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Abstract

The basic structure of the cortico-hippocampal system is highly conserved across mammalian species. Comparatively few
hippocampal neurons can represent and address a multitude of cortical patterns, establish associations between cortical
patterns and consolidate these associations in the cortex. In this study, we investigate how elementary anatomical
properties in the cortex-hippocampus loop along with synaptic plasticity contribute to these functions. Specifically, we
focus on the high degree of connectivity between cortex and hippocampus leading to converging and diverging forward
and backward projections and heterogenous synaptic transmission delays that result from the detached location of the
hippocampus and its multiple loops. We found that in a model incorporating these concepts, each cortical pattern can
evoke a unique spatio-temporal spiking pattern in hippocampal neurons. This hippocampal response facilitates a reliable
disambiguation of learned associations and a bridging of a time interval larger than the time window of spike-timing
dependent plasticity in the cortex. Moreover, we found that repeated retrieval of a stored association leads to a
compression of the interval between cue presentation and retrieval of the associated pattern from the cortex. Neither a high
degree of connectivity nor heterogenous synaptic delays alone is sufficient for this behavior. We conclude that basic
anatomical properties between cortex and hippocampus implement mechanisms for representing and consolidating
temporal information. Since our model reveals the observed functions for a range of parameters, we suggest that these
functions are robust to evolutionary changes consistent with the preserved function of the hippocampal loop across
different species.
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Introduction

In 200 million years of mammalian evolution, the anatomy of

the hippocampal formation remained remarkable stable given the

tremendous changes in brain size and cortical reorganization

[1,2]. The functional role of the hippocampus and its interaction

with cortex have been investigated by numerous studies. Cortical

regions are regarded as storage for semantic and procedural

representations that guide the processing of sensory information

(for a review see [3]), reasoning [4,5] and motor commands [6–8].

The hippocampus in turn is a comparatively small region located

in the limbic system. Surprisingly, it is able to receive, represent

and address cortical information [9,10]. Moreover, this region is

able to quickly generate associations between cortical information

[11–13]. In particular, these properties make it suitable for spatial

navigation and the formation of declarative memories [10,14].

However, there is relatively little consensus on the neural

mechanisms underlying the function of the cortico-hippocampal

circuit.

Here we focus on three anatomical properties of the cortico-

hippocampal circuit that, to our knowledge, are common to all

mammalian species: First, cortical areas have converging connec-

tions to the hippocampal formation and diverging back-projec-

tions [15]. Since the number of neurons is substantially higher in

the cortex than in the hippocampus, either the information

represented in the cortex must be compressed to fit in the

hippocampus [16] or the hippocampus must use a different coding

scheme, e.g., a spatial-temporal code instead of a spatial code. This

trivial fact is mostly neglected in computational models. However,

since conduction delays between neurons increase linearly with

distance [17], a spatially detached subnetwork introduces heter-

ogenous conduction delays, which can be functionally important

for the dynamics of the system [18,19]. Finally, the cortico-

hippocampal loop in fact contains multiple, parallel loops [20].

Cortical spikes induce a chain-reaction that can proceed along

several pathways, e.g., from parahippocampal areas directly back

to the cortex or through hippocampal regions such as the dentate

gyrus, CA3 and CA1 [15].

In this study, we investigate whether these anatomical properties

are sufficient to account for temporal learning and thereby

represent universal design principles, which are exploited in a

variety of species-specific implementations. We build a model that

consists of a hippocampal input- and output layer attached to a

cortex model [18] and test the functional effect of convergence/

divergence and heterogenous conduction delays in the connections
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between the cortical and the hippocampal layers. These in silico

experiments aim to study the functional role of the cortico-

hippocampal circuit without modeling the internal details of the

hippocampus. We find that the combination of a high degree of

connectivity and synaptic delays permits the network to learn the

association between temporally separated patterns. Furthermore,

repeated retrieval of stored associations leads to a consolidation of

the association from hippocampus to cortex. Since these results are

robust against changes in the model parameters, we conclude that

these functions are independent of species-specific parameters,

making it possible that they are preserved across mammalian

species.

Methods

The Neural Network
Our simulations are based on the neural network model

proposed by Izhikevich [18] for the cortex. In short, it consists of

1000 spiking neurons with 20% inhibitory neurons and 80%

excitatory neurons. Each neuron is connected with 10% of the

cortical neurons. Inhibitory neurons are only connected with

excitatory neurons. The model uses a computationally efficient

approximation of the Hodgkin-Huxley neuron [21]. The dynam-

ics of the two state variables, the membrane potential v and

membrane recovery value u, are given by the differential equations

dv

dt
~0:04v2z5vz140{uzI ð1Þ

du

dt
~a bv{uð Þ ð2Þ

and the auxiliary after-spike resetting

if v§30 mV, then
vZr1

uZuzr2

� �
ð3Þ

The four parameters in this model can be fit to the spike waveform

and bursting behavior of the neuron. Like in the original model,

we used a parameter set for regular spiking (a = 0.02, b = 0.2,

r1 = 265, r2 = 8 for excitatory neurons; a = 0.1, b = 0.2, r1 = 265,

r2 = 2 for inhibitory neurons). Variable I is a 1000-dimensional

vector representing the input to the neurons (noise and spiking

input from other neurons) and is defined as

I ið Þ~e ið Þz
X
cES ið Þ

X
kEP cð Þ

wicd t{tk{dicð Þ ð4Þ

Each neuron i receives random thalamic input e(i) (every 10 ms

one of the cortical neurons receives a current of 20 mV) and

spiking input d(x) from every incoming connection c of all post-

synaptic connections S(i) multiplied by the synaptic weight wic. The

formula incorporates the time point tk of all pre-synaptic spikes P(c)

and the conduction delay dic. Conduction delays of the connections

can vary between 1–20 ms. Note, that in this notation the variable

wic denotes the weight of the c-th incoming connection of the i-th

neuron, which allows multiple connections between two neurons

with differing delays. A MATLAB-implementation of this model is

given in the appendix of [18].

The network is extended by an additional loop representing an

hippocampal input and output layer (Fig. 1a). This loop is

governed by three parameters. Cortical neurons project to h

hippocampal input neurons and the same number of hippocampal

output neurons project back to the cortex. Anatomical studies

suggest that h should be considerably smaller than the number of

cortical neurons. Each hippocampal input neuron receives c

connections from randomly selected neurons in the cortex; the

same number of random backprojections are made by each

hippocampal output neuron. Between hippocampal input and

output neurons the connectivity is one-to-one. There is a

conduction delay d in the connections between cortical and

hippocampal neurons. This delay is uniform across the network in

the first part of our study, and heterogeneous in the later part.

Conceptually, the hippocampal loop differs from the cortical

network as only the cortical network can be externally stimulated.

Accordingly, only spikes of cortical neurons represent the symbolic

activation of an arbitrary information. Hippocampal neurons in

turn receive, transform and project back these information.

Spike-timing dependent plasticity (STDP) is defined according

to previous work Izhikevich [18] as Az e{t=tz when the post-

synaptic neuron fires after the pre-synaptic neuron plus its

conduction delay and A{ e{t=t{ for the reversed case (Fig. 1b).

The other parameters are defined as

tz~t{~20 ms, Az~0:1, A{~0:12. STDP is applied to all

connections from excitatory cortical neurons to excitatory and to

inhibitory cortical neurons as well as from all hippocampal output

neurons to excitatory cortical neurons. These backprojections have

been suggested to be the substrate of associative learning [22].

Connection weights can range between 0–10 mV. The simulation

results reported in this study were conducted using an additive

STDP rule to conform to the work by Izhikevich [18]. However,

we also tested the model behavior using a weight-dependent

STDP rule that linearly scales the magnitude of STDP by the

distance to the upper and lower boundary of the weight [23]. The

results were qualitatively identical.

The conduction delay between cortex and hippocampal loop

can be attributed either to the spatial distance between cortex and

hippocampal loop alone, to hippocampal processing time, or a

combination of both. In the first interpretation, spikes generated

by the cortex need an interval d to reach the hippocampal loop. If

there is no internal processing they are projected back to the

cortex with the same delay, thus result in a total conduction delay

of 2d. However, all or some of these delay intervals could be spend

on hippocampal processing while the remainder is attributed to

synaptic delays (Fig. 1c). We note that none of our current results

depends on the particular choice of implementation.

Assessing Model Behavior
Conceptually, we distinguish between parameters of interest

and parameters of no interest. Parameters of interest in this study

are the degree of connectivity and the conduction delay between

cortex and hippocampal loop as we seek to understand their

functional relevance for learning. However, there are many

parameters of no interest which can confound the results. For

example, the strength of forward connections between cortex and

hippocampal neurons, which does not undergo STDP, needs to be

determined, and the maximum strength of synapses can be

adjusted. In the following, we explain the rationale for adjusting

these parameters and reveal their influence on network behavior

and function. Figure 1d illustrates the procedure.

Pattern Association and Consolidation
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Each instance of the model should fullfil basic requirements

with regard to the network activity. First, simultaneous activity of

50 cortical neurons (which represent an input pattern) should not

cause an infinite reaction chain or oscillatory activity within the

cortico-hippocampal network. Second, activity in the hippocampal

output layer should be able to evoke spiking in the cortex in a

polychronous manner (e.g. precise spike-timing is necessary for

cortical spiking).

To confirm that the model behavior is homogenous across the

parameters of interest, we generate 3000 networks by sampling

across the parameter space (h: 10–200, c: 1–350, d: 20–200 ms)

using standard settings as given in [18]. Note, that the parameter h

is strictly speaking a parameter of no interest. However, as it

represents a parameter of the newly introduced hippocampal loop,

we include it here to confirm that this parameter is not an

important factor for the behavior of the model and therefore treat

it as parameter of interest. Like in the original model, each

millisecond a randomly selected cortical neuron is stimulated with

an input of 20 mV. The networks are simulated for five hours

simulation time using an Euler integrator with an integration time

step of 0.5 ms. Visual inspection of the spiking behavior in these

networks suggested that the addition of the hippocampal loop

leads to strong oscillations in the whole network. Therefore, we

examined whether the network shows strong oscillations across the

entire parameter space. For each simulated network, we deter-

mined the number of spiking neurons within intervals of 10 ms for

1 s. Increases between two neighboring time intervals of more

than 150 spikes and a spike-frequency between 4–40 Hz (largest

coefficient within this range is at least five times greater than the

mean of all coefficients obtained from a Fourier transformation of

the spiking histogram) indicated strong oscillatory behavior. As the

vast majority of models reveals identical behavior, we adjust the

parameters of no interest to meet the requirements outlined above.

The extensive analysis ensures that the reasons for modifying the

parameters of no interest are not specific for a certain point in the

space of parameters of interest.

Hippocampal Learning
To understand the functional implications of the hippocampal

loop, we study the storage and retrieval of temporal associations.

Figure 1. Neural network model and study design. a) The network consists of a cortical network as well as a hippocampal input and output
layer. It is described by the parameters c: number of input/output connections for each hippocampal neuron; d: conduction delay between cortical
and hippocampal neurons; h: number of hippocampal input/output neurons. b) STDP rule of the neural network (after Fig. 4 in Izhikevich [18]). c)
Different interpretations of a conduction delay between cortex and hippocampus. If a signal generated by the cortex needs a time interval of 2d to
propagate to the hippocampus and back to the cortex, the interval can be represented by two different models. Either there is a delay of d between
hippocampus and cortex and in the back direction, but no processing takes place in the hippocampus, or the delays amount to only a fraction of d,
but hippocampal processing consume the remaining time interval. d) The design of this study: In a preparatory step, we sample the behavior of the
network across the parameters d, h and c and adjust the parameters of no interest to ensure that network behavior is consistent for a range of
parameters of interest. Subsequently, we analyze the functional contribution of the parameters of interest (degree of connectivity, delay) on the
learning of associations between cortical patterns.
doi:10.1371/journal.pone.0085016.g001

Pattern Association and Consolidation

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e85016



During learning, two patterns (the cue pattern and the target

pattern) are presented to the model 60 times with a given temporal

separation. The temporal separation Dt was varied between 10–

150 ms. Previous studies investigating networks with heterogenous

conduction delays have used polychronous groups (spatio-tempo-

ral spike patterns) [18] and ‘‘cell assemblies’’ [24] as functional

substrate of cortical information. For our study, we decided to use

the latter approach for representing patterns. The main reason for

this decision is that preparatory analyses showed that polychro-

nous groups are only reliably reproducible under noise-free

conditions with homogenous resting membrane potential and

recovery states. Alternatively, additional mechanisms like NMDA

receptors [19] which would introduce additional dynamics into the

model, have been invoked. In contrast, cell assemblies are widely

accepted [25–27], allow for a more robust detection of signals and

are simpler to implement and interpret. Therefore, in our

simulations, patterns are represented by distinct groups of 50

neurons [24]. During presentation through external input all

neurons of one group receive a random current (normal

distributed around 20 mV, s= 1 mV).

The number of training trials depends on the strength of STDP.

Although it is generally believed that the hippocampus can store

information after one trial [28,29], we decided to use the same

STDP rule as in the original model for all connections and instead

compensate for the slow learning rate by increasing the number of

trials. In the retrieval phase, the network is only stimulated with

the cue pattern. The quality of retrieval is quantified by the

number of neurons in the target pattern that spike within a 150 ms

time window. If not stated differently in the text, we report the

average number of spiking neurons after ten retrieval trials.

Temporal Dispersion
Temporal dispersion roughly reflects the fact that the hippo-

campal formation has multiple pathways that process information

simultaneously, from the recurrent connections within the

entorhinal cortex, to the entire hippocampal loop including

entorhinal cortex, dentate gyrus, CA3, CA1 and entorhinal cortex.

These parallel processing transform timed activity into an

extended stream of activity. To investigate how temporal

dispersion of cortical signals affects learning through the hippo-

campal loop, we incorporate this effect in our model. The

hippocampal input and output layers are connected with

conduction delays uniformly distributed between 10 and 90 ms

while the delay between cortex and hippocampal layers is

shortened to 1–5 ms. Thus, spikes that were simultaneously

generated in the cortex give rise to a stream of activity that reach

the cortex, after passing through the hippocampal loop, in a time

window of 12–100 ms after spike initiation.

Results

Assessing Model Behavior
Three thousand networks were generated from randomly

selected parameters h (21–180), c (5–350) and d (20–200 ms) and

simulated for five hours. Connections were initialized with the

same synaptic weights and model parameters (e.g. level of noise,

STDP rule) as given in [18]. In the vast majority of the networks,

synchronized spikes in cortical and hippocampal neurons can be

observed (Fig. 2a). Plots of this synchronized activity revealed that

waves of activity oscillate between cortical and hippocampal

neurons back and forth in a frequency that results from the

conduction delay between cortex and hippocampus (Fig. 2a). For

the vast majority of parameter sets that we tested, the network

exhibited strong oscillations (Fig. 2b). Only networks with few

hippocampal neurons (h,50) and low connectivity (c,50) showed

more varied dynamics such as varying oscillations and poission-

like spiking, as described before [18]. We conclude that the

addition of the hippocampal loop to the network fundamentally

changed its behavior uniformly across the parameters space.

Therefore, adjustments to the model parameters are required to

prevent overloading of the network and to obtain the required

network behavior (see Methods).

Biological neural networks have various mechanisms such as

synaptic scaling [30,31] and structural plasticity [32,33] to

maintain a certain level of activity. To compensate for the lack

of self-organizing mechanisms in our model and to keep it as

simple as possible, we manually adjusted some of the parameters of

no interest to prevent the system from overloading. The following

parameters of the model were altered: connection weights from

cortex to the hippocampal loop were reduced to an average of

1 mV, so that synchronized activity of 50 cortical neurons results

in 30–50 spiking neurons in the hippocampal input and output

layer. The maximum connection weights from the hippocampus

to cortex was restricted to 5 mV to ensure that at least four

connections are needed to activate a cortical neuron through the

hippocampus. The STDP rule originates from an input-free model

and contained an increment of 0.01 to every connection every

second. We removed this value as otherwise the network would

overload once a critical number of connections becomes too

strong. Moreover, noise was reduced from 1000 Hz to 100 Hz, as

our network will be also driven by external inputs. As shown in

Figure 2c, these adjustments prevent the system from overloading

across the entire range of tested parameters.

Association of Patterns
In the following, we examine a model with 100 hippocampal

input and output neurons (h = 100), high degree of connectivity

(c = 300) and conduction delays of d = 50 ms. Subsequently, the

functional properties of this network are compared with networks

that lack either high connectivity or large delays.

Learning associations of patterns in the cortico-

hippocampal network. Figure 3 illustrates two different ways,

in which an association between a cue and target pattern can be

stored in the network. If the temporal separation between the cue

and target pattern is short enough, the association can be stored

directly in the cortical connections between both groups of

neurons via STDP. Additionally, the cortical pattern generates a

spatio-temporal signature in the hippocampal loop that can be

linked to the cortical target pattern via STDP in the hippocampo-

cortical connections. To test for the uniqueness of this spatio-

temporal pattern in the hippocampal loop, we created 1000

patterns of 50 randomly selected neurons in the cortex and

recorded for each cortical pattern the spiking activity in the

hippocampal output layer (activity in the input and output layer is

identical). Compared with the recordings of the remaining 999

patterns, we found that no pair of signatures had an overlap of

more than 50% (allowing for a tolerance of 2 ms). Thus, a small

set of hippocampal neurons can represent a variety of cortical

information, through relative spike timing.

To study the storage of associations in our network quantita-

tively, we defined four different stimuli A, B, C and D, represented

by activation of neurons 1–50, 51–100, 101–150 and 151–200. In

the learning phase, first stimulus A and B were presented to the

network 60 times separated by Dt = 120 ms. Subsequently, stimuli

C and D were presented under the same conditions. During recall,

we presented either stimulus A or C to the network and measured

retrieval quality of the patterns B and D. If during presentation of

stimulus A, spikes representing pattern B, but not D, occur and

Pattern Association and Consolidation
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vice versa for pattern C, we can conclude that the network is able

to disambiguate the two pairings.

The analysis revealed that pattern A and C produced different

spatio-temporal patterns in the hippocampal loop (Fig. 4a and b).

Since at least four hippocampal connections with maximal weight

are necessary to evoke a spike in a cortical target neuron, both

hippocampal patterns were distinct enough to evoke different

patterns in the cortex without interference with previously learned

associations. Accordingly, the activation of cue pattern A lead to

significantly more neurons spiking for pattern B compared to

neuron spiking for pattern D and vice versa for cue pattern C

(based on a Mann-Whitney-Wilcoxon after 10 repetitions,

p,10212 for both cue patterns) (Fig. 4c). Note, that every 10 ms

a random neuron receives a current of 20 mV and neurons

representing the cue pattern receive a current of 20 mV for 1 ms.

Depending on their current state, the spike can emerge with a

delay of 4–6 ms. Therefore, noisy spiking occurs in the network.

Since some hippocampal neurons spike in response to both

patterns A and C, one might suspect that the injection of pattern C

during training could retrieve pattern B and thereby introduce an

erroneous association between C and B. However, we found that

during the second learning phase the connection weights from

those hippocampal neurons to B do not increase (Fig. 4d), as their

spike-timing evoked by pattern C is too different from their spike-

timing evoked by pattern A.

Figure 2. Behavior of the cortico-hippocampal network. a) Spiking of networks with parameters h = 100, c = 300 and d between 20 and
120 ms. All other parameters of the model as in Izhikevich (2006). Strong oscillations can be observed with synchronous spiking of all cortical
neurons. b) Scatter plots of networks in the 3-dimensional parameter space. Networks represented by black dots show strong oscillatory behavior as
depicted in a). Gray dots indicate varied spiking behavior. For essentially all models with h.50, addition of the hippocampus to the network leads to
overload causing these oscillations. c) Network behavior across the parameter space after the parameters of no interest have been adjusted as
described in the text.
doi:10.1371/journal.pone.0085016.g002

Figure 3. Two cortical patterns can be associated in two
different ways. The target pattern (pattern 2) can be activated by the
cue (pattern 1) either directly by cortico-cortical connections or
indirectly through the hippocampal loop. Low random activity (as
shown after 120 ms) do not cause any spiking in the hippocampus.
Black arrows show connections which are predefined and are not
modified by STDP. Gray arrows indicate the connections that undergo
STDP and therefore are involved in learning.
doi:10.1371/journal.pone.0085016.g003

Pattern Association and Consolidation
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Polychronous activation of cortical patterns. Due to the

high degree of connectivity between cortex and hippocampus, one

might suspect that single hippocampal neurons could directly

evoke spiking in the cortical target neurons. For example, a

hippocampal output neuron might have multiple connections to a

cortical neuron with maximal connection weight. A spike of this

neuron could then directly elicit the cortical activity pattern and,

therefore, the hippocampal neuron would be a ‘‘grandmother cell’’

for the cortical pattern. The alternative coding scheme is a

distributed code in which multiple hippocampal neurons together

encode a cortical pattern and in which each hippocampal neuron

participates in the encoding of multiple cortical patterns [36]. To

examine whether distributed spiking in the hippocampus is

necessary for addressing cortical patterns in our model, we

determined all connections between hippocampal neurons evoked

by pattern C and cortical neurons that contributed to spiking of

neurons representing pattern D (neurons 151–200). An examina-

tion of these connections showed that only one of 21 hippocampal

neurons can directly cause a spike in a cortical target neuron as it

contains four connections to the target neuron. All remaining

hippocampal neurons do not have enough connections to the

target neurons to activate them directly. Instead, the right spike-

timing of the hippocampal neurons is necessary to activate the

target pattern (Fig. 5). Additionally, the analysis reveals that not all

cortical neurons of pattern D are directly activated by the

hippocampus. Neurons of the recalled pattern activate each other

making the recalled pattern stronger.

Critical factors for learning associations through the

hippocampal loop. To demonstrate that only a network with

high connectivity and large delays is able to bridge a large

temporal separation, we generated four networks to test all

combinations of the parameters connectivity and delay, e.g. low

connectivity/low delay, high connectivity/low delay, low connec-

tivity/high delay and high connectivity/high delay. We studied in

all four networks for which temporal separations Dt the networks

could learn the association between two patterns (neurons from 1–

50 and 51–100). The separation between the two patterns was

sampled from 10 ms to 200 ms in steps of 5 ms (beyond 200 ms

no learning was possible). After 60 learning trials, we determined

the retrieval quality (see Methods).

The analysis revealed that in all models two stimuli can be

directly associated with each other when Dt ,60–70 ms (Fig. 6).

However, only the network with high connectivity and high delay

is able to learn an association across a time span that goes beyond

the cortical association capabilities. For d = 50 ms, the temporal

separation between cue and target patterns can range from 110–

150 ms (Fig. 6, fourth row). Here, the delay between cue and

target pattern does not need to be constant across presentations in

Figure 4. Pattern association through a hippocampal loop. Panel a) and b) show the recall of two previously learned associations. Both recalls
were initiated by an external cue at around 100 ms, which evoked a sparse temporal pattern in the hippocampal layers, which in turn drove the
target pattern in the cortex. c) Average number of neurons for all four patterns during learning and recall. Grey bars indicate when patterns have
been externally stimulated. d) Mean weight for connections between hippocampal neurons that spike in response to pattern A and C (H(A) and H(C),
respectively) to target patterns B. Grey bars as in c). During the first learning phase, the connection weight increase and thereby contribute to the
association of pattern A with B. Although in the second learning phase the same hippocampal neurons are also activated by pattern C, their
connections to neurons of pattern B remain stable indicating that the spatio-temporal sequence of hippcampal neurons is important for storing
unique associations.
doi:10.1371/journal.pone.0085016.g004
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the training phase. Even if the delay randomly varies between

110–150 ms, the target pattern becomes associated with the cue

pattern with no discernible reduction in the recall quality (data not

shown). While this analysis shows a clear benefit of high

connectivity and large delays, cortical patterns separated by a

time span of ,70–110 ms cannot be associated with each other.

This gap is a direct result of the uniform delay between cortex and

hippocampal loop and points to a lack of a potentially important

feature in our model.

Temporal dispersion. The hippocampus actually includes

several parallel loops of different lengths that simultaneously

process and project back to cortex. For example, activity reaching

the entorhinal cortex are transmitted through a loop containing

the dentate gyrus, CA3 and CA1 but also through a loop

comprising CA3 and CA1 and through a loop including CA1

alone [20]. On an abstract level, this means that coincidental

cortical spikes are processed along several parallel pathways

producing a stream of temporally dispersed output spikes. To

examine how temporal dispersion affects learning in our model,

we introduced heterogeneous conduction delays between cortex

and hippocampal input and output such that simultaneous activity

in the cortex generates a spatio-temporal return pattern in the

cortex between 12–100 ms (see Methods). An anatomical inter-

pretation of this model is that the hippocampus is spatially close to

the cortex resulting in short conduction delays, but contains

several processing loops that generate a temporally extended

output signal (Fig. 7b). This dispersion fills the gap in temporal

separation, in which associations of hippocampal and cortical

patterns could not be learned (Figs. 7a and 6, bottom row). Again,

variability in the delay between cue and target pattern during

learning did not harm the learning procedure as long as the delay

did not exceed the maximum distance of 140 ms.

Figure 5. Neurons in the target pattern are driven by three different mechanisms. Thick lines mark connections, where one hippocampal
output neuron can generate a spike in a cortical neuron. Thin lines indicate that these connections alone cannot generate a spike. Instead timed
activity of more than one hippocampal neuron is needed to elicit a spike in the cortical neuron. Unconnected dots represent cortical neurons whose
spiking is not directly evoked by the hippocampus, but by recurrent cortical inputs. Already in the learning process, autoassociative connections
between the cortical neurons in target pattern emerge.
doi:10.1371/journal.pone.0085016.g005

Figure 6. Influence of anatomical properties of the hippocam-
pal loop on the capability to associate patterns across. Each plot
depicts the number of target neurons that are activated during recall as
a function of the temporal separation between the cue and target
patterns during training. From top to bottom: original model by
Izhikevich [18], hippocampal loop with high connectivity/low delay, low
connectivity/high delay, high connectivity/high delay, and high
connectivity/high delay+temporal dispersion.
doi:10.1371/journal.pone.0085016.g006

Pattern Association and Consolidation

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e85016



Temporal Compression and Consolidation
Repeated recalls speeds up pattern retrieval in network

with temporal dispersion. Interestingly, the expanded se-

quence of hippocampal activity enables the model to shorten the

temporal separation between two learned patterns and consolidate

them in the cortex. To illustrate this behavior, we stored the

association between two patterns separated by varying intervals Dt

in networks with and without temporal dispersion. After each

training session, recall was triggered 300 times and the interval

between cue presentation and retrieval was determined. To do so,

we computed the median time of all spikes fired by the neurons in

the target pattern within a window of 200 ms following the cue. In

the network without temporal dispersion, the target pattern is

consistently activated after ca. 10 ms for Dt of 10–80 ms and after

120 ms for Dt of 120–150 ms (Fig. 8, left). Note that the temporal

separation during retrieval is largely independent of the temporal

separation of the stored association and reflects a compression

mechanism discussed below. The break in the lines corresponds to

the gap in Figure 6, in which no association can be learned by the

network. Not surprisingly, the first and the 300th retrieval did not

differ in their temporal separation. By contrast, in the network

with temporal dispersion, temporal separation during retrieval

scales with the temporal separation between the training patterns

for Dt .70 ms (Fig. 8, right). The transition point matches the Dt,

at which storage begins to depend on the hippocampus. However,

after 300 recalls, the second pattern is activated within 10 ms, i.e.

directly by cortical neurons. Mann-Whitney-Wilcoxon tests based

on the spike-timing directly after learning and after 300 recalls

revealed that, for Dt $80 ms in the learning phase, the difference

becomes significant (p,1024). This process is facilitated by the

same compression mechanism coupled with temporal dispersion.

The compression effect emerges as a side-effect of the STDP

rule (Fig. 9). The simplest case of this effect is depicted in Fig. 9a.

When a pair of neurons with a synaptic delay of 10 ms is

stimulated with a delay of 18 ms between pre- and post-synaptic

spiking, STDP still increases the weight of the synapse due to its

finite time window. Once a pre-synaptic spike can directly evoke a

post-synaptic spike, the delay between both spikes becomes

shortened from previously 18 ms during training to 10 ms during

recall. The same mechanism can be observed, when joint activity

is required to generate post-synaptic spikes. In the network with

temporal dispersion, four or more hippocampal spikes from

different neurons are required to trigger a spike in a cortical target

neuron (Fig. 5). Again, the effect of STDP is strong enough to

increase the connection weights of hippocampal neurons that

spiked before but did not directly contribute to the post-synaptic

spike. After sufficient repetitions, the connections can become

strong enough to initiate a spike directly and thereby trigger the

post-synaptic spike earlier (Fig. 9b).

Figure 7. Temporal dispersion in the hippocampal loop. a) Temporal dispersion between hippocampal input and output layer generates a
sequence of spikes that increases the time span in which cortical patterns can be learned. b) Anatomical interpretation of the model. The delay
between cortex and hippocampal loop is comparatively short. Hippocampal processing time varies between 10–90 ms.
doi:10.1371/journal.pone.0085016.g007

Figure 8. Repeated recalls leads to temporal compression of pattern association. Time separation Dt during recall vs. separation during
learning, directly after learning (solid line) and after 300 recalls (dashed line). Each data point represents the average of 10 repetitions in which the
median timepoint for the activation of the target pattern was recorded. With temporal dispersion, patterns with any interval of Dt during learning can
be learned. When the hippocampal loop is involved in learning (Dt .70), the temporal separation between cue and target pattern directly after
learning is result of Dt during learning. After 300 recalls the target pattern is activated after ,10 ms. In the model without temporal dispersion, the
target pattern remains at a temporal separation of either ,10 ms or ,120 ms. Asterisk and arrow indicate significant differences between the
median timepoint of the target pattern directly after learning and that after 300 recalls (Mann-Whitney-Wilcoxon, p,1024).
doi:10.1371/journal.pone.0085016.g008
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Repeated recalls leads to consolidation of stored

association. That repeated recalls reduce the retrieval separa-

tion to 10 ms regardless of the temporal separation during

learning indicates that retrieval gradually becomes independent

of the hippocampus. We therefore studied this process in more

detail in the network with temporal dispersion. As described

above, the cue and target patterns are presented to the cortex

separated by 120 ms for the first 60 trials, and the target pattern is

retrieved earlier and earlier with each subsequent recall (Fig. 10a–

c). When retrieval intervals become short enough (,70 ms), STDP

can increase the weights of direct connections between cortical

neurons in the cue and the target patterns. After around 200 trials

the target pattern can be retrieved directly by cortical neurons

within ca. 10 ms.

A multitude of experimental studies has shown that lesioning or

inactivating the hippocampal formation directly after learning

hamper memory performance. However, when the hippocampus

is lesioned a few days after training, behavioral performance in a

memory task is not affected [34]. We can reproduce this

observation in our model, by removing the hippocampus from

our network after each trial. To do so, we temporarily set the

connection weights from cortex to hippocampus to zero and

disabled STDP. We then tested memory performance in this

lesioned network by applying the cue pattern and recording the

number of spiking neurons in the target pattern. As the retrieval

separation analysis suggested, the target pattern could be nearly

completely retrieved by the cortex alone after 200 recall trials

(Fig. 10d).

Robustness of Temporal Compression and Consolidation
to Parameter Changes

At the beginning of the result section, we determined a setting

for the parameters of no interest that leads to the desired behavior

of the model (e.g. no overloading of the network) and explored for

Figure 9. Illustration of the mechanism that compresses the temporal sequence of spikes. a) The weight of a connection between a pre-
and post-synaptic neuron increases according to the STDP rule, even if the interval between pre- and post-synaptic spike exceeds the delay of the
connection. However, when the connection is strong enough, the pre-synaptic neuron can directly cause the post-synaptic neuron to fire. Thereby,
the temporal interval of both spikes becomes shortened. b) The same effect applies when timed spikes of several neurons are required. In this
example, the neurons a-j are connected with neuron k and fire in a temporal sequence. Neuron i and j together can make neuron k spike. However,
STDP also increases connection weights from neurons spiking earlier in time (e.g. h and g). After sufficient repetitions, neuron i can directly evoke the
spike of the target neuron as the contribution of neuron h already increased the activity level of neuron k. Thereby, neuron k spikes earlier. This
mechanism continuous for all preceding neurons.
doi:10.1371/journal.pone.0085016.g009
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an example setting of the parameters of interest the functional

influence on learning. Here, we study how robust the observed

compression and consolidation of associations are. We sampled

(n = 3000) across the number of hippocampal neurons h and the

number of input/output connections for hippocampal neurons c,

and repeated the analyses above (h = 100, c = 300) for each

network. A network is considered to exhibit the consolidation

function, if after the first recall the network is not able to recall the

target pattern without the hippocampal loop and after 300 recalls

the network is able to recall more than 50% of the target pattern

without the hippocampal loop. Without further fine-tuning of the

parameters of no interest, we found a region in the parameter

space in which consolidation was observed (Fig. 11a). In particular,

we found that even for models with a much lower number of

hippocampal neurons (e.g. h = 20) than the number of cortical cells

participating in the stored patterns the reported behavior can be

observed. In general, higher values of h and c do not harm the

consolidation process while there exist lower thresholds.

Additionally, we tested the robustness of the model, when the

network stores multiple associations. In detail, eight cue patterns

were pairwise associated with eight target patterns, as described

above. After training, we tested the ability of the network to

consolidate the association that was stored first to examine the

effect of storing new associations that might potentially interfere.

Otherwise, we used the same parameters for our simulations as

above. We found that although slightly more connections and

hippocampal neurons are necessary, consolidation is similarly

reliable even when potentially interfering associations are stored in

the cortico-hippocampal network (Fig. 11b).

In summary, the results support the hypothesis that a certain

amount of convergence/divergence between cortex and hippo-

campal loop is needed to facilitate learning and consolidation of

associations through the hippocampal loop. However, within

certain boundaries the function of the model is robust to changes

in the parameters of interest.

Discussion

In this study, we investigated in silico the functional contribution

of two anatomical properties that govern the connections between

cortex and hippocampus: (i) a high degree of connectivity resulting

in strong convergent and divergent projections and (ii) conduction

delays resulting from the detached location and the processing

time of the hippocampal formation. Our analyses showed, that

these network properties give rise to important characteristics of

hippocampally-dependent learning. Cortical activities evoke a

Figure 10. The association between cue and target patterns becomes independent of the hippocampus with repeated recalls. a)
Histogram of target neuron spikes as a function of time and recalls. At the beginning of the learning phase, neurons in the target pattern fire spikes
with a delay of 120 ms. During later learning trials and recall, more and more neurons fire earlier until cortical neurons are directly linked with the
target pattern. b) Plot of the spikes of the target neurons relative to the onset of the cue pattern. The upper and lower half of the plot depict the
spiking pattern directly after learning and after 300 recalls, respectively (indicated by arrows in c). c) Median of the histogram in a). Due to the outliers
in the recall phase the mean value would not be representative of most spike times. d) Number of neurons in the target pattern that can be evoked
without the hippocampal loop, as a function of recalls.
doi:10.1371/journal.pone.0085016.g010
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unique spatio-temporal signature in the hippocampal loop that

can be associated with other cortical patterns. Therefore,

comparatively few hippocampal neurons are able to unambigu-

ously address cortical patterns. With this mechanism, associations

can be learned with temporal delays that are not accessible with

STDP in the cortex. Including pathways with varying delays in the

cortico-hippocampal network, we found that repeated recalls of

stored associations shortens the interval between cue presentation

and retrieval of the target pattern until a target pattern can be

retrieved directly from cortical neurons. We thus suggest that

simple properties of cortico-hippocampal connectivity might

provide the basis for the consolidation of episodic memories.

Model for Consolidation and Relationships to Conceptual
Models

The idea of a unifying and species-independent framework of

the hippocampus has been proposed by many authors

[10,20,22,35–38]. Our simulations could be a valuable foundation

to bring those theoretical frameworks alive by providing mecha-

nistic explanations for functions associated with the hippocampus

and complementing experimental findings. For example, it has

been suggested that diverging backprojections from the hippo-

campus to higher cortical areas are associatively modified during

memory formation [39,40]. We were able to show that

unique assignments between cue and target pattern can be

established with spatio-temporal patterns in the hippocampal

loop that serve as link to cortical information. It is important

to note, that the functional correlate of an information is

represented by cortical neurons. The converging connections

and heterogenous conduction delays between cortex and hippo-

campal loop transform the patterns into spatio-temporal sequences

that act as unique identifier in a small set of hippocampal neurons

to facilitate the formation of associations with other cortical

information. In a disrupted hippocampal loop only the association

but not the cortical information themselves would be affected. This

is consistent with experimental results indicating that the

Figure 11. Consolidation across a range of model parameters. Consolidation is robustly observed in our model for a range of two
parameters: the number of hippocampal neurons, and the number of cortical cells that each hippocampal cell is connected with. Black dots depict
networks that show consolidation, networks represented by circles did not reveal consolidation. Behavior of the model across the parameter space
when a) only one or b) eight associations are stored in the network.
doi:10.1371/journal.pone.0085016.g011
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hippocampus is involved in learning temporal sequences and

bridging temporal gaps [41–43].

It has been suggested before that repetitive reactivation of

learned associations leads to consolidation [44]. During rapid eye

movement (REM) sleep and slow-wave sleep (SWS), hippocampal

neurons in rats fire spikes in similar sequential order as during task

performance [45,46]. This so-called replay activity is believed to

be important for consolidating memories in the neocortex (for a

review, see [47]). Our results suggest that the connectivity

properties between cortex and hippocampus and multiple loops

within the hippocampus can provide a mechanistic explanation for

consolidation.

Our model contrasts with previous models of consolidation

[48,49] in several relevant aspects. First, we incorporate the spatial

properties of the cortico-hippocampal network in our model

through conduction delays that can be mapped to distances

between anatomical regions. The previous models treat the

network as a single point. Second, consolidation is not actively

controlled by the hippocampus in our model, but emerges from

repeated recalls that are triggered by cortical activity. By contrast,

in the previous models, the hippocampus (medial temporal lobe,

respectively) imposes both cortical cue and target patterns during

the consolidation process to imprint the association in the slower

changing cortico-cortical connections. Finally, both previous

models represent episodic memories as instantaneous patterns of

activity, whereas we view them as sequences of activity patterns

[20]. Through sequential activity in the hippocampus, temporal

separation during retrieval decreases until cortical neurons alone

can recall the target pattern. While in the context of synfire chains

this effect has been regarded as an unwanted property that can be

overcome by a triphasic STDP rule [50], in the context of

sequential learning this behavior seems to be functionally

important. We suggested previously that consolidation is the

process of converting temporally extended sequences of patterns

into patterns without much temporal extend, which represent

semantic memories stored in the cortex [20].

Several aspects of our model could be tested experimentally. For

instance, the spatio-temporal transformation of cortical patterns in

the hippocampal loop originates in our model from converging/

diverging connections between cortical and hippocampal areas

with heterogeneous conduction delays. An experimental assess-

ment of the conduction delays between cortical and hippocampal/

parahippocampal areas would provide realistic constrains for our

model assumptions. We predict that conduction delays between

cortex and hippocampus are heterogeneous, similar to findings

within the hippocampus [17].

We observed in our model that associations between patterns

separated by larger intervals are initially stored in connections with

longer delays, and that with repeated recalls are gradually

transferred to connections with shorter delays. If the same

principle holds true in the real hippocampus, it is possible that

different subareas of the hippocampal formation are involved in

consolidation for different amount of time after memory forma-

tion. The longer the loop through the subarea, the shorter the

duration that it is required for consolidation. This prediction could

be tested by selectively lesioning DG, CA3, CA1, and entorhinal

cortex at different time points after learning.

Finally, consolidation in our network leads to a gradual

compression of the delay between cortical activation and retrieval

of the target pattern. If cortical activity could be uniquely assigned

to the representation of certain items, then one could measure the

time it takes for recall of the target item in animals that were

trained on sequential associations of item pairs with different

temporal separation.

Special Features of Our Model
The conduction delays used in our model have been chosen to

accommodate the fact that connections from the neocortex to the

hippocampus must be longer than within the neocortex. The

settings of the neocortical networks are based on a previous study

[18]. Given estimates of the distance/latency function in the

hippocampus [17] and analyses of conduction delays between

entorhinal cortex and dentate gyrus [51] in rats, the delay of 50 ms

for one direction does not appear to be unrealistic for rats.

However, the major point of this setup is that the spatial distance

between neocortex and hippocampus introduces a period of time

that facilitates learning of associations where STDP within the

cortex has no effect any more. A high degree of convergence and

divergence within the loop is a necessary property of the model

and is consistent with the biological system. The relevance for

bridging latencies in the range of hundreds of milliseconds has

been shown, for example, in trace eyeblink conditioning studies

[52–54].

However, the range of temporal separations of 10–140 ms, for

which associations between two pattern can be stored in our

model, might appear small in light of other experimental findings.

Studies have shown that hippocampal activity increases when a

period of several seconds must be bridged [55,56]. So-called time

cells in CA1 encode time on the order of seconds in a similar

invariant manner to place cells in the context of navigation [55].

We note that our model is a proof of principle, and does not

elaborate on the details of the hippocampus with its complex

network of subareas. From an evolutionary perspective, it could be

feasible that the complex and specific structures are a result of a

continuous elaboration of the hippocampal loop that improved the

performance in learning associations and bridging a period of

time. It remains an open question whether and how cortical areas

are also involved in maintaining the representation of information.

For example, in computational simulations it has been shown that

the cortical network itself can maintain a representation for several

seconds using NMDA-receptors, e.g. [19].

Limitations and Future Work
We observed that a hippocampal loop with temporal dispersion

requires more repetitions to learn an association as fewer neurons

are active at the same time. It would have been possible to change

the STDP rule to yield faster learning, but as mentioned in the

Introduction, we opted for minimal changes to the network to

maintain focus on the properties of cortico-hippocampal connec-

tivity. Another consequence of the decreased number of hippo-

campal neurons processing information is that it becomes more

difficult to dissociate two previously learned associations. There-

fore increasing temporal dispersion should possibly be accompa-

nied by an increase of the number of neurons. Again, we opted for

minimal changes to the network to isolate the effects of temporal

dispersion.

It turns out to be difficult to train our model on sequences of

more than two patterns. In our model, the retrieved target pattern

is spread temporally as compared to the cue pattern. If we were to

use the retrieved pattern as a cue to sequentially drive a second

target pattern, there would be less activity in the hippocampus in

the second step, which makes it more difficult for the hippocampus

to drive cortical activity. It is feasible that the biological cortical

network performs a clean-up operation at each step of the

sequence to facilitate the storage of longer sequences. We did not

pursue this possibility further here, because this study focused on

the function of the connectivity between cortex and the

hippocampal loop and including complex cortical dynamics would

confound the results. Future work is needed to reveal the neuronal
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mechanisms that can account for robust and more complex

sequence learning.

Similarly, our model does not include the internal structure of

the hippocampus, and therefore does not exhibit other well-known

properties and functions of the hippocampal formation, such as for

instance place or grid cells [57,58]. Also, our model stores and

retrieves association only in one temporal direction whereas replay

activity has been observed in both the forward and reverse

direction [59–61]. It remains a challenging and interesting task to

amend this network by hippocampal subareas such as dentate

gyrus, CA3, etc. with their complex intrinsic dynamics [62] to

understand how these hippocampal networks interact with the

properties of our current model.

Evolutionary Perspective on the Hippocampus
Since the hippocampal formation was highly conserved in the

evolution of mammals [2,63] while the neocortex underwent large

changes, it has been suggested that differing experimental findings

might result from the variety of neocortical input rather than from

species-specific differences of the hippocampal regions [1,2]. Our

results support this hypothesis. We found, that the functionality of

the model is not sensitive to parameter changes. Therefore, the

general scheme of the cortico-hippocampal loop (convergence/

divergence, spatially distant unit, parallel processing streams)

appears to be a design that can be functionally exploited by a

variety of species with varying brain sizes and cortical areas to

store associations. Therefore, despite species-dependent differenc-

es, this common design points to a species-independent function of

the hippocampal formation that may underlie differing experi-

mental observations.

Our study could provide a link between form and function of

biological networks that is mostly neglected in computational

neuroscience. In contrast to most artificial encodings, genes in

biological organisms generate gradients of protein concentration

[64,65], which in turn serve as guide for the placement of neurons

and their axonal and dendritic growth cones [66–68]. The

network connectivity properties so important in our model are a

direct result of spatial structures [17,69]. In our opinion, the

parameters of our model follow biologically plausible dimensions,

such as the distance between two networks and the branching

degree of neurons, that may proof useful to connect studies

analyzing the impact of genes on the spatial structure of networks

with the function that emerges from them.

Computational approaches along these ideas mainly focus on

the spatial organization of networks involved in spatial processing,

like vision [66,70], navigation and locomotion [71–73]. The study

at hand highlights that also sequential problems, like learning

temporal associations, can emerge from networks designed in

spatial categories. From this perspective, differing conduction

delays that directly result from distances between neurons

[17,74,75], could be a crucial property of neural networks to

understand how episodic memories are formed.

Conclusion

Overall, our results suggest that certain functions previously

attributed to the hippocampus (e.g. addressing cortical areas,

temporal compression) may arise from the way the hippocampal

network is attached to a cortical network. Of course, this does not

challenge the fact that the hippocampus contains functionally

important subregions necessary for the maintenance and linkage of

information. However, our results suggest that the connectivity

structure of the cortico-hippocampal network has mechanisms to

build and consolidate associations. From this perspective, the high

degree of connectivity, the spatial extend of the hippocampal loop

(resulting in delays of signal transmission) and the parallel

processing ways within the loop might represent universal and

functionally meaningful principles of the hippocampus.
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