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Protein-tyrosine phosphorylation, which is catalyzed by protein-tyrosine kinase (PTK), plays a pivotal role in a variety of cellular
functions related to health and disease. The discovery of the viral oncogene Src (v-Src) and its cellular nontransforming counterpart
(c-Src), as the first example of PTK, has opened a window to study the relationship between protein-tyrosine phosphorylation and
the biology and medicine of cancer. In this paper, we focus on the roles played by Src and other PTKs in cancer cell-specific
behavior, that is, evasion of apoptosis or cell death under stressful extracellular and/or intracellular microenvironments (i.e.,
hypoxia, anoikis, hypoglycemia, and serum deprivation).

1. Introduction

It is believed that the ancient Greek physician Hippocrates
(ca. 460 B.C.–ca. 370 B.C.), the father of medicine, was the
first to use the word “cancer” in this context. Although phe-
nomena reflecting the formation of malignant tumor had
already been described much earlier, Hippocrates was the
first to use the Greek word “carcinos” (in English and Latin,
“cancer”), based on the word for crab, which he thought
resembled the cut surface of a malignant tumor [1]. Long
after this incident, the biology and medicine of cancer
reached the age of modern science in the mid 18th century
with findings and reports that some cases of cancer may be
associated with the patient’s lifestyle and/or job (e.g., nose,
scrotum) [2, 3]. Currently, cancer is known as one of the
most critical and fatal diseases in humans, especially in those
living in areas with relatively high longevity. Thus, in general,
cancer is recognized as having been relatively rare during
the earlier average human lifetime. Nevertheless, overall,
demands for understanding, preventing, and curing cancer
are growing; therefore, the biology and medicine of cancer
are of particular importance in science.

Why and how is cancer rare? Why and how does cancer
arise and develop? Why and how is cancer fatal? Many funda-
mental questions arise from the study of cancer. Against this
background, an extensive number of studies have been con-
ducted in recent decades using many approaches including
animal models, bioinformatics, and cellular and molecular
biology techniques. In 2000, Hanahan and Weinberg, a
pioneering scientist in the cancer biology field, proposed
that the development of most cancer cells is the result of a
manifestation of six essential alterations in cell physiology
that collectively dictate malignant growth: self-sufficiency
in growth signals, insensitivity to growth-inhibitory signals,
evasion of programmed cell death or apoptosis, limitless
replicative potential, sustained angiogenesis, and tissue inva-
sion and metastasis [4]. These altered functions are based on
the occurrence of critical mutations in one or more cancer-
related genes (i.e., protooncogenes and/or tumor suppressor
genes), as well as other cancer-promoting, nongenomic
mechanisms involving epigenetically altered expression of
certain genes and a number of environmental factors that
could affect intracellular signaling events and/or metabolic
systems. Under these circumstances, current trends in the
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biology of cancer deal extensively with the molecular details
of how each type of human cancer cell arises, develops, and
maintains its cancerous features as described previously, by
which it shows aggressive and pathological behavior in the
patients with such lesions.

A century ago, Rous discovered a virus named Rous
sarcoma virus (RSV) that has cell-transforming activity [5, 6]
and carries a viral Src (v-src) oncogene [7–10]. v-src gene
originated from a cellular progenitor termed protooncogene
cellular Src (c-src) or Src; they share a conserved sequence
that just differs by several point mutations throughout the
gene and deletion mutations in the C-terminal region [10–
13]. c-src is one of the oldest protooncogenes, discovered
in 1976 in the vertebrate genome [13]; this outstanding
discovery led to the Nobel Prize for Medicine and Physiology
being awarded to Bishop and Varmus in 1989. The protein
product of this gene is nonreceptor protein tyrosine kinase
(PTK), Src, which principally attaches to the inner plasma
membrane and associates with many kinds of cellular
proteins that include receptor tyrosine kinases, G-protein-
coupled receptors, steroid receptors, and signal transducers
and activators of transcription (STAT) [14]. There are eleven
identified Src family kinases (SFKs): Src, Fyn, Yes, Blk, Yrk,
Fgr, Hck, Lck, Lyn, Frk (also known as Rak), and Srm. Src
or SFK study has led to new insights into the role of tyrosine
phosphorylation in cell physiology and functions (for review,
see [15–19]). The diverse functions of Src involve the initi-
ation of fertilization-mediated development and regulation
of normal cell growth, survival, proliferation, differentiation,
adhesion to matrix and a wide range of molecular signaling
networks. Src protein is composed of four Src homology
(SH) domains, a unique N-terminal domain, a linker region
and negative-regulatory tyrosine residue (chicken Tyr527;
human Tyr530)-containing C-terminal tail [17–22].

Among the four SH domains, SH1 is the kinase domain
that contains the autophosphorylation site required for full
activity (chicken Tyr416; human Tyr419), SH2 interacts
with the negative-regulatory Tyr527 (chicken) or Tyr530
(human), SH3 promotes intramolecular contact with the
kinase domain for inactivation, and SH4 contains the myris-
toylation site that is important for lipid bilayer membrane
localization. The functions of the unique N-terminal domain
are not well understood, but mutation in this region seems to
reduce the transforming potential of v-Src [21]. The SH2 and
SH3 domains and C-terminal tail are involved in the negative
regulation of Src. A linker region is present between SH2
and SH1 domains and is involved in intramolecular binding
with the SH3 domain. Phosphorylated C-terminal tyrosine
residue can bind to the SH2 domain. These interactions
along with the interaction between the kinase domain and
the SH3 domain cause the Src molecule to adopt a closed
conformation that makes it unavailable for its substrate [23].
Dephosphorylation at the C-terminal tyrosine residue by
tyrosine phosphatase or the Src-interacting molecules that
break the closed conformation without C-terminal tyro-
sine dephosphorylation converts the Src molecules into an
open active state. Consistently, v-Src is constitutively active
because it lacks the C-terminal negative-regulatory tyrosine
residue.

Apoptosis is critical for maintaining the appropriate cell
number in tissues and organs. Apoptosis is somehow escaped
in transformed or cancer cells, leading to their immortality
by a mechanism called anti-apoptosis. Src plays roles in
several types of cancer cells, such as breast cancer [24]
and an astrocytoma cell line [25], to provide them with an
anti-apoptotic character, and even acts in vascular endothe-
lial growth factor (VEGF)-induced endothelial cell anti-
apoptosis [26]. Mutations of several other molecules, for
example Raf, Ras, and STAT, also contribute to anti-
apoptosis, abnormal proliferation, angiogenesis, and inva-
sion of several types of cancer cells, such as in melanoma
and gliomas [27–30]. How normal cells are transformed into
cancer cells and progress to invasive cancers and then to
metastatic mode and their relationships with Src are very
interesting issues. Src has the potential to be altered in a
fashion that allows it to play a role in cancer progression.
When cells are transformed, they lose molecular controls
and subcellular structures and ultimately alter their cell-cell
and cell-matrix interactions and become motile and invasive;
Src plays a central role in this process [4, 31, 32]. Increased
Src kinase activity is associated with advanced-stage tumors
that readily metastasize to distant organs [33–36]. The
activation of Src in human cancers may occur through
a variety of mechanisms that include domain interaction
between molecules and/or structural remodeling in response
to multiple activators or upstream kinases and tyrosine
phosphatases. Overexpression of Csk, a negative regulator
of Src, suppresses metastasis in mouse model experiments,
demonstrating the importance of Src activity in metastasis
[37]. The involvement of Src activity has been studied
in several carcinomas, including colorectal, hepatocellular,
pancreatic, gastric, esophageal, breast, ovarian, lung, and
prostate carcinomas [38–42]. In some cases, for example,
hepatocellular and colon carcinomas, very high Src activity
and low expression of Csk were observed [43–45]. Recently,
the oncoprotein Src has been focused on as a molecular target
for cancer therapy. Several Src inhibitors that are highly
specific and stable in vivo have been extensively studied, and
attempts are now underway to utilize them in human cancer
treatment because blocking of Src activation may inhibit
several signaling pathways involved in tumor progression
[46–50]. However, successful targeting of Src in a clinical
setting remains a challenge, and Src inhibitors have only
recently started to move through clinical development.

When a population of cancer cells arises, surrounded by
normal cells and tissues, these cancer cells will suffer from
various kinds of environmental stress, such as low oxygen
pressure (i.e., hypoxia), lack of cell-cell contact (low con-
fluence) and insufficient support by the extracellular matrix
(possibly leading to anoikis), and shortage or complete
lack of nutrients (e.g., hypoglycemia) and growth factors
(e.g., low serum). These microenvironmental stresses could
act as selective pressures or death-promoting (e.g., pro-
apoptotic) signals for cancer cells, so that only those that
successfully adapt to them can continue their malignant
growth. Some cancer cells with relatively high malignant
potential overcome this situation by triggering altered gene
expression (e.g., upregulation of hypoxia-inducible genes)
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and signal transduction for angiogenesis (e.g., expression
of vascular endothelial growth factor) [51, 52]. In this
paper, we discuss how these cancer-specific adaptations to
microenvironmental stresses are managed with a focus on
the roles of Src and other PTKs and how this knowledge
could contribute to future progress in this research field.

2. Hypoxia

Tumor blood microvessels arising from neovascularization
are structurally and physiologically different from normal
blood vessels. Tumor blood vessels are highly irregular
(displaced and compressed), tortuous, have arteriovenous
shunts and blind ends, are leaky, lack smooth muscle or
enervation, and have incomplete endothelial linings and
basement membranes that often result in sluggish, highly
abnormal blood flow [53–55]. Because of unrestrained
growth, tumor cells are forced away from vessels beyond the
effective diffusion distance of oxygen in respiring tissue and
suffer from hypoxia, a lack of oxygen that is the result of an
imbalance in oxygen supply and demand [56]. In hypoxic
regions, the partial pressure of O2 (pO2) levels are chronically
low, and, in addition, owing to intermittent blood flow acute
hypoxia is produced followed by reoxygenation [52, 55, 57].

Hypoxia is deleterious to cancer and normal cells, but
the conditions that are prevalent in solid tumors are believed
to exert selective pressure for cancer cells to adapt and
survive. During growth and metastatic progression, tumor
cells encounter several kinds of microenvironmental stresses;
the most critical of which is hypoxia [58]. Oxygen limi-
tation is central in controlling neovascularization, glucose
metabolism, tumor survival and spread. This pleiotropic
action is orchestrated by hypoxia-inducible factor-1 (HIF-
1), which is a master heterodimeric transcriptional factor
mediating a wide range of physiological and cellular mech-
anisms; this action can be termed an angiogenic switch
to overcome the limited supply of oxygen and nutrients
in expanding neoplasia [58–61]. During hypoxia, HIF-
1α is stabilized and translocates to the nucleus where it
forms a heterodimer with HIF-1β [62]. This HIF-1 complex
interacts with hypoxia-responsive elements and regulates the
expression of molecules such as the major pH-regulating
enzyme carbonic anhydrase IX, which allows metabolic
adaptation in the cell [63, 64].

There is considerable interest in understanding the
molecular mechanisms involving several oncogenes and
oncogenic molecules that enhance tumor angiogenesis
and malignant progression under hypoxia. Tumor hypoxia
promotes metastasis via the upregulation of many genes
including VEGF, c-Met, and C-X-C chemokine receptor type
4 (also known as CD184), which are integral to metastatic
tumor progression [65–69]. The hypoxic microenviron-
ments are also associated with alterations in signaling
proteins including Src, STAT3, phosphoinositide 3-kinase
(PI3K)/Akt, extracellular signal-regulated kinase (Erk, also
known as mitogen-activated protein kinase), and glycogen
synthase kinase 3β (GSK3β), which are generally considered
to be prosurvival (anti-apoptotic) and are commonly acti-
vated in cancer. It was shown that HIF-1α expression requires

PI3K activity and is correlated with Akt phosphorylation
in invasive breast carcinomas [70]. Akt can augment HIF-
1α expression by increasing its translation under both
hypoxic and normoxic conditions [71]. Hypoxia-induced
activation of PI3K/Akt occurs at an early stage, but prolonged
hypoxia inactivates Akt and activates GSK3β, which then
downregulates the HIF-1 activity through downregulation of
HIF-1α accumulation [72]. Erk is also needed for hypoxia-
induced HIF-1 transactivation activity because HIF-1α is
phosphorylated in hypoxia by an Erk-dependent pathway
[73]. Recently, it was suggested that Src activation might
play a prominent role in the response to hypoxia to promote
human cancer cell survival, progression, and metastasis. Src-
nuclear factor kappa B (NFκB) was shown to contribute
to the survival of cells during hypoxia as Src inhibition
causes hypoxia-induced cell death [74]. In both pancreatic
and prostate carcinoma cell lines, it was shown that artificial
hypoxia (by cobalt chloride)-induced VEGF expression
required Src activation and resulted in increased steady-
state levels of HIF-1α and increased phosphorylation of
STAT3. STAT3 and HIF-1α bind simultaneously to the VEGF
promoter for maximum transcription of VEGF mRNA
following hypoxia [75]. STAT3 activity is responsive to acute
hypoxia, whereas the signaling from Src to focal adhesion
kinase (FAK) is associated with chronically hypoxic regions
[76].

Hypoxia/reoxygenation (H/R) regulates Lck (a member
of SFKs)-dependent activation of NFκB (nuclear factor κB)
and modulates the expression of downstream genes that
are involved in cell migration in human breast cancer cells.
H/R-activated Lck mediates NFκB activation, urokinase-type
plasminogen activator secretion, and cell motility through
tyrosine phosphorylation of IκBα (inhibitor of nuclear factor
kappa B, alpha) [77]. It has been documented that a
nonreceptor and non-Src family PTK, Syk, is commonly
expressed in normal human breast tissue and breast tumor
[78]. Syk and Lck together regulate H/R-induced breast
cancer progression [79], but the molecular mechanism of
Syk phosphorylation and its subsequent interaction with Lck
leading to downstream signaling events are not well defined.
H/R enhances the production of reactive oxygen species
that cause the inhibitory oxidation of protein tyrosine phos-
phatase (PTP), a major regulator of tyrosine kinase signaling
[80]. Hypoxia has also been shown to upregulate lysyl oxidase
(LOX) expression via HIF-1 binding to hypoxia-responsive
elements in the LOX promoter, leading to enhanced invasion
in metastatic breast cancer [81, 82]. H/R condition stimulates
the LOX-dependent FAK/Src activity, which facilitates breast
cancer cell migration through a mechanism mediated by
hydrogen peroxide, a by-product of LOX activity [82–84].
Thus, the key molecules, for example, Src, FAK, PI3K, and
LOX, involved in the anti-apoptosis process of cancer cells
could be good therapeutic targets for preventing and treating
metastases. However, most of the data have been obtained
from in vitro experiments, but the microenvironment in
the hypoxic tumor is likely to be more complicated due
to the existence of pO2 gradients, temporal fluctuations in
pO2, tumor/stroma interactions, and the additional effects
of nutrient availability and acidosis.
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3. Matrix Deprivation

Cells are held tightly in a highly structured order with
each other (cell-cell contact) and with their surrounding
extracellular matrix (ECM) (cell-ECM contact) for their
mutual benefit. These associations are principally regulated
by the cellular membrane protein integrins that execute
signals through cytosolic molecules for their survival when
they are attached. If cells are detached or their cell-cell
contact or cell-ECM contact is severed, they die by a partic-
ular type of apoptosis, “anoikis” (from the Greek word for
“homelessness”), which was first described for epithelial cells
but later shown also to take place in cells of nonepithelial
origin [85–87]. Detachment-induced anoikis is physiolog-
ically significant for normal cellular growth and turnover.
However, cancer cells are insensitive to this death process.
Resistance to anoikis is very important for cancer cells
because they can survive after detachment and undergo
metastasis to distant organs. The molecular mechanisms
by which cancer cells escape anoikis are not clearly under-
stood, but recent study has shed some light on this issue.
Integrins, transmembrane heterodimers, and two principal
nonreceptor tyrosine kinases, FAK and Src, play a central
role in resisting anoikis [88, 89]. In general, anoikis resistance
(or anti-apoptotic signal) involves a conformational change
of integrin, which recruits autophosphorylated FAK at
Tyr397. Src interacts with the activated FAK through the
Src’s SH2 domain, resulting in the activation of Src by
tyrosine autophosphorylation. Activated Src phosphorylates
FAK (Tyr861 and Tyr925) to enhance its activity further.
This activated FAK/Src complex conveys the signal for
anoikis resistance through the PI3K/Akt survival pathway
[86, 90, 91]. Thus, the downregulation and loss of FAK/Src
association are involved in anoikis sensitivity.

The role of integrins, FAK, Src, and PI3K/Akt differs
depending on the cancer cell types. Anchorage-independent
growth and survival of pancreatic cancer cells require the
recruitment of Src to the αvβ3 cytoplasmic tail of integrins,
leading to Src activation and Crk-associated substrate (also
called CAS) phosphorylation but this is independent of FAK
activity [92, 93]. Similarly, anoikis resistance is maintained in
osteosarcoma cells through Src-dependent activation of the
PI3K/Akt pathway in a manner independent of FAK activity
[94]. Platelet-derived growth factor receptor (PDGFR), not
FAK or epidermal growth factor receptor/kinase (EGFR),
acts as the upstream PTK responsible for the detachment-
induced Src activation; in addition, Pyk2 (a nonreceptor
and a non-Src family PTK), rather than PI3K/Akt or Erk,
acts as the key downstream effector of Src in mediating the
cell survival signals of lung tumor cells [95, 96]. Intestinal
epithelial cancer cells commonly display EGFR-mediated
sustained activation of Src interacting with FAK and conse-
quent MEK/Erk activation to resist anoikis [97]. The involve-
ment of FAK/Src activity through the PI3K/Akt pathway
in decreased sensitivity to anoikis has been described for
human lung cancer [98, 99] and colon tumor cell lines [100,
101]. This differential regulation of anoikis-resistance/anti-
apoptosis signaling pathway might develop in different
tissues during differentiation and/or at the time of tumor

growth and invasion. Thus, at present, it may be concluded
that the FAK/Src complex is a potential target to treat the
tumors and to stop their invasion.

4. Glucose Deprivation

It was more than 80 years ago that Warburg made an obser-
vation that transformed cells employ aerobic glycolysis for
their energy production, rather than electron transport chain
activity in mitochondria [102]. Several oncogenes including
Akt, Ras, and Src activate the Warburg effect by increasing
glucose uptake, transcription of enzymes involved in glucose
metabolism, and aerobic glycolysis itself [103, 104]. The
mechanism by which the Warburg effect is manifested in
these transformed cells is still unknown. However, studies
using Src-transformed fibroblasts demonstrated that Src
induces elevated expression of HIF-1α in mRNA and protein
level under normoxia [105, 106]. Pancreatic and prostate
cancers have also been shown to involve Src-dependent
induction of VEGF through the actions of HIF-1α [75].
These features seem to be peculiar to the transformed cells
because another report has shown that, in Hep3B cells,
in which Src activity has been manipulated, Src activity
is not involved in the upregulation of HIF-1α and other
HIF-1α-dependent phenomena [107]. HIF-1α is a tran-
scriptional regulator, whose up-regulation normally occurs
under hypoxia and activates glycolysis, erythropoiesis, and
angiogenesis [52, 106]. Therefore, the up-regulation of
HIF-1α by an Src (or other oncogenic factor)-dependent
mechanism may explain at least to some extent how the
transformed cells acquire the ability to develop the Warburg
effect. Other oncogenic factors that induce the expression
of the mRNA and/or protein of HIF-1α include ligands for
some receptors/PTKs (e.g., EGF) [108], ErbB2/PTK [109],
Ras [110], and STAT3 [111, 112]. Consequently, it is expected
that glucose deprivation, or hypoglycemia, would lead to a
failure of the Warburg effect to occur and affect cancer cell
survival and proliferation.

In breast carcinoma MCF-7/ADR cells, glucose depriva-
tion causes an immediate increase in tyrosine phosphoryla-
tion and activates Lyn, but not Abl, Fyn, or Lck [113]. It has
been shown that the hypoglycemia-induced Lyn activation
is responsible for the subsequent activation of c-Jun N-
terminal kinase (JNK), which then phosphorylates and acti-
vates a transcription factor c-Jun. Under these conditions,
the JNK/c-Jun pathway increases in terms of total glu-
tathione, cysteine, γ-glutamylcysteine, and immunoreactive
proteins, corresponding to the catalytic as well as regulatory
subunits of γ-glutamylcysteine synthetase. This suggests that
the synthesis of glutathione is increased as an adaptive
response. These metabolically produced substances culmi-
nate in manifestation of oxidative stress in the cells and
lead to cell death [114]. Thus, the results suggest that
a certain kind of Src family PTK (not necessarily Src)
signaling can contribute to the hypoglycemia-induced death
of cancer cells. Such modulated sensitivity to cell death or
apoptosis under glucose-deprived conditions is also seen in
the multipotential hematopoietic cell line 32D expressing
v-Src, v-Ras, and v-Abl [115]. In this cell line, these
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Figure 1: Signal transduction mechanism of anti-apoptosis in cancer cells. Highlighted here is the involvement of PTK signaling via nonre-
ceptor PTKs such as SFKs, receptor PTKs such as EGFR, and cytoplasmic PTKs such as Abl and FAK in and around the plasma membranes.
Several kinds of microenvironmental shortage for cell viability (e.g., hypoxia, lack of cell-cell or cell-ECM contact, hypoglycemia, deprivation
of serum) act as signals (MESs, microenvironmental signals) for the responses of cancer cells (sensing of MESs, PTK signaling, other genomic
and nongenomic signaling, and their crosstalk). These signaling networks support the cancer cells to undergo anti-apoptosis and active
proliferation that lead to the other malignant features of cancer.

oncogenes enhance apoptosis induced by hypoglycemia but
attenuate apoptosis in the absence of IL-3. Interestingly, Bcr-
Abl tyrosine kinase, an oncogene product of the Philadelphia
chromosome, has been shown to be highly protective against
hypoglycemia-induced apoptosis. These results demonstrate
that PTK signaling can be either a positive or a negative
regulator for the manifestation of hypoglycemia-induced
survival in certain kinds of cancer cells.

5. Serum Deprivation

The cell culture condition termed serum starvation, as well
as serum deprivation, depletion, removal, restriction, with-
drawal, and serum limitation, has been widely and routinely
used as a control point from which to examine a variety
of extracellular stimuli or conditions (e.g., drugs, growth

factors, hormones, and serum) [116]. However, given that
cancer cells at the early stage often suffer from insufficient
support by the local blood vessel, serum starvation by itself
should be recognized as an important cellular condition
through which to investigate cancer cell behavior. Many
types of cancer and noncancer cell have been reported to
adapt their growth and proliferation to serum-free culture
conditions in a manner that depends on the release of growth
factors or the modulation of cell surface receptors and/or
intracellular kinases. Examples that have been demonstrated
include growth factors such as EGF and other EGFR ligands
[117–121], fibroblast growth factor-1 [122], PDGF [123],
and VEGF [124, 125], PTKs such as c-Neu [126], ARK [127],
and FAK [128], and serine/threonine kinases such as Akt
[129–131], protein kinase C [132], GSK3β [133], adenosine
monophosphate-dependent protein kinase [116, 131, 134],
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mammalian target of rapamycin [131], and Erk [130]. In
many of these cases, protein phosphorylation is suggested to
be responsible for suppression of cell death, namely, apopto-
sis. Thus, serum starvation provides an experimental system
to analyze how normal cells undergo apoptosis in response
to a shortage of mitogenic signals, and how malignant cancer
cells escape the factors inducing apoptotic responses.

The roles of protein-tyrosine phosphorylation for the
anti-apoptosis of cancer cells under serum-starved condi-
tions have recently been fully documented by our studies on
bladder carcinoma cell line 5637, whose serum-independent
growth involving autocrine ligands for EGFR was reported
in the 1990s [119–121]. We found that the activities of the
two PTKs, namely Src and EGFR became stably upregulated
after several hours of serum deprivation in culture medium
[135]. The activated Src and EGFR contributed to the
anti-apoptotic growth of 5637 cells under serum-starved
conditions through phosphorylation of the β-subunit of
c-Met/hepatocyte growth factor (HGF) receptor. In fact,
inhibition of the Src/EGFR kinase activity or attenuation of
the c-Met phosphorylation by knockdown (forced down-
regulation of c-Met by treatment with high doses of HGF)
resulted in cell death accompanied by activation of caspase
3/7 and the appearance of apoptotic nuclear morphology
[135]. In addition, it was demonstrated that cholesterol-
dependent membrane microdomains (MDs) and their asso-
ciated molecules, Src and uroplakin IIIa (UPIIIa), play
important roles in signal transduction [136]. UPIIIa is a
single transmembrane protein that has been originally iden-
tified as a major component of asymmetric unit membranes
found in the luminal surface of mammalian urothelium
[137, 138]. Its possible involvement in transmembrane
(e.g. Src-dependent) signal transduction has also recently
been demonstrated in uropathological bacterium infection
[139] and in frog egg fertilization [140–143]. Thus, a novel
signaling axis, involving MD and its associated proteins
Src/EGFR/c-Met, has been identified as an anti-apoptotic
mechanism that seems to be peculiar to bladder carcinoma
cells. If so, further study should examine how other types of
cancer cells become able to undergo malignant proliferation
under serum-starved conditions.

6. Conclusion and Perspectives

The ability to survive and continue active proliferation under
stressful conditions described here (i.e., hypoxia, lack of
anchorage, and low or no supply of glucose or serum) is
one of the fundamental features associated with cancer cells
of high malignancy. Many questions need to be answered
about how cancer cells sense these micro-environmental
signals (MESs) and undergo their adaptive behavior. Here,
we have attempted to summarize the cutting edge views
based on research dealing with the molecular mechanisms by
which cancer cells evade the onset of apoptosis through the
activation of Src and/or other PTK signaling, which occur
mainly in and around the plasma membranes (Figure 1). On
the other hand, accumulating evidence also demonstrates
that such anti-apoptosis mechanisms also involve reversible
protein phosphorylation on serine and threonine residues,

and other posttranslational modifications of proteins and a
number of metabolic pathways, which occur mainly in the
cytoplasm or organelles such as mitochondria. In addition
to the aforementioned nongenomic responses, genomic
responses, that is, gene expression in the cell nucleus, also
contribute substantially. Taking these findings together,
further study in this research field should be directed towards
learning how these arrays of knowledge could be integrated
(Figure 1): for instance, understanding how the Src signaling
pathway regulates its surrounding molecular network would
contribute to understanding the mechanism of sensing
extracellular/intracellular environments, the modulation of
cellular metabolism, and the regulation of the genomic
response and stability in cancer cell-specific functions.
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