figure S3G). Based on these results, we selected 

36 genes, composed largely of the differentially expressed TFs in our core network plus their 

paralogs (Figures S3H and S3I; see STAR Methods), for genetic perturbation studies.

Computationally identified TFs modulate mesendoderm competence along the ectodermal 
developmental trajectory

We hypothesized that perturbation of the key TFs we identified from the data in the previous 

section could modulate mesendoderm competence at the population level, p(mesendoderm|

t). Following Equation 1, such an effect could be the result of a change in ectodermal 

differentiation dynamics, measured by p(OSR|t); a change in mesendoderm competence 

along the ectodermal differentiation trajectory, measured by p(mesendoderm|OSR); or both. 

We therefore designed our analysis to measure the effects of perturbing the levels of these 

TFs both on p(OSR|t) and, more importantly, on p(mesendoderm|OSR). Thus, we were 

able to identify factors that expand or contract the window of mesendodermal competence 
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without affecting the ectodermal differentiation dynamics in the absence of mesendoderm

inducing signals.

We first tested our hypothesis with FOXB2, a strong candidate from the RNA-seq and 

ATAC-seq data (Figures 4B–4D). Using a lentiviral delivery system, we transduced cells 

with a payload of mCerulean cyan fluorescent protein (CFP) separated at its C-terminal end 

from FOXB2 by a P2A self-cleaving peptide sequence, all under the control of an EF-1α 
promoter (Figure S4A). We performed epifluorescence time-lapse imaging experiments 

with overexpression of either CFP:P2A:FOXB2 or a CFP:P2A:CFP control. Cells were 

transduced with virus and then subjected to 72 h of ectodermal differentiation, followed 

by 24 h of BMP4 + Activin A treatment. We titrated viral concentration to achieve <50% 

transduction so that each sample also contained non-transduced (CFP−) cells to serve as an 

internal control population. By tracking individual cells as in Figure 2B, we showed that 

mutual information between OSR and final fate remains high upon FOXB2 perturbation 

(Figure 5A), thus ascertaining that OSR remains a good predictor of mesendoderm 

competence.

Second, by analyzing the fate of each individual cell given its OSR at time of signal 

addition as in Figure 2D, we showed that FOXB2 overexpression significantly shifts the 

p(mesendoderm|OSR) of individual cells in such a way that mesendoderm competence is 

retained at lower OSR levels (and, therefore, further along the trajectory). This shift is 

significant in comparison to both the non-transduced internal-control cells and the same 

experiment performed with a CFP overexpression control (Figure 5B). We confirmed the 

identities of FOXB2-overexpessing populations with RNA-seq and immunofluorescence 

(Figures S5A and S5B). Thus, FOXB2 extends the mesendoderm competence window by 

increasing the probability that cells further along the ectodermal trajectory will transition to 

a mesendodermal fate if given the appropriate signals.

Third, despite changing the cells’ mesendoderm competence, FOXB2 overexpression did 

not prevent normal neuroectodermal differentiation as further assayed by N-cadherin and 

PAX6 expression in the absence of the BMP4 and Activin A signal (Figures 5C, S5B, 

and S5C). Thus, alternative fate competence can be modulated without preventing normal 

lineage progression in the absence of alternative-fate-inducing signals.

To further validate our results, we turned to flow cytometry to obtain measurements 

from a much larger number of cells at the cost of losing high time resolution tracking 

of single cells. We first validated our flow cytometry experimental design against the 

time-lapse microscopy results for FOXB2 perturbation. We seeded two parallel samples 

of pluripotent stem cell populations (Figure S4B). As with the microscopy experiment, 

both samples were transduced with the virus carrying CFP:P2A:FOXB2 at the onset 

of ectodermal differentiation. We again titrated viral concentration to achieve <50% 

transduction so that each sample had internal negative controls. After 72 h of ectodermal 

differentiation, we analyzed the first sample by flow cytometry to measure p(OSR|t) (Figure 

5D). CFP:P2A:FOXB2 expression levels had no effect on OSR at this time point (Figure 

S5D), supporting our microscopy findings that FOXB2 does not alter normal ectodermal 

differentiation (Figure 5C). We switched the second sample to media containing BMP4 + 
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Activin A for 42 h and assayed the final fate fractions by flow cytometry. We confirmed 

that our non-transduced control cells had produced about 50% OCT4:RFP+ SOX2:YFP− 

mesendoderm-derived cells and 50% OCT4:RFP− SOX2:YFP+ ectoderm-derived cells 

after signal addition. In contrast, a larger fraction of FOXB2-overexpressing cells than 

control cells took on a mesendoderm fate, as measured by OCT4+/SOX2− flow cytometry 

(Figure 5E). By using the measured mesendoderm fraction and p(OSR|t), we computed 

p(mesendoderm|OSR) using Equation 1. We assumed that the width parameter of the 

p (mesendoderm |OSR) sigmoid is similar to what we measured directly in our earlier 

time-lapse experiments both under perturbation and in wild type (Figures 2D and 5B). 

We confirmed that our results hold for wide ranges of this width parameter, so our 

conclusions would be robust even to substantial errors in this estimate (Figure S5F). The 

calculated p(mesendoderm|OSR) from this flow cytometry analysis confirmed that FOXB2 

increases mesendoderm competence by shifting the OSR value at which p(mesendoderm|

OSR) dropped to near zero (Figure 5F), consistent with the live time-lapse data (Figure 5B).

We similarly performed this lentiviral overexpression and flow cytometry experiment for 

all 36 candidate TFs to determine each candidate’s effect on p(OSR|t) and p(mesendoderm|

OSR). Each perturbation was compared to its own internal control and to a control 

transduction of CFP:P2A:CFP (Figures 5B and S4C). We carried out flow cytometry 

analyses as described above, assuming for all perturbation conditions (as shown to be true 

for FOXB2) that (1) OSR remains a predictive coordinate of mesendoderm competence 

(Figures 2C and 5A), (2) OCT4 and SOX2 levels after 42 h of BMP4 + Activin A 

stimulation remain indicative of mesendoderm or ectoderm fates (Figures 1C, 3D, 5E, 

S1A–S1E, and S5A), and (3) single-parameter fitting of p(mesendoderm|OSR) is robust 

(Figures 2D, 5B, 5F, and S5F). For several key candidates, we confirmed cell fates with bulk 

RNA-seq and antibody staining (Figures S5A, S5B, and S5G) and ruled out differential cell 

death as a confounder (Figure S5H).

Overexpression of certain candidates principally affected p(mesendoderm|OSR), the point 

at which the cells’ competence for adopting the fate is lost. For example, overexpression 

of JUNB or POU2F3, like FOXB2, increased mesendoderm competence by shifting 

p(mesendoderm|OSR) (Figure 5G). In contrast, other candidates affected progression along 

the developmental trajectory, captured by p(OSR|t). For example, overexpression of SOX9 

facilitated movement along the developmental trajectory, thereby shifting the distribution of 

p(OSR|t) toward the ectodermal fates (Figure S4D). In contrast, overexpression of TFAP2C 

hindered movement along the developmental trajectory, thereby shifting p(OSR|t) toward the 

pluripotent state (Figure S4D). We concluded that these candidates tuned fate competence 

by changing cellular position along the developmental trajectory.

Notably, several candidates in our network (Figure S3G) impacted competence by 

tuning p(mesendoderm|OSR) and p(OSR|t) independently of one another (Figures 5H 

and S4C). For example, although overexpression of FEZF1 and TFAP2A both shifted 

p(OSR|t) toward the pluripotent state, they shifted p(mesendoderm|OSR) in opposite 

directions. The outcomes seen upon overexpression of FEZF1, TFAP2A, OTX2, and 

GRHL1 together represent all four possible combinations of directional shifts in p(OSR|

t) and p(mesendoderm|OSR). Thus, our candidates independently tuned p(OSR|t) and 
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p(mesendoderm|OSR), thereby separately modulating ectoderm differentiation dynamics 

and mesendoderm competence.

DISCUSSION

Our findings show that genetic perturbations can directly modulate the competence for 

mesendoderm fate along the trajectory. Several candidates that confer mesendoderm 

competence (such as POU2F3, JUNB, TFAP2A, and TFAP2C) decrease in expression upon 

competence loss, and several candidates that promote competence loss (such as OTX2) show 

the opposite expression pattern. These patterns suggest that these candidates may have a role 

in the endogenous gene regulatory network (GRN) of mesendoderm competence. FOXB2 

is one example of a candidate that confers mesendoderm competence but whose expression 

levels increase upon competence loss. How the effects of these endogenous expression 

dynamics contrast with overexpression prior to competence loss remains to be explored.

Our finding that competence for an alternative fate can be modulated suggests possible 

evolutionary and developmental consequences. During the patterning of the mammalian 

epiblast, for example, the progenitors are generated along the primitive streak as it 

extends anteriorly from the posterior end of the epiblast. We speculate that changing the 

dynamics of epiblast competence loss anterior to the primitive streak could be a possible 

mechanism for tuning the length and extent of the streak. Further investigation of the role of 

competence modulation during mammalian gastrulation could be an important element in a 

full description of this important process. More broadly, the regulation of competence could 

tune relative tissue sizes during any given cellular decision.

Our findings also highlight the importance of understanding how the competence is 

modulated to control the variability of cell fate decisions seen in vitro. Our approach 

of prospectively identifying pre- and post-competence-loss populations for molecular 

characterization was possible through monitoring the dynamics of reaction coordinates 

for the early germ layer fate decisions. Such an approach can be broadly applied to any 

fate decision by monitoring the dynamics of specific genes that serve as accurate reaction 

coordinates for that decision. We indeed have had success in identifying such genes for 

a wide range of lineage decisions (Furchtgott et al., 2017; Jang et al., 2017). In sum, 

understanding how competence is tuned will be crucial for elucidating the dynamics of 

mammalian embryonic patterning during development and the dynamics of fate decisions of 

multipotent cells.

STAR ★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Sharad Ramanathan 

(sharad@cgr.harvard.edu).

Materials availability—Plasmids generated in this study will be shared by the lead 

contact upon request. No new cell lines were generated in this study.
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Data and code availability

• ATAC-seq and RNA-seq data have been deposited at GEO and are publicly 

available as of the date of publication. Accession numbers are listed in the key 

resources table. Microscopy data reported in this paper will be shared by the lead 

contact upon request.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication underhttps://doi.org/10.5281/zenodo.5516285.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—H1 human embryonic stem cells (WiCell ID WA01, male) and SOX2:YFP/

OCT4:YFP double tagged stem cells were grown at 37°C in STEMCELL mTeSR 1 media. 

The SOX2:YFP/OCT4:YFP double tagged cells are of H1 background; pluripotency and 

karyotyping were performed in Zhang et al. (2019).

METHOD DETAILS

Cell lines—We conducted our experiments using WA01 (H1, WiCell) human embryonic 

stem cells. We also used an H1 cell line in which both OCT4 and SOX2 were tagged 

with fluorescent proteins as previously described (Zhang et al., 2019). In these cells, one 

endogenous copy of OCT4 was replaced with OCT4:tdTomato followed by an internal 

ribosomal entry site and a neomycin resistance gene to allow for selection, and one 

endogenous copy of SOX2 was replaced with SOX2:FLAG:Citrine:P2A:PuroR.

Cell culture—hESCs were cultured in 6-well tissue culture dishes treated with Matrigel 

(Corning 354277) and supplied with mTeSR media (STEMCELL Technologies 85850) 

according to the manufacturer’s specifications. For routine culture, we passaged by washing 

with phosphate buffered saline (PBS) followed by ReLeSR (Stem Cell) treatment according 

to the manufacturer’s instructions. Cells were passaged in clumps of 8–10 cells and 

seeded in mTeSR supplemented with the Rho-associated protein kinase inhibitor γ-27632 

(STEMCELL Technologies 04-0012) at 10 μM for the first 24 hours to improve survival. All 

cell lines used were routinely tested for mycoplasma contamination.

For all experiments, we seeded cells using colony passage at a density of about 60,000 

cells/cm2 on polyester membrane filters (Sterlitech PET3025100) with 3 μm pores that had 

been treated with Matrigel. We note that many cells seeded into the well attach to the plate 

rather than to the membrane, so the final effective density is somewhat less than the seeded 

cell count would otherwise indicate. We chose polyester membrane filters as a substrate to 

allow all cells to receive the BMP4 and Activin A signals we added to the media. TGF-β 
superfamily receptors, such as those for BMP4 and Activin A, are localized basolaterally in 

epithelial stem cell colonies and in vivo in the epiblast, so they are insulated from ligands 

in the apical media or luminal fluid (Etoc et al., 2016; Zhang et al., 2019). Typical tissue 

culture conditions allow for only the cells on the edge of the colony to receive signals, but 
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growing cells on a membrane allows all cells in a colony access to the BMP4 and Activin A 

ligands.

For live cell imaging, membranes were glued to a custom 300 μm thick stainless-steel 

washer with Cytoseal 60 (Thermo Fisher), allowed to dry, sterilized with washes in 70% 

ethanol and with UV treatment, then treated with Matrigel for cell seeding.

Differentiation conditions—Differentiation toward the ectoderm lineage was effected 

using mTeSR supplemented with 0.5 μM A83-01 (R&D Systems 2939), a small molecule 

inhibitor of Activin and Nodal signaling. BMP4 + Activin A treatment was accomplished 

by treating cells with mTeSR supplemented with 3 ng/mL recombinant human BMP4 

protein (R&D Systems 314-BP) and 100 ng/mL recombinant human Activin A protein 

(R&D Systems 338-AC). As endogenous concentrations of these molecules in the embryo 

are not known, concentrations were chosen to be consistent with literature reports of 

conditions that reliably and efficiently generate mesendoderm-derived fates (Loh et al., 

2014). For neurectoderm-directed differentiation, we inhibited BMP signaling with 0.5 μM 

LDN-193189 (R&D Systems 6053) in addition to Activin/Nodal inhibition with 0.5 μM 

A83-01 for 144 hours.

Flow cytometry—Cells were washed with PBS (Lonza) and removed from membranes 

by treatment with Accutase (Innovative Cell Technologies AT104-500) until the cells were 

dissociated, about 20 minutes. Cells were analyzed on an LSRFortessa (BD Biosciences).

Fluorescence activated cell sorting—Accutase-dissociated cells were sorted using a 

BD Aria III (BD Biosciences) using a 100 μm nozzle. Cells were gated such that the 

pre-competence-loss population was taken as the cells with the top 10%–15% OCT4:RFP 

to SOX2:YFP ratio, and the post-competence-loss population was the bottom 10%–15% 

OCT4:RFP to SOX2:YFP ratio. We sorted around 250,000 cells per subpopulation in a 

typical experiment. Populations were sorted into 1.5 mL centrifuge tubes (Eppendorf) filled 

with 500 μL of mTeSR supplemented with 10 μM γ-27632; by the end of the sort, ~800 μL 

of sheath and sorted cells had been added to each tube. After the sort had completed, we 

pelleted the cells in a microcentrifuge at 250 ×g for 3 minutes, then resuspended in PBS.

For each sorted sample, about 10% of the sorted cells were reserved for competence testing 

to confirm the pre-/post-competence-loss status of the sorted population. These cells were 

seeded back into glass-bottom 24-well plates (Ibidi) treated with Matrigel and filled with 1 

mL of mTeSR supplemented with γ-27632 and allowed to recover for 3 hours. The media 

was then changed to mTeSR supplemented with BMP4 and Activin A for 36 hours. Cells 

were fixed and stained for OCT4 and SOX2 according to the protocols described under 

“Immunofluorescence.”

RNA-seq—Total RNA was prepared from sorted or dissociated cells with an RNeasy Mini 

Kit (QIAGEN 74004) according to the manufacturer’s instructions. For the mesendoderm

derived outgroup samples, the input to the RNA extraction kit was a cell population 

directly after dissociation with Accutase; for FACS sorted populations, the input was sorted 

cells suspended in PBS. RNA integrity was quantified with a TapeStation 4200 (Agilent). 
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All RINe scores were ≥ 9.9. Sequencing libraries were prepared by the Bauer Core at 

Harvard University using a Kapa mRNA Hyper Prep kit (Roche 07962363001) with Poly-A 

selection. Sequencing was performed on a NextSeq High output flow cell that generated 

paired-end 38bp reads. We obtained ≥ 42M reads per sample. Each group had n = 4 

biological replicates, except for the mesendoderm group, which had n = 3, and the samples 

for confirming fate identity, which had n = 1.

ATAC-seq—ATAC-seq was performed as previously described (Buenrostro et al., 2015). 

Briefly, live cells were lysed and incubated with Tn5 transposase for 30 min at 37°C. 

After DNA purification, samples were amplified for the appropriate number of cycles as 

determined by qPCR to minimize PCR bias. Sequencing was performed by the sequencing 

core at Massachusetts General Hospital. We obtained ~100M mapped paired-end reads per 

sample. Each group had n = 3 biological replicates.

Plasmid construction—Overexpression targets were subcloned from plasmids available 

through the Harvard PlasmID database, where available. Other targets were cloned from 

complementary DNA (cDNA) libraries.

To prepare cDNA libraries for cloning, we differentiated human stem cells for 72 hours in 

mTeSR + 0.5 μM A8301 and extracted RNA with an RNeasy Mini Kit (QIAGEN) according 

to the manufacturer’s instructions. We then performed first strand cDNA synthesis using 

SuperScript II Reverse Transcriptase (Thermo Fisher). We amplified the relevant cDNAs 

using Phusion polymerase (NEB) or Kapa HiFi (Kapa Biosystems). The OCT4 DNA 

binding domain and the SOX2 DNA binding domain (OCT4DBD and SOX2DBD) were 

amplified from cDNA. The OCT4DBD consisted of amino acids 131–296 of OCT4A (NCBI 

reference sequence: NM_002701.5). The SOX2DBD consisted of amino acids 37–117 of 

SOX2 (NCBI reference sequence: NM_003106.3). All cDNA-amplified clones were fully 

sequence confirmed by Sanger sequencing (Genewiz).

We constructed a vector from the second-generation lentiviral transfer backbone pWPXL 

with an EF-1α promoter. pWPXL was a gift from Didier Trono (Addgene plasmid #12257; 

http://addgene.org/12257; RRID:Addgene_12257). We joined sequences for fluorescent 

protein mCerulean (CFP) and 2A peptide P2A (a ribosomal skip sequence) with Q5 (NEB 

M0491) fusion PCR and added them to the pWPXL vector with Gibson Assembly Master 

Mix (NEB E2611). We then constructed final transfer vectors by inserting target cDNA 

after the P2A using Gibson assembly. All constructed vectors were sequence confirmed at 

Gibson assembly junctions by Sanger sequencing (Genewiz) prior to use. Lentiviral transfer 

plasmids were grown and stored in NEB Stable E. coli (NEB C3040).

Lentiviral overexpression and flow cytometry analysis—To produce virus, we 

used jetPrime (Polyplus 114) according to the manufacturer’s instructions to transfect 

Lenti-X HEK293T cells (Takara) with lentiviral production plasmids pMD2.G and psPAX2 

along with our individual transfer plasmids. pMD2.G and psPAX2 were gifts from 

Didier Trono (Addgene plasmid #12259; http://addgene.org/12259; RRID:Addgene_12259; 

Addgene plasmid #12260; http://addgene.org/12260; RRID:Addgene_12260). We collected 
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viral media at 24 and 48 hours and concentrated using Lenti-X Concentrator (Clontech 

631231) according to the manufacturer’s instructions.

We seeded human stem cells in mTeSR medium containing γ-27632 on Matrigel-treated 

membrane filters as described above. We treated cells with 1x and 3x viral titer at 24 hours 

and 48 hours post-seeding, respectively, in order to obtain transduction efficiency of ~10%. 

1x viral treatment was performed simultaneously with the beginning of A83-01 treatment.

Two samples of each overexpression condition were performed in parallel. We harvested 

cells of one sample after 72 hours of treatment with A83-01 and the cells of the second 

sample after 72 hours of A83-01 followed by 42 hours of BMP4 + Activin A treatment. We 

analyzed each sample immediately after harvest using an LSRFortessa (BD Biosciences).

We analyzed differential OCT4:RFP to SOX2:YFP ratio distributions between CFP-positive 

and CFP-negative populations of each 72 hour sample by calculating the Kullback

Leibler divergence in MATLAB. To determine differences in proportions of end fates 

(OCT4:RFP+/SOX2:YFP− and OCT4:RFP−/SOX2:YFP+), we manually gated ectoderm 

and mesendoderm populations using a custom MATLAB script and used identical gates for 

both CFP-positive and CFP-negative populations. In some samples, the SOX2: YFP reporter 

was silenced in a small fraction of the cells, and we excluded such cells from our analysis. 

We performed at least 3 biological replicates for all candidates that showed an initial 

phenotype except for SOX2, AHR, ARNT2, and GBX2, each of which had two replicates. 

Significance compared to the CFP-overexpressing negative control was determined using a 

two-sided t test, and we controlled the FDR at 10% across the set of all candidates using the 

method of Benjamini and Hochberg (1995).

Immunofluorescence—Cells were fixed with 4% formaldehyde for 15 min at room 

temperature. Fixed cells were treated with blocking buffer (PBS + 5% normal donkey 

serum + 0.3% Triton X-100) for 1 h, then overnight at 4°C with primary antibody 

diluted in staining buffer (PBS + 1% BSA + 0.3% Triton X-100). The following primary 

antibodies were used: OCT4 (1:400, Cell Signaling C30A3); SOX2 (1:400, Thermo Fisher 

14-9811-82); SOX17 (1:100, R&D Systems AF1924); phosphorylated SMAD1/5/9 (1:200, 

Cell Signaling 12428); phosphorylated-SMAD2 (1:200, Cell Signaling 18338); PAX6 

(1:200, DSHB PAX6); and NANOG (1:500, R&D Systems AF1997), N-cadherin (1:200, 

Cell Signaling 13116). The PAX6 antibody was deposited to the DSHB by Kawakami, A. 

(DSHB Hybridoma Product PAX6). After overnight incubation, samples were washed three 

times with PBS, then secondary antibodies diluted in staining buffer were added. We used 

the following secondary antibodies all at a dilution of 1:1000: donkey anti-rabbit Alexa 

568 (Thermo Fisher), donkey anti-rat Alexa 488 (Thermo Fisher), donkey anti-mouse Alexa 

647 (Thermo Fisher), and donkey anti-goat Alexa 647 (Thermo Fisher). We incubated with 

a 300 nM DAPI (Thermo Fisher) solution in PBS for 5 minutes to visualize DNA. For 

analysis of the resulting images, we used CellProfiler 3.1.8 (McQuin et al., 2018) to segment 

well-separated nuclei for samples where automated segmentation performed well (Figure 

2A). For more challenging images, we used Fiji to determine object centers and typical cell 

or nucleus size. We then used MATLAB (Mathworks) to integrate fluorescence over objects 

(Figures 1, 5, S1, and S5).
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ATAC-seq analysis—Reads were trimmed using NGmerge 0.2_dev in adaptor removal 

mode with minimum overlap (-e flag) set to 20 to remove any remaining adaptor sequence. 

Reads were aligned to the hg38 build of the human genome using bowtie2 2.2.9 using 

the -very-sensitive preset and with a maximum fragment size of 2000, then collated with 

samtools 1.9. Duplicate fragments were removed with picard 2.8.0. Peaks were called with 

MACS2 2.1.1 in callpeak -f BAMPE mode. Differentially accessible peaks were identified 

using the Bio-conductor package DiffBind 2.12.0 in R 3.6.1. Peaks were annotated by 

genomic region type using ChIPSeeker 1.20.0.

For differential accessibility analysis with DiffBind and DESeq2, we used a design matrix 

with a “sample” column, which indicated the well from which the cells had been sorted 

(since each pair of pre- and post-competence-loss samples was derived from a single 

population sorted by FACS), and a “competenceloss” column, which was 1 for the post- 

competence-loss population and 0 for the pre-competence-loss and mesendoderm-derived 

populations. Thus, we identified regions that changed specifically with competence loss 

while controlling for original sample identity.

The primary DNA sequences of differentially accessible peaks were retrieved from Ensembl 

and examined for motifs using MEME-ChIP 5.0.3 (Machanick and Bailey, 2011). ATAC-seq 

read depth was modeled as a function of known motif presence using chromVAR 1.4.1 

(Schep et al., 2017). Significant motif matches were identified with FIMO 5.0.3. For the 

gene regulatory network, possible associations between genomic regions and target genes 

were identified using CisMapper 5.0.5. The full list of human TFs and the motifs for each 

TF were extracted from the list in Lambert et al. (2018). Mutual information between pairs 

of motifs was calculated with a custom python script.

Enrichment of functions of genes near differentially accessible genomic regions was 

performed using the web interface of GREAT (McLean et al., 2010) in June 2019.

RNA-seq analysis—Reads were pseudoaligned using kallisto 0.45.1 (Bray et al., 2016) 

to transcripts from the human genome build hg38. Abundance estimates for each gene 

were output with sleuth 0.30.0. Differentially expressed genes were identified using DESeq2 

1.24.0 (Love et al., 2014) on R 3.6.1. For analysis with DESeq2 when comparing pre- and 

post-competence-loss populations, we used a design matrix with a “sample” column, which 

indicated the well from which the cells had been sorted and a “population” column, which 

indicated the pre- or post-competence-loss state. For comparison of pre-competence-loss 

and mesendoderm-derived populations, our design matrix contained sequencing batch and 

pre-competence-loss or mesendoderm-derived population identity.

For clustering the motifs of differentially expressed transcription factors, similarity between 

each pair of motifs was quantified as the Kullback-Leibler divergence of the product 

of the two motifs from a reference distribution, which was the product of two uniform 

motifs (0.25 probability for each base at each position). Motif alignment was performed by 

calculating the aforementioned divergence at each possible offset and using the maximum 

value obtained at any offset. This calculation was performed using a custom python script. 
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The linkage was computed using the scipy.cluster.hierarchy.linkage function from scipy 

1.3.0 with the “average” clustering method and the “braycurtis” distance.

ChIP-seq target set enrichments were calculated using the Enrichr (Kuleshov et al., 2016) 

web interface in July 2019. GO term enrichment was calculated using the PANTHER (Mi et 

al., 2019) web interface in July 2019.

For bulk RNA-seq comparison with ENCODE samples, the Pearson correlation 

coefficient between samples was calculated with Pandas (1.1.0) and hierarchical clustering 

performed with seaborn (0.10.1). Correlations were calculated based on the expression 

levels in units of TPM of all human genes labeled with Gene Ontology term 

0003700 (GO:0003700), “DNA-binding transcription factor activity.” The ENCODE 

accessions and short descriptions for the samples used for comparison were as follows: 

ENCFF034KRQ, ectoderm; ENCFF044YLS, mesendoderm; ENCFF081JBX, neural; 

ENCFF145AQN, neural progenitor; ENCFF183XSM, neuronal stem; ENCFF290ZZQ, 

neural crest; ENCFF342LYI, trophoblast; ENCFF419KMW, ectoderm; ENCFF425FGL, 

excitatory neuron; ENCFF466QUZ, mesendoderm; ENCFF483MRL, excitatory neuron; 

ENCFF567GQW, neural progenitor; ENCFF663ARH, neural progenitor; ENCFF672VVX, 

neural progenitor; ENCFF684BKA, neural crest; ENCFF699LBP, ectoderm; 

ENCFF760HDK, trophoblast; ENCFF789VZB, neuronal stem cell; ENCFF813LWT, neural 

cell. Figure 3D uses the mesendoderm samples ENCFF044YLS and ENCFF466QUZ and 

the ectoderm samples ENCFF538XVQ and ENCFF034KRQ.

Overexpression candidate selection—We selected TFs by incorporating information 

from both RNA-seq and ATAC-seq analyses. We began with all TFs that were differentially 

expressed between the pre- and post-competence-loss populations (q < 0.05 with DESeq2). 

A gene was considered to be a TF if it was so annotated in Lambert et al. (2018). We then 

limited this list only to those that were expressed in a lineage-specific pattern and had above

background expression levels in at least one of the three populations. We defined genes with 

a lineage-specific expression pattern as those genes that (1) were differentially expressed 

between pre- and post-competence-loss populations and (2) either were not differentially 

expressed from the pre-competence-loss to mesendoderm populations or were differentially 

expressed in the opposite direction (upregulated from pre- to post- and downregulated from 

pre- to mesendoderm, or vice versa). By these criteria, 23 TFs were specifically upregulated 

with competence loss and 32 were specifically downregulated with competence loss. We 

also added select paralogs of the TFs that passed our expression pattern cutoffs: POU6F1, 

GRHL1, POU2F3, and FOXJ2, along with the OCT4 and SOX2 DNA binding domains 

(OCT4DBD and SOX2DBD). We further restricted the list to those candidates that had a 

known, high-quality DNA binding motif that appeared in either the DiffBind/MEME-ChIP 

or chromVAR analyses of our data. We also added four TFs (OTX2, JUNB, ZSCAN23, and 

GSC) whose motifs appeared in our ATAC-seq analyses but did not pass our differential 

expression cutoffs. We excluded ZEB1 and ZEB2 as candidates because their size precluded 

delivery by lentivirus. We also eliminated 10 TFs for which a clone was not readily 

accessible to us, either from the Harvard PlasmID database, Addgene, or genes that had 

previously been cloned from cDNA in our lab. We note that one candidate that was tested 

before all RNA-seq analysis was complete, MBNL2, missed significance cutoffs in the final 
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analysis but is nevertheless included for completeness. After adding three candidates based 

on the literature (NRF2, ZNF521, and ID2), we were left with 36 candidates in total.

Epifluorescence imaging of fixed samples—Samples were imaged on a Zeiss 

AxioObserver Z1 inverted microscope using Zeiss 10× and 20x plan apo objectives (NA 

1.3) using the appropriate filter sets. Images were acquired using an Orca-Flash 4.0 CMOS 

camera (Hamamatsu). The 43 HE DsRed/46 HE YFP/47 HE CFP/49 DAPI/50 Cy5 filter 

sets from Zeiss were used. The microscope was controlled using the ZEN software.

Live cell time-lapse imaging—Samples were imaged on a Zeiss AxioObserver Z1 

inverted microscope using a Zeiss 20x plan apo objective (NA 0.8) using the appropriate 

filter sets and a Hamamatsu ImagEM EMCCD camera. Cells were maintained in a 37 degree 

incubation chamber at 5% CO2. Cells were imaged every 15 minutes. Focus was maintained 

using a combination of Zeiss Definite Focus and, using a custom script in MicroManager 

2.0 beta (Edelstein et al., 2014), software autofocus adjustments every hour to compensate 

for slight movement of the membrane. For maximum accuracy, cells in this time-lapse 

were tracked manually in Fiji (Schindelin et al., 2012) (Figure 2B, n = 40; Figure 5B, 

FOXB2 transduced, n = 40; Figure 5B FOXB2 nontransduced controls, n = 30; Figure 5B 

CFP transduced, n = 32; Figure 5B CFP nontransduced controls, n = 44), and the tracks 

were analyzed with a custom python script that performed illumination profile correction. 

All mitotic events were captured because we were imaging nuclear transcription factors. 

Occasionally, a cell track could not be resolved confidently from the beginning to the end of 

the time-lapse, and any such tracks were truncated to cover only the high-confidence portion 

of the track.

Confocal imaging—For Figures 1 and S1, cells were imaged on a Leica inverted 

microscope with a Zeiss 20x objective (NA 0.8) with the appropriate filter sets. Detection 

was performed with photomultiplier tubes (for detection of Alexa 488 and Alexa 647) and a 

Leica HyD Photon Counter (for Alexa 568). For Figure S5C, cells were imaged on a Zeiss 

LSM 880 with Airyscan using a Zeiss 20x objective (NA 0.8). Detection was performed 

with photomultiplier tubes (Alexa 568 and Alexa 647) and a GaAsP detector (CFP and 

Alexa 488).

p(mesendoderm|OSR) curve fitting and location inference—For the initial 

p(mesendoderm|OSR) curve fitting to the single cell data extracted from the time

lapse, we fit a two-parameter sigmoid function 1
1 + exp −a x − b  to the data using 

scipy.optimize.curve_fit to minimize the squared difference between data and prediction. We 

used the learned sigmoid shape parameter, a = 8.38, from Figure 2D for all p(mesendoderm|

OSR) inference in Figures 5, S4, and S5. To infer p(mesendoderm|OSR) for a given 

population, we fit the location parameter, b, by minimizing the squared difference between 

the observed final mesendoderm fate proportion and the mesendoderm proportion predicted 

by p(mesendoderm|OSR) at varying locations, b, given the observed p(OSR|t).
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Ethical compliance—We used hESCs in accordance with approvals by Harvard 

University IRB (protocol #IRB18- 0665) and Harvard University ESCRO (protocol 

E00065).

QUANTIFICATION AND STATISTICAL ANALYSIS

N-values in Figures 1D (n = 3), 3E (n = 3), 4A (n = 3, mesendoderm; n = 4, all other 

samples), 4B (n = 3, RNA mesendoderm outgroup; n = 4, all other RNA samples; n = 

3, ATAC-seq samples), 5C (n = 3), 5F (n = 4), 5G (n = 3), 5H (n = 3), and S4C (n = 

4) refer to biological replicates. Error bars represent standard deviation unless otherwise 

noted. N-values in figure captions 2B and 5B (n = 40, FOXB2-transduced cells; n = 

30, FOXB2 internal control; n = 32, CFP transduced cells; n = 44, CFP non-transduced 

controls) refer to number of cells tracked in each time-lapse condition. Three biological 

replicates of up to 10,000 cells were performed for analysis of each genetic perturbation in 

Figures 5 and S4. Biological replicate numbers can be found in figure captions as well as 

RNA-seq Method details, ATAC-seq Method details, and Lentiviral overexpression Method 

details. We collected as many independent biological replicates and sample sizes as are 

consistent with standard practice in the field. No formal power calculation was performed 

and standard statistical tests were used through out. No data were excluded, except in Figure 

S4 where three candidate TFs that had the effect of making cells adopt a non-ectoderm, 

non-mesendoderm fate were excluded as described in the Figure S4 caption.

For p(mesendoderm|OSR) curve fitting to the single cell data extracted from the time-lapse 

in Figure 2D, we fit a two-parameter sigmoid function 1
1 + exp −a x − b  to the data using 

scipy.optimize.curve_fit to minimize the squared difference between data and prediction. We 

used the learned sigmoid shape parameter, a = 8.38, from Figure 2D for all p(mesendoderm|

OSR) p(mesendoderm|OSR) inference in Figures 5, S4, and S5. To infer p(mesendoderm|

OSR) for a given population, we fit the location parameter, b, by minimizing the squared 

difference between the observed final mesendoderm fate proportion and the mesendoderm 

proportion predicted by p(mesendoderm|OSR) at varying locations, b, given the observed 

p(OSR|t). In Figures 4B and S2B, we analyzed Z-scores in order to compare distance in 

RNaseq and ATACseq reads from the mean. Heatmaps in S2C and S2D are normalized 

by maximal expression observed in each row or 10 transcripts per kilobase million (TPM), 

whichever was greater. In Figures 4C and S2E, we analyzed differential expression of 

transcription factors using a significance cutoff of q < 0.05 as calculated by DESeq2. In 

Figure S2F, values are shown as Z-score after normalization to TPM. In S2F and S5A, 

matrices show the Pearson correlation between each pair of samples. Figures S3A, S3E, 

and S3F show normalized ATAC-seq read depth. In Figure S4C, divergence of distributions 

was calculated with Kull-back-Liebler divergence and significance was reported if false 

discovery rate <0.1. Details for statistical analysis can also be found in the corresponding 

figure captions and, when referenced, in Method details. The statistical tests used are 

standard in the field and consistent with a large body of literature both in biology, other 

sciences and statistics.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mesendoderm competence of human embryonic stem cells is predicted by 

OCT4:SOX2 levels

• Mesendoderm competence window closes sharply at a point along the 

ectoderm trajectory

• Analysis of DNA accessibility and expression data reveals underlying gene 

network

• Perturbation of predicted genetic factors changes the mesendoderm 

competence window
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Figure 1. Stem cells lose competence to adopt mesendodermal fates upon BMP4 and Activin A 
signal exposure with increasing duration of activin/NODAL inhibition
(A) Schematic of a Waddington landscape illustrating the ectoderm (blue) or mesendoderm 

(yellow) fate choice. In this picture, the competence of a cell to produce mesendoderm 

depends both on the cell’s location along the ectodermal developmental trajectory and on the 

position of the barrier between the two fates.

(B) hESCs choose the ectodermal lineage in response to activin/NODAL inhibition and 

mesendodermal lineages in response to BMP4 + Activin A.

(C) Fluorescence images of immunostained hESCs that were exposed to a pretreatment 

of activin/NODAL inhibition for 24, 72, or 144 h and then treated with 24 or 48 h of 

BMP4 + Activin A treatment. Increasing duration of activin/NODAL inhibition reduced 

the population’s competence to produce BRACHYURY(T)+ mesendoderm and SOX17+ 

endoderm and, more broadly, OCT4+ (yellow) SOX2− (blue) mesendoderm-derived cell 

types. The spatial structures seen here largely appear after BMP4 and Activin A signal 
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induction and are likely due to a combination of local density impacts on ectoderm

directed differentiation rate and homophilic interactions between cells. After 144 h of 

activin/NODAL inhibition, cells become SOX2+, PAX6+ neuroectoderm (bottom). Cells in 

pluripotent state do not express T, SOX17, or PAX6. Scale bar represents 100 μm.

(D) Bar graph of the fraction of cells adopting mesendodermal fate in response to BMP4 

+ Activin A after 24–144 h of pretreatment with activin/NODAL inhibition (see STAR 

Methods). At the population level, the competence to choose mesendodermal fates in 

response to these signals decreases as the duration of prior ectodermal differentiation 

increases. Error bars: SD (n = 3).
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Figure 2. Dynamics of OCT4 and SOX2 accurately predict mesendoderm competence
(A) Contour plots of flow cytometry data showing levels of OCT4:RFP and SOX2:YFP, 

each normalized to its mean level in the hESC population. hESCs (green) downregulate 

OCT4:RFP after 72 h of ectodermal differentiation (purple). After a subsequent 42 

h of BMP4 + Activin A stimulation, the cells in this purple population bifurcate: 

the mesendoderm-competent fraction chooses a mesendodermal fate (yellow), while the 

remainder continues to become ectoderm (blue).

(B) Top: snapshots from a time-lapse microscopy experiment of a field of hESCs showing 

endogenous OCT4:RFP (yellow) and SOX2:YFP (blue). Cells started in pluripotency 

conditions are shown. Ectodermal differentiation began at t = −54 h. At t = 0 h, activin/

Nodal inhibition was removed and BMP4 + Activin A signals were added (see STAR 

Methods); experiment ended at t = 25 h. Scale bar represents 100 μm. Bottom: plot of the 

log of the OCT4:RFP to SOX2:YFP fluorescence ratio (OSR) in individual cells through the 

time course above is shown. Time traces of cells are colored by their assigned fate at the end 

of the experiment: mesendoderm (ectoderm) in yellow (blue). Displayed: n = 40 cell tracks.

(C) Histogram of the log OSR from (B) shown at the time of signal addition (t = 0 h) and at 

the end of the experiment (t = 25 h). Histograms corresponding to cells adopting an eventual 

mesendodermal (ectodermal) fate at the end of the time course are in yellow (blue). The 

mutual information between the OSR at the moment of signal addition and the final fate 

choice is 0.78 bits.
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(D) Plot of the probability of a single cell adopting a mesendoderm-derived fate given OSR, 

p(mesendoderm|OSR), calculated from time course in (B). Black line, mean; gray, 1 SD (see 

STAR Methods). Green bar, mean value ± SD of OSR in pluripotent stem cells. Each dot 

represents one cell.
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Figure 3. Prospective isolation of cell populations based on mesendoderm competence
(A) The fraction of cells predicted to adopt mesendodermal fate in response to BMP4 + 

Activin A at given time t, p(mesendoderm|t), equals the sum over OSR of the probability 

of adopting mesendodermal fate given OSR, p(mesendoderm|OSR), times the probability 

distribution of OSR in the population at that given time, p(OSR|t).
(B) Plot of p(OSR|t) as a function of OSR for the populations in Figure 2A shown using the 

following colors: pluripotent stem cells (green); 72 h of ectodermal differentiation (purple); 

and ectodermal population (blue). p(mesendoderm|OSR) (black curve; see STAR Methods) 

is overlayed on the same plot (right y axis). p(OSR|t) moves leftward as cells differentiate. 

The cells in the purple population corresponding to the region with p(mesendoderm|OSR) = 

1 are predicted to be mesendoderm competent, while the cells where p(mesendoderm|OSR) 

= 0 are predicted not to be.

(C) (Top) FACS density plot for a cell population at t = 72 h of activin/NODAL inhibition. 

Overlaid on the plot are the FACS gates used to sort subpopulation “post,” predicted to have 

lost mesendoderm competence, and subpopulation “pre,” predicted to retain mesendoderm 

competence. (Bottom) Histogram shows the same data in (top) with OCT4:RFP and 

SOX2:YFP collapsed into one vector, OSR.

(D) Competence testing of pre and post populations FACS sorted as in (C). Sorted 

populations were treated with 24 h of BMP4 + Activin A and analyzed with bulk 

RNA-seq. As expected, the post-competence-loss population formed ectodermal cell types 

that expressed SOX2, OTX2, and PAX6. The pre-competence-loss population formed 

mesendodermal cell types that expressed OCT4, SOX17, BRACHYURY/T, GSC, and 
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GATA6. “mesendo” and “ecto” are reference bulk RNA-seq samples from ENCODE (see 

STAR Methods). Values shown are Z scores per gene across samples after normalization to 

units of transcripts per kilobase million (TPM).

(E) Fraction of cells in the post and pre populations sorted in (C) that adopt mesendodermal 

fate (top) after 36 h of BMP4 + Activin A treatment. Quantification was based on OCT4/

SOX2 immunostaining (bottom, sample images). Error bars: SD (n = 3). The sorted 

populations uniformly adopt the predicted fate in response to mesendoderm signals.
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Figure 4. Key TF families show concordant changes in expression and motif accessibility upon 
mesendoderm competence loss, suggesting perturbation candidates
(A) Illustration showing the three assayed populations: pre- and post-competence loss (left) 

and mesendoderm (right). Inset boxes illustrate, with one example, combined analysis of 

gene expression and chromatin accessibility data from the three populations. Within each 

inset: (left) gene expression of SOX9 and HESX1 measured in TPM is shown; error 

bars: SD (n = 4; mesendoderm n = 3). (Right) ATAC-seq read depth for three biological 

replicates at a genomic locus that contains SOX and TAATTA homeobox-like motifs is 

shown, to which SOX9 and HESX1, respectively, are known to bind. SOX9 and HESX1 

are upregulated in the post-competence-loss population in parallel with increased chromatin 

access to their binding site.

(B) (Top) Shown are all genes with significant lineage-specific differential expression level 

changes (heatmap with Z scores) between the pre-competence-loss and post-competence

loss populations (n = 4) as well as mesendoderm-derived outgroup (n = 3 biological 
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replicates). Key TFs downregulated (upregulated) upon loss of mesendoderm competence 

include OCT4, TFAP2C, and KLF6 (HESX1, SOX9, and FEZF1). (Bottom) Heatmap shows 

row-normalized ATAC-seq read depth in all 250-bp peaks with a significant change in read 

depth between mesendoderm-competent and non-competent populations (n = 3). As with 

gene expression, these regions display clear, competence- and lineage-specific accessibility 

changes.

(C) Scatterplot showing log2 fold change in expression for all transcription factors between 

the (x axis) post- and pre-competence-loss populations and the (y axis) mesendoderm and 

pre-competence-loss populations. TFs that are significantly differentially expressed between 

the pre- and post-competence-loss populations (q < 0.05 as calculated by DESeq2) are 

shown in red. TFs in the second and fourth quadrants of this plot have lineage-specific 

expression patterns. See inset, Figure S2E.

(D) Selected motifs with significant enrichment in genomic regions that had a significant 

increase (blue arrows) or decrease (yellow arrows) from the pre-competence-loss to the 

post-competence-loss populations as discovered using MEME-ChIP. Motifs are labeled by 

the TF family or group to which they correspond. E-values: SOX, 3.7e-128; ZIC, 8.3e-033; 

FOX, 1.8e-02; POU, 2.9e-003.

(E) Top 4 nonredundant motifs that best explain the observed changes in ATAC-seq read 

depth between pre-competence-loss and post-competence-loss populations, as calculated 

using chromVAR. p values: homeobox (VAX2), 9.8E-05; GCM (GCM1), 3.2E-4; GRHL 

(GRHL1), 6.6E-4; ZEB (ZEB2), 6.9E-4.

(F) (Left) Heatmap showing an information-based measure of similarity (see STAR 

Methods) between the known DNA binding motifs of all pairs of differentially expressed 

TFs. Each row or column corresponds to the motif of one TF, and the matrix is arranged 

using hierarchical clustering. Only one half of the symmetric matrix is shown. TFs with 

similar preferences for DNA primary sequence cluster together, and notable families are 

labeled with the name of one cluster member in the column at center left. (Center right) 

The name of the TF family whose signatures are seen in both the RNA-seq analysis and 

ATAC-seq analysis is shown. (Right) The corresponding motif identified as significant 

in the ATAC-seq analysis for each labeled TF family is shown. These key TF families 

create concordant signatures in gene expression and chromatin accessibility data during 

mesendoderm competence loss.
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Figure 5. Perturbation of TF candidates from RNA-seq and ATAC-seq analyses tune 
mesendoderm competence along the ectodermal differentiation trajectory
(A) Mutual information between final cell fate and OSR at the time of BMP4 + Activin A 

addition for wild-type, CFP:P2A:FOXB2 transduced, and CFP:P2A:CFP transduced cells. 

Mutual information was calculated from live, single-cell-tracked time lapse as in Figures 

2B–2D. OSR at time of signal addition remains predictive of cell fate during overexpression 

of FOXB2 or a CFP control.

(B) Measured p(mesendoderm|OSR) for cells transduced with CFP:P2A:FOXB2 (left, blue) 

or CFP:P2A:CFP (right, blue) compared to the non-transduced cells in the same population 

(gray). Curves are measured from live-cell time lapses as in Figure 2D. Transparent curves 

show error as in Figure 2D. Curves are based on the following numbers of tracked cells: 

FOXB2 transduced, n = 40; FOXB2 non-transduced controls, n = 30; CFP transduced, n = 

32; and CFP non-transduced controls, n = 44. FOXB2 overexpression (left) induces a shift 
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that accords mesendoderm competence at lower OSR levels. This shift is not seen upon 

overexpression of a CFP:P2A:CFP control (right).

(C) Fraction of cells adopting neuroectoderm fate (PAX6+) after 144 h of neuroectodermal 

differentiation. Cells overexpressing CFP:P2A:FOXB2 or the control CFP:P2A:CFP show 

normal neuroectodermal differentiation. Overexpression of CFP:P2A:OCT4, a positive 

control for ectoderm disruption, precludes PAX6 expression. Error bars: SD (n = 3).

(D) (Top) FACS density plot of non-transduced control cells (CFP−) showing distribution 

ofOCT4:RFP and SOX2:YFP levels of cells after 72 h of activin/NODAL inhibition. 

(Bottom) CFP:P2A:FOXB2-overexpressing cells (CFP+) from the same population are 

shown. Overexpression of FOXB2 does not affect OCT4:RFP and SOX2:YFP dynamics 

during ectodermal differentiation.

(E) FACS density plots (OCT4:RFP versus SOX2:YFP) showing cell fates after 72 h of 

activin/NODAL inhibition followed by 42 h BMP4 + Activin A treatment. (Top) Non

transduced cells show two peaks corresponding to ectodermal lineage above diagonal 

(41% of cells) and mesendodermal lineage below diagonal (59% of cells). (Bottom) 

FOXB2-overexpressing cells (CFP+) from the same population show 81% of cells adopting 

mesendodermal fate. The ectodermal population shows over 2-fold higher modal SOX2-YFP 

expression compared to the mesendodermal population. Overexpression of FOXB2 increases 

the fraction of cells that adopt a mesendodermal fate.

(F) Inference of p(mesendoderm|OSR) from flow cytometry data, given the OSR distribution 

in (D) and the cell fate fractions in (E). Black dotted: CFP− internal controls; blue: 

CFP:P2A:FOXB-overexpressing cells, shaded: SD (n = 4). Consistent with microscopy data 

in (B), overexpression of FOXB2 shifts p(mesendoderm|OSR) to the left and thus accords 

mesendoderm competence at lower OSR. x axis values between (F) and (B) are not directly 

comparable as fluorescence values were measured by two different methods.

(G) Inferred p(mesendoderm|OSR) from flow cytometry measurements for cells 

overexpressing CFP:P2A:JUNB and CFP:P2A:POU2F3. Black dotted: CFP− internal 

controls; blue: transduced cells; shaded: SD (n = 3). Overexpression of JUNB and POU2F3, 

like FOXB2, shifts p(mesendoderm|OSR) to accord mesendoderm competence at lower 

OSR.

(H) Inferred p(mesendoderm|OSR) from flow cytometry measurements for 

cells overexpressing CFP:P2A:FEZF1, CFP:P2A:TFAP2A, CFP:P2A:OTX2, and 

CFP:P2A:GRHL1 (top to bottom). Black dotted: CFP− internal controls; blue: transduced 

cells, shaded: SD (n = 3). (Left) p(OSR|t). (Right) p(mesendoderm|OSR). Overexpression of 

candidates can tune p(OSR|t) and p(mesendoderm|OSR) independently.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-OCT4 Cell Signaling CAT#C30A3; RRID AB_2167691

Rat monoclonal anti-SOX2 Thermo Fisher CAT#14-9811-82; RRID AB_11219471

Goat polyclonal anti-SOX17 R&D Systems CAT#AF1924; RRID AB_355060

Rabbit monoclonal anti-pSMAD1/5/9 Cell Signaling CAT#12428; RRID: AB_2797908

Rabbit monoclonal anti-pSMAD2 Cell Signaling CAT#18338; RRID: AB_2798798

Mouse monoclonal anti-PAX6 Developmental Studies 
Hybridoma Bank

CAT#PAX6; RRID: AB_528427

Goat polyclonal anti-NANOG R&D Systems CAT#AF1997; RRID: AB_355097

Rabbit monoclonal anti-CDH2 (NCAD) Cell Signaling CAT#13116; RRID: AB_2687616

Bacterial and virus strains

NEB Stable competent E. coli New England Biolabs CAT#C3040

Chemicals, peptides, and recombinant proteins

A 83-01 R&D Systems CAT#2939

Human BMP4 R&D Systems CAT#314-BP

Human/Mouse/Rat Activin A Protein R&D Systems CAT#338-AC

γ-27632 Stemgent CAT#04-0012

LDN-193189 R&D Systems CAT#6053

Critical commercial assays

RNeasy Mini Kit QIAGEN CAT#74004

KAPA mRNA Hyper Prep kit Roche CAT#07962363001

Gibson Assembly Master Mix New England Biolabs CAT#E2611

NEB Q5 High-Fidelity DNA Polymerase NEB CAT#M0491

Deposited data

ATAC-seq NCBI GEO GSE149077

RNA-seq NCBI GEO GSE148904

Experimental models: cell lines

Human: H1 embryonic stem cells WiCell WA01, RRID CVCL_9771

Human: H1 SOX2:YFP/OCT4:RFP embryonic stem cells Zhang et al., 2019 N/A

Oligonucleotides

Gibson homology arm to clone genes of interest into pWPXL
mCerulean-P2A, forward: gcaggtgacgtggaggagaatcccgggcct

This paper N/A

Gibson homology arm to clone genes of interest into pWPXL
mCerulean-P2A, reverse: aatccagaggttgattatcatatga

This paper N/A

Recombinant DNA

pWPXL Addgene CAT#12257; RRID: Addgene_12257

pWPXL-mCerulean-P2A This paper N/A

pMD2.G Addgene CAT#12259; RRID: Addgene_12259

psPAX2 Addgene CAT#12260; RRID: Addgene_12260

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Fiji Schindelin et al., 2012 https://imagej.net/software/fiji/

MATLAB 2019 MathWorks https://www.mathworks.com/products/
matlab.html

MicroManager 2.0 beta Edelstein et al., 2014 https://micro-manager.org

CellProfiler 3.0 McQuin et al., 2018 https://cellprofiler.org/

DESeq2 1.24.0 Love et al., 2014 https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

kallisto 0.45.1 Bray et al., 2016 https://pachterlab.github.io/kallisto/

chromVAR 1.4.1 Schep et al., 2017 https://github.com/GreenleafLab/
chromVAR

MEME-ChIP 5.0.3 Machanick and Bailey, 2011 https://meme-suite.org/meme/tools/
meme-chip

PANTHER Mi et al., 2019 http://www.pantherdb.org

Enrichr Kuleshov et al., 2016 https://maayanlab.cloud/Enrichr/

GREAT McLean et al., 2010 http://great.stanford.edu/public/html/

Other

hESC-qualified Matrigel Corning CAT#354277

Polyester membrane filters, 3 micron, 25mm Sterlitech CAT#PET3025100

mTeSR 1 STEMCELL CAT#85850

Accutase Innovative Stem Cell 
Technologies

CAT#AT104-500

jetPrime Polyplus CAT#114-07

Lenti-X Concentrator Clontech CAT#631231

ENCODE RNA-seq data ENCODE See method details
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