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Abstract: Image segmentation is the pixel-by-pixel detection of objects, which is the most challenging
but informative in the fundamental tasks of machine learning including image classification and
object detection. Pixel-by-pixel segmentation is required to apply machine learning to support fetal
cardiac ultrasound screening; we have to detect cardiac substructures precisely which are small and
change shapes dynamically with fetal heartbeats, such as the ventricular septum. This task is difficult
for general segmentation methods such as DeepLab v3+, and U-net. Hence, here we proposed a
novel segmentation method named Cropping-Segmentation-Calibration (CSC) that is specific to the
ventricular septum in ultrasound videos in this study. CSC employs the time-series information of
videos and specific section information to calibrate the output of U-net. The actual sections of the
ventricular septum were annotated in 615 frames from 421 normal fetal cardiac ultrasound videos of
211 pregnant women who were screened. The dataset was assigned a ratio of 2:1, which corresponded
to a ratio of the training to test data, and three-fold cross-validation was conducted. The segmentation
results of DeepLab v3+, U-net, and CSC were evaluated using the values of the mean intersection
over union (mIoU), which were 0.0224, 0.1519, and 0.5543, respectively. The results reveal the superior
performance of CSC.

Keywords: congenital heart disease; fetal cardiac ultrasound video; deep learning; segmentation;
ventricular septum
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1. Introduction

Congenital heart disease (CHD) is the most frequent congenital morphological abnormality,
occurring in approximately 1% of newborns and accounting for 20–40% of neonatal deaths attributable
to congenital diseases [1–5]. CHDs are related to abnormal pregnancy outcomes such as preeclampsia,
small for gestational age, placental disorders, and preterm birth [6]. Therefore, improved screening
for the most common CHDs may have consequences on the optimization of pregnancy management.
A ventricular septal defect (VSD) is the most common type of CHD. Fetuses with cyanotic CHD have
fetal growth restriction, impaired head growth [7]. A variety of CHDs contain VSDs, and the position
of the VSD can infer the types of CHD in some cases. Therefore, observation of the ventricular septum
is essential for the detection of CHD, which obstetrician and other examiners require high skill levels
for its clear depiction in fetal cardiac ultrasound screening.

In recent years, deep learning has been applied to medical image analysis, bringing about a
revolutionary impact on the existing diagnostic techniques. Image analysis includes image classification,
object detection, and image segmentation. Image classification determines whether an object is in the
image or not and is the most straightforward task [8]. On the other hand, object detection roughly
indicates an object’s location with a square box if it is in the image [9]. Image segmentation is the process
of partitioning a digital image into multiple segments pixel-by-pixel and has been applied to various
medical images such as retinal vessel and brain tumor detection [10,11]. The goal of segmentation
is to simplify and change the representation of an image into something that is more meaningful
and easier to analyze. For segmentation methods using deep learning, fully convolutional networks
(FCNs) [12], U-Net [13], SegNet [14], PSPNet (Pyramid Scene Parsing Network) [15], and DeepLab
(v1–v3+) [16,17] were developed. Among them, U-net, which is a combination of convolution,
deconvolution, and skip-connection, is frequently used for medical image segmentation. Furthermore,
DeepLab is a network that features pyramidal pooling modules. In addition, DeepLab v3+ incorporates
the encoder–decoder model, uses VGG (Visual Geometry Group) for the encoder part, and is currently
the state-of-the-art in the field of general image segmentation. In such a case, when compared with
other medical imaging modalities such as computerized tomography (CT), magnetic resonance imaging
(MRI), and pathological imaging, a limited number of studies have been conducted wherein deep
learning was applied to the ultrasound images [18]. In previous studies, classification was conducted
using echocardiography views [19,20], wall motion abnormalities [21], ventricular segmentation on
adult echocardiographic images. Ghesu et al. reported the detection and segmentation of the aortic
valve from three-dimensional (3D) ultrasound images. With respect to neonatal echocardiography [22],
Pereira et al. detected the coarctation of the aorta (CoA) by dividing the fetal cardiac ultrasound
images into patches, followed by classification using a neural network; the time-series information
of videos was not utilized [23]. Regarding fetal echocardiography, Yasutomi et al. used ultrasound
images synthesized with artificial shadows, and then trained the neural network to learn the features
of the shadows, which created a noise-resistant neural network [24]. Arnaout et al. reported the
segmentation results of the thorax, heart, spine, and each of the four cardiac chambers using U-net [25].
Their targets had a larger part than the ventricular septum, and no time-series information of videos
was employed.

With respect to the development of ultrasound machine learning technology, our research aims
to develop a novel method for image segmentation of ultrasound videos based on deep learning
on the four-chamber view, which is one of the standardized transverse scanning planes in fetal
cardiac ultrasound screening. The detection of the ventricular septum is challenging, given that a
ventricular septum is small and elongated, and its shape changes in accordance with the fetal heartbeat.
Furthermore, ultrasound videos contain numerous artifacts, thus increasing the difficulty associated
with the accurate determination of the ventricular septum shape. However, experts in fetal cardiac
ultrasound screening have overcome these problems using the following methods; (1) by directing
significant focus on the area around the ventricular septum and (2) distinguishing noise from actual
motion by identifying time-series changes in the ventricular septum from ultrasound videos. Here,
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we developed a novel method that integrated these expert techniques, namely, the utilization of
the cropped image information around the ventricular septum and the time-series information of
ultrasound videos (Figure 1). Finally, from a machine learning perspective, we tested the feasibility
of our proposed method for normal data without CHD cases. Not intending to get any clinical
findings, we investigated the performance comparison of the proposed method and the conventional
segmentation methods in this study.
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Figure 1. Cropped image and time-series image. (a) The “original image” is cropped and transforms
into the “cropped image”; the cropped image is segmented and transforms into the “segmented cropped
image”. The segmented cropped image is then restored to its original size and transforms into the
“segmented original image”. (b) A segmentation target image is labelled “t”, and pre-/post- time-series
images are labelled “t ± 1, 2, 3”. All of them were cropped.

2. Materials and Methods

In this study, we developed a novel method for segmenting the ventricular septum based on
U-net; called Cropping-Segmentation-Calibration (CSC). A key feature of our developed method is the
calibration of the results obtained from the U-net. To improve segmentation performance, a “cropping
module” and “calibration module” were added to our model. The area around the ventricular septum
was excluded from the cropped region using the previously developed YOLO (You Look Only Once)
object detection model (Supplementary Figure S1) [8]. The calibration module was employed for the
calibration of the segmentation results obtained using the U-net, which uses pre/post-images and the
complete image before cropping to process the noise and time-series information specific to ultrasound
videos. Figure 2 presents an overview of CSC. In the following sections, a detailed description of
each module is presented, in addition to the CSC network, training and inference methods, data,
evaluation methods, and comparison methods.
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Figure 2. Overview of Cropping-Segmentation-Calibration (CSC). A “cropping module” and
“calibration module” were added to improve the U-net-based segmentation results from the
“segmentation module”. The cropping module crops out the area around the ventricular septum.
Moreover, the calibration module, which consists of an encoder–decoder (ED) and a Visual Geometry
Group-backbone module (VGG), calibrated the output of the segmentation module. The ED utilizes
time-series information, and VGG utilizes original image information.

2.1. Cropping Module

The objective of the cropping module is to obtain images around the ventricular septum.
Supplementary Figure S1 presents an overview of the cropping module. YOLOv2 [26] was employed
to detect the bounding box (BBOX) of the ventricular septum. The BBOX contains information about
the location (X-coordinate of the center, Y-coordinate of the center, X-width, and Y-width; where (X, Y)
are the co-ordinates of the pixel), and the confidence level (real number within the range of 0–1) of
the object. The BBOX with the highest confidence level (>0.01), obtained by YOLOv2, is selected,
and the image is cropped within the range of the BBOX multiplied by 1.2 (X coordinate of the center,
Y coordinate of the center, X-width × 1.2, and Y-width × 1.2). The values are multiplied by 1.2 because
the objective of the cropping module is to crop the area around the ventricular septum with minimal
leakage and not to determine whether the object is a ventricular septum; although YOLO’s performance
is inadequate with an average precision of 0.220, multiplying the BBOX by 1.2 minimizes detection
leakage. The cropping of image Y according to a BBOX obtained by image X with YOLO parameters
θYOLO is denoted as follows:

Crop(Y, X; θYOLO).

CSC does not induce segmentation without a BBOX with a confidence level of 0.01 or higher.
A distinction can be made between a cropped image as the “cropped image” and an image that was
size-restored by embedding a cropped image based on BBOX information as the “original image”.
The training parameter θYOLO was optimized by ventricular septum-annotated ultrasound images
according to the standard training protocol of YOLOv2. The training data and results are shown in
Appendix A (Figure A1). In particular, the cropping module was inputted with ultrasound images
resized to 416 × 416 pixels, and the output was resized to 256 × 256 pixels. In YOLO, six frames
of the video Xt = ±1,2,3 at pre/post-times are inputted to calibration module, and the area around the
ventricular septum is cropped. The segmentation target images (Xt = 0) are also cropped as inputs of
the segmentation module (Figure 2).
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2.2. Segmentation Module

In the segmentation module, an improved version of U-net was introduced in pix2pix. The network
configuration is described in the following subsection. We feed a cropped image Crop(Xt = 0, Xt = 0;
θYOLO) to the U-net, and the U-net outputs a segmented image of the ventricular septum, as follows:

Seg(Xt = 0; θYOLO,θUNET) = UNET(Crop(Xt = 0, Xt = 0; θYOLO);θUNET).

It should be noted that each pixel of the segmented image is a real number within the range 0–1,
and it denotes the confidence of the segmentation thus performed.

2.3. Calibration Module

The calibration module is used to calibrate the results of the segmentation module using two
models; namely, the encoder–decoder model (denoted as E and D, respectively; with the synthesis
function denoted as ED) and the VGG-backbone model (denoted as VGG). Encoder E is populated
with pre/post-images (Crop(Xt = ±1,2,3, Xt = ±1,2,3; θYOLO), in which the ventricular septum is cropped
by YOLO. Moreover, E(Crop(Xt = ±1,2,3, Xt = ±1,2,3; θYOLO)) carries out the function of embedment,
which results in a compressed representation of the pre/post-event time information. The VGG
employed was the VGG-16 model [9] without the output layer pretrained using the ImageNet database
as the embedment for the original image. The original image Xt = 0 is inputted to the VGG, and the
embedment of Xt = 0 is obtained as VGG(Xt = 0; θVGG). With these two embedded images as inputs,
D outputs the pixel-by-pixel calibration values:

Cali(Xt = 0 ±1,2,3; θYOLO,θE,θD,θVGG) = D(E(Crop(Xt = ±1,2,3, Xt = ±1,2,3; θYOLO);θE))
∣∣∣∣∣∣ VGG(Xt = 0; θVGG);θD),

where “||” denotes the concatenation of the vectors. The output of the calibration module is the
segmented image, and each pixel of the segmented image, which is a real number ranging from 0
to 1 that denotes the confidence of segmentation. The output of the segmentation module and the
calibration module are integrated for each pixel to produce the final output of the CSC network. Hence,
the following is obtained,

Seg(Xt = 0; θYOLO,θUNET) + Cali(Xt = 0 ±1,2,3; θYOLO,θE,θD,θVGG),

where “+” denotes element-wise addition.

2.4. CSC Network

The cropping module employed YOLOv2, which is based on the CNN “darknet”, and has an
output layer that simultaneously outputs the position and confidence of a BBOX (see cropping module
section). For the segmentation module, U-net was improved in pix2pix. This U-net is based on
a CNN and employs convolutional layers and max-pooling layers for the encoder, in addition to
up-convolution for the decoder. The activation function was a rectified linear unit (ReLU), and a
50% dropout was applied to the last layer. The input size was 256 × 256 pixels, and the output was
256 × 256 pixels. Each pixel of the input was a real number ranging from -1 to 1, and each pixel of the
output was a real number ranging from 0 to 1 (Supplementary Figure S2a). For the calibration module,
the encoder employed a convolutional layer and max spooling, the decoder employed up-convolution;
and the activation function was ReLU. The VGG employed an ImageNet-trained VGG-16 network,
with the exception of the final layer. The input size was 224× 224 pixels, and the output was 2048 pixels.
The network of calibration modules is detailed in Supplementary Figure S2b.
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2.5. Training Procedure

The training was divided into Phase 1 and Phase 2 (Supplementary Figure S3a,b). In Training
phase 1, the embedding of pre/post-images was trained first (θE), followed by the training of the
decoder part (θD) of the ED and U-net (θUNET) in Training phase 2. Annotated images of the ventricular
septum Yt = 0, were used as ground truth labels in both phases; ground truth labels is another name for
answer labels. Moreover, θYOLO was trained using the dataset (Appendix A) based on θVGG ImageNet.

In Training phase 1, the decoder was defined as D̂, which was the same as D, with the exception
that the output was six images. Moreover, the training parameters of the encoder (θE) and those of
the decoder (θD̂) were trained to output exactly the same images as the input images Crop(Xt = ±1,2,3,
Xt = ±1,2,3; θYOLO) by inputting the cropped pre/post-time images of the training data into the ED
(Supplementary Figure S3a). Binary cross-entropy was used for the loss function:

Minimize Loss
θE, θ D̂

(
Crop(Xt = ±1, 2,3, Xt = ±1,2,3; θYOLO), D̂

(
E(Crop(Xt = ±1,2,3, Xt = ±1,2,3;θYOLO); θE);θ D̂

))
.

In Training phase 2, Decoder D̂ was replaced by Decoder D. The decoder part (θD) of the ED
and the U-net (θUNET) were then trained to achieve the maximum agreement between the integrated
images (output image of segmentation module and calibration module) and the ground truth labels
(module) (Supplementary Figure S3b). Hence, Phase 2 training can be described as follows:

Minimize Loss
θUNET, θD

(Crop(Yt = 0, Xt = 0; θYOLO), Seg(Xt = 0; θYOLO,θUNET)

+Cali(Xt = 0 ±1,2,3; θYOLO,θE,θD,θVGG)),

where the loss function was set as the per-pixel binary-cross entropy of the difference between the
output image and the ground truth label.

Phases 1 and 2 of training were conducted with an epoch of 200 and batch size of 12, and a model
was outputted in intervals of five epochs. The Adam optimizer was employed, and the learning rate
was 0.001. Among the output models, the model with the lowest loss in the validation data was used
for inference.

2.6. Data Preparation

2.6.1. Data Acquisition Method

In this study, we used 421 fetal cardiac ultrasound videos of 211 pregnant women who were
screened in the second trimester. The videos were captured at four Showa University Hospitals
(Tokyo and Yokohama, Japan). All women were enrolled in research protocols approved by the
Institutional Review Board of RIKEN, Fujitsu Ltd., Showa University, and the National Cancer Center
(approval identification number: Wako1 29-4). In addition, all methods were carried out in accordance
with the Ethical Guidelines for Medical and Health Research Involving Human Subjects; with respect
to the handling of data, the Data Handling Guidelines for the Medical AI project were followed.

Not only expert sonographers but also obstetricians with at least three years of experience obtained
ultrasound videos under the guidance of experts. Each video consisted of the sequential cross-sections
from the base of the heart to the vascular arches. Ultrasound videos of only normal cases diagnosed
by expert sonographers were used, which exhibited no observable structural abnormalities in the
fetuses. After birth, the pediatrician checked vitals and heartbeats daily for the first five to seven days.
In addition, the pediatrician performed a one-month postnatal check-up and all cases were finally
confirmed as normal. The videos were captured using ultrasonography machines (Voluson® E8 or
E10, GE Healthcare, Chicago, IL, USA) equipped with an abdominal 2–6 MHz transducer. A cardiac
preset was used, and images were magnified until the chest fills at least one half to two-thirds of
the screen, with an ultrasonic frequency of 40 Hz. In particular, 615 images with a four-chamber
view, which included the ventricular septum, were selected irrespective of the axis orientation and
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ventricular systolic/diastolic bias. Moreover, the set of three pre/post-frames in the video of the selected
images were extracted. Both the systolic and diastolic images were included in the segmentation target
images and pre/post-images. Given that the frame rate was 40 fps and the fetal heart rate in the second
trimester ranged from 140 to 160 bpm, the images at ±3, 6, and 9 frames were extracted around the
target image.

2.6.2. Data Preprocessing

The ventricular septa in the original images were annotated pixel-by-pixel, and the obstetricians
created the correct answer labels. No annotations were set for the pre/post-images; they were only
selected. The images and labels were 640 × 480 pixels, and the format was unified to the Portable
Networks Graphic (PNG) format. The dataset was split into training data and test data in a ratio of 2:1.
One-fifth of the training data were used as validation data. To perform three-fold cross-validation,
three datasets with different combinations of training and test data were prepared (Supplementary
Figure S4).

2.7. Metrics

The statistical indexes, intersection over union (IoU), and Dice coefficient (Dice) are generally used
to quantify the performance of image segmentation methods. When true-positive pixels are defined as
TP, false-negative pixels as FN, and false-positive pixels as FP, these indexes are calculated as follows:

IoU =
TP

TP + FP + FN

Dice =
2TP

2TP + FP + FN
.

For the inference results and correct labels, the IoU for each image was considered, and the
mean across all images was calculated; namely, the mean intersection over union (mIoU). In addition,
the Dice per image were considered, and the mean across all images was calculated; namely, the mean
Dice coefficient (mDice). To calculate these metrics, a confidence level of 0.5 was employed as the
threshold value for each pixel of the segmented image. In this study, three-fold cross-validation was
conducted, and the mIoU and mDice of the three datasets were calculated. The standard deviation was
calculated. In particular, the cropped images and original images were evaluated (Figure 1). The IoU
and Dice were calculated as 0 for each image in which YOLO failed to detect the ventricular septum.

2.8. Experiments and Comparison

First, the performance of the segmentation method DeepLab v3+ was compared with CSC.
This is the highest performing segmentation method in general imaging using the original U-net.
The settings of DeepLab v3+ were 30,000 iterations and four batches. Moreover, the image size was
513 × 513 pixels, the back-born network was VGG, and data augmentation was not applied. Stochastic
gradient descent with Nesterov momentum was employed with a momentum of 0.9, initial learning
rate of 0.007, decay rate of 0.9 per 2000 iterations. The source code of DeepLab v3+ is available at
https://github.com/mathildor/DeepLab-v3. Furthermore, the impact of each module on performance
due to variations in the combination of YOLO, ED, and VGG was evaluated (Supplementary Figure
S5). Finally, to determine whether the segmentation accuracy is influenced by the orientation of the
heart axis and ventricular systole/dilation, the performances of the varied combinations of the YOLO,
ED, and VGG were compared. To align the conditions, data augmentation was not conducted.

All original codes are available at https://github.com/rafcc/2020-prenatal-vs-segmentation, which is
implemented in Keras ver2.2 backend of TensorFlow ver1.12. All the experiments were carried out
using a computer cluster with an Intel(R) Xeon(R) central processing unit (CPU) E5-2690 v4 at 2.60 GHz,
GeForce GTX 1080 Ti.

https://github.com/mathildor/DeepLab-v3
https://github.com/rafcc/2020-prenatal-vs-segmentation
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3. Results

3.1. Data Characteristics

The median number of gestational weeks for the 211 pregnant women enrolled was 20 weeks
(range: 18–28 weeks) (Supplementary Figure S6). A total of 615 normal fetal cardiac ultrasound images
were selected from 421 ultrasound videos. The angle of insonation of VS changed little throughout
the ultrasound video. The mean and standard deviation of the angle between the ventricular septum
orientation and the ultrasound beam entry were 49◦ and 36◦, respectively. The minimum angle was
0◦, and the maximum angle was 174◦. This dataset was classified by the cardiac axis orientations,
which were divided into 297 images as apical, and 318 images as non-apical; we defined apical as the
ventricular septum orientation within ±30 degrees when the vertical direction was set to 0 degrees,
and non-apical as anything else. Moreover, when classified by the ventricular systolic state, the dataset
was divided into 301 images classified as systole and 314 classified as diastole (Table 1).

Table 1. Distribution of test data classified by cardiac axis orientation and ventricular systolic state.

Ventricular
Systolic State Apical Non-Apical Total

Systole 183 118 301
Diastole 114 200 314

Total 297 318 615

3.2. Comparison with the Existing Methods

First, Figure 3 presents a comparison of the segmentation results of CSC with those of DeepLab
v3+ and the original U-net. CSC detected the ventricular septum in most of the images; whereas,
using the other methods, the ventricular septum was detected in only a few images.Biomolecules 2020, 10, x 9 of 17 
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Figure 3. Representative examples of the ventricular septum segmentation images in test data
for the existing methods (DeepLab v3+ and U-net) and CSC (Cropping-Segmentation-Calibration).
One horizontal row presents the segmentation results with respect to each method for the same case.
The white pixels are estimated as the ventricular septum, and the degree of whiteness indicates the
confidence level. Among the three methods, the segmentation results of CSC were most in accordance
with the ground truth.
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A discussion is presented on the effect of cropping using numerical metrics. Table 2 presents the
results of the mIoU and mDice calculated for each method. The mIoU and mDice calculated from the
segmentation results and ground truth labels were 0.5543 and 0.6891, respectively; the segmentation
from the cropped images was slightly improved.

Table 2. Evaluation of segmentation results obtained using existing methods (DeepLab v3+ and U-net)
and CSC (Cropping-Segmentation-Calibration) with respect to the mIoU and mean Dice coefficient
(mDice).

Method
mIoU mDice

Original Image Cropped Image Original Image Cropped Image

DeepLab v3+ 0.0224 ± 0.0085 0.0382 ± 0.0140
U-net 0.1519 ± 0.0596 0.2238 ± 0.0777
CSC (Ours) 0.5543 ± 0.0081 0.5598 ± 0.0067 0.6891 ± 0.0104 0.6950 ± 0.0074

The values are the mean ± standard deviation of the three datasets for cross-validation. CSC yielded the highest
values. Moreover, the cropped images yielded slightly higher values than the original images in CSC.

Third, a discussion is presented on the difference between CSC and existing methods. The mIoU
(mDice) was 0.0224 (0.0382), 0.1519 (0.2238), and 0.5543 (0.6891) for DeepLab v3+, the original U-net,
and CSC, respectively. CSC yielded the highest value. From a comparison between DeepLab v3+ and
the original U-net with respect to medical imaging, several studies reported that DeepLab was superior
to U-net [27]; whereas, other studies reported otherwise [28]. In this study, U-net exhibited superior
performance to DeepLab.

3.3. Comparison of Modules

To evaluate the effectiveness of the YOLO, ED, and VGG modules, different combinations of
modules were tested (Figure 4). The segmentation images revealed that the accuracy improved notably
using YOLO. When ED was added to YOLO, the detection range increased; when VGG was added,
a portion of the overspread pixels was excluded.

Table 3 presents the mIoU and mDice for each module combination involving YOLO. For the three
combinations of U-net + YOLO, U-net + YOLO + ED, and U-net + YOLO + ED + VGG; the mIoU (mDice)
of the cropped and the original images were 0.5424 (0.6782)/0.5373 (0.6724), 0.5587 (0.6944)/0.5533
(0.6885), and 0.5598 (0.6950)/0.5543 (0.6891), respectively. For each combination, the mIoU and mDice
were slightly higher before restoration to the original image size than after restoration.

From a comparison of the combinations with and without YOLO, the mIoU and mDice increased
significantly for those with YOLO. For each of the three patterns, namely, U-net, U-net + ED,
and U-net + ED + VGG, the mIoU (mDice) with and without YOLO were 0.1519 (0.2238)/0.5373 (0.6724),
0.0633 (0.0996)/0.5533 (0.6885), and 0.0902 (0.1400)/0.5543 (0.6891), respectively. Although the cropping
module was set to increase recall, several images could not be cropped. Among the 615 ultrasound
images, YOLO failed to detect the ventricular septum in four images, irrespective of whether the
ventricular septum was included; these four images were also not segmented. As shown in Case 11 in
Figure 4, the ventricular septum was not included in the 13 cropped images. Although there were
several images in which part of the septum was excluded during cropping, the segmentation accuracy
increased due to the YOLO cropping.

The addition of ED to YOLO increased the mIoU (mDice) from 0.5373 (0.6724) to 0.5533 (0.6885).
When VGG was added, mIoU (mDice) increased from 0.5533 (0.6885) to 0.5543 (0.6891), thus exhibiting
a slight upward trend. In contrast, without YOLO cropping, the mIoU (mDice) decreased from 0.1519
(0.2238) to 0.0633 (0.0996) when ED was added. When VGG was added, the mIoU (mDice) increased
from 0.0633 (0.0996) to 0.0902 (0.1400), thus indicating an improvement; however, that of the original
U-net was still higher.
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improved the segmentation. Moreover, the addition of VGG slightly narrowed the prediction section.

Table 3. Evaluation of segmentation results for each combination of modules with respect to the mIoU
and mDice.

U-Net YOLO ED VGG
mIoU mDice

Original Image Cropped Image Original Image Cropped Image

X 0.1519 ± 0.0596 0.2238 ± 0.0777
X X 0.0633 ± 0.0372 0.0996 ± 0.0538
X X X 0.0902 ± 0.0304 0.1400 ± 0.0442
X X 0.5373 ± 0.0134 0.5424 ± 0.0107 0.6724 ± 0.0188 0.6782 ± 0.0153
X X X 0.5533 ± 0.0139 0.5587 ± 0.0138 0.6885 ± 0.0141 0.6944 ± 0.0123
X X X X 0.5543 ± 0.0081 0.5598 ± 0.0067 0.6891 ± 0.0104 0.6950 ± 0.0074

The values are the mean ± standard deviation of the three datasets for cross-validation. CSC with the combination
of all modules yielded the highest values. Moreover, YOLO significantly contributed to the improvement of
segmentation accuracy. The cropped images yielded slightly higher values than the original images for all module
combinations, including the YOLO. With YOLO, the addition of the ED improved the segmentation accuracy.
In contrast, without YOLO, the addition of ED decreased the segmentation accuracy. Upon the addition of VGG,
a slight upward trend was observed.

3.4. Effects of Cardiac Axis Orientation and Ventricular Systolic State

To assess the influence of the cardiac axis orientation and ventricular systolic state on segmentation
accuracy, the segmentation images of the test data for each combination of modules was classified
according to the cardiac axis orientation (apical group vs. non-apical group) and ventricular systolic
state (systolic group vs. diastolic group) (Figure 5). We defined apical as the ventricular septum
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orientation within ± 30 degrees when the vertical direction was set to 0 degrees, and non-apical as
anything else.
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Figure 5. Representative examples of the ventricular septum segmentation images classified by the
cardiac axis orientation and ventricular systolic state, from the test data, for each module combination.
One horizontal row presents the segmentation results obtained using each method for the same case.
The white pixels are estimated as the ventricular septum, and the whiteness indicates the confidence
level. The segmentation results were more accurate for the apical group than for the non-apical group,
and more accurate for the diastolic group than for the systolic group, irrespective of the module
combination. The addition of the YOLO significantly improved the segmentation accuracy, and the
addition of the ED further improved it, irrespective of cardiac axis orientation and ventricular systolic
state. Moreover, the addition of VGG slightly improved the segmentation accuracy for the systolic and
non-apical groups.

The mIoU and mDice were calculated for each group (Tables 4 and 5). The segmentation accuracy
was higher for the apical group than for the non-apical group, and higher for the diastolic group than
for the systolic group, irrespective of the module combination. CSC yielded the highest value in the
non-apical group. In particular, the mIoU (mDice) for the non-apical group with respect to CSC was
0.5255 (0.6688). However, in the apical group, U-net + YOLO + ED yielded the highest value, in that
the mIoU (mDice) was 0.5889 (0.7146). From the comparison between the diastolic and systolic groups,
CSC yielded the highest value in the systolic group, in that the mIoU (mDice) was 0.5435 (0.6755).
However, in the diastolic group, U-net + YOLO + ED yielded the highest value, in that the mIoU
(mDice) was 0.5655 (0.7037).
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Table 4. Segmentation evaluation by mIoU and mDice for each module combination when divided by
the orientation of the heart axis.

U-Net YOLO ED VGG
mIoU mDice

Apical Non-Apical Apical Non-Apical

X 0.1878 ±0.1097 0.1213 ± 0.0186 0.2697 ± 0.1410 0.1845 ± 0.0261
X X 0.5793 ± 0.0315 0.4990 ± 0.0058 0.7064 ± 0.0405 0.6417 ± 0.0086
X X X 0.5889 ± 0.0265 0.5210 ± 0.0160 0.7146 ± 0.0351 0.6653 ± 0.0140
X X X X 0.5855 ± 0.0167 0.5255 ± 0.0016 0.7114 ± 0.0264 0.6688 ± 0.0026

The values are the mean ± standard deviation of the three datasets for cross-validation. The apical group yielded
higher values than the non-apical group. The addition of the YOLO significantly improved the segmentation
accuracy, and the addition of the ED further improved it, irrespective of the cardiac axis orientation. The addition of
the VGG contributed to the higher values in the apical group.

Table 5. Segmentation evaluation by mIoU and mDice for each combination of modules when divided
by the ventricular systolic state.

U-Net YOLO ED VGG
mIoU mDice

Systole Diastole Systole Diastole

X 0.1397 ± 0.0686 0.1631 ± 0.0528 0.2072 ± 0.0914 0.2388 ± 0.0677
X X 0.5255 ± 0.0158 0.5491 ± 0.0114 0.6567 ± 0.0235 0.6882 ± 0.0146
X X X 0.5413 ± 0.0196 0.5655 ± 0.0065 0.6733 ± 0.0186 0.7037 ± 0.0067
X X X X 0.5435 ± 0.0102 0.5648 ± 0.0073 0.6755 ± 0.0127 0.7026 ± 0.0073

The values are the mean ± standard deviation of the three datasets for cross-validation. The diastolic group yielded
higher values than the systolic group. The addition of the YOLO significantly improved the segmentation accuracy,
and the addition of the ED further improved it, irrespective of the ventricular systolic state. The addition of the
VGG contributed to the higher values in the systolic group.

The combination of U-net and YOLO significantly improved the segmentation accuracy, and the
further addition of ED slightly improved the accuracy; irrespective of the cardiac axis orientation
and ventricular systolic state. However, when VGG was added, there was a slight decrease in the
accuracy in the apical and diastolic groups. Both groups exhibited relatively high accuracies without
the addition of VGG. Moreover, the non-apical and systolic groups yielded relatively low accuracies,
which slightly increased after the addition of VGG.

4. Discussion

The importance of fetal cardiac ultrasound screening has recently been promoted to improve
the prenatal detection rate and provide effective treatment for CHDs [29]. As major CHDs often
contain VSDs and the ventricular septum is an important site for determining the cardiac axis and
position, a detailed observation of the ventricular septum is essential. However, it is challenging to
accurately detect the ventricular septum from ultrasound videos given the numerous artifacts and
non-uniform image quality. To overcome these issues and facilitate ventricular septum detection,
we proposed a novel segmentation method that is specific to the ventricular septum in ultrasound
videos. With respect to the video segmentation, in several studies, the time-series information and
object detection techniques were used [30,31]. However, fetal cardiac ultrasound is not an appropriate
target for conventional time-series segmentation methods using optical flow, due to the rapid variations
in the shape of the heart, in addition to the emergence and disappearance of various substructures of the
heart in ultrasound videos. Yu et al. employed cropped images and time-series information to segment
the left ventricle of a fetal heart; however, the target was larger than the ventricular septum, and the
cropping around the target was performed manually [32]. With respect to the diagnostic techniques
of the experts in fetal cardiac ultrasound screening, CSC employs the cropped image information
around the ventricular septum and the time-series information of ultrasound videos. In this study,
the number of annotated images was small in comparison to previous reports of segmentation on fetal
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echocardiographic images [22,31]. To overcome this issue and validate the accuracy of the method,
we employed six times as many unannotated time-series images of the comparable number of cases.

Compared with the existing segmentation methods, namely, DeepLab v3+ and the original U-net,
the ventricular septum detection accuracy was significantly improved by CSC, both visually and
numerically, and this method is useful for the detection of the detailed structures of the heart from fetal
ultrasound images. From a comparison of the mIoU and mDice for the cropped and original images
segmented by CSC, both values were slightly higher for the cropped images. It is highly probable
that this was because, in several images, portions of the ventricular septum were excluded due to
cropping, and the excluded pixels were calculated as FN in the original size image, which resulted in
the reduction of the IoU and Dice.

Finally, we compared the calculation time. For one CPU and one GPU (see Section 2.8 for
details), the CSC computation time was 0.1343 s, with a standard deviation of 0.1023 s per image.
For comparison, the computation time for U-net was an average of 0.0556 s and a standard deviation
of 0.0027 s per image. CSC achieved more than three times the performance improvement in about
three times the computation time of U-net. Thus, CSC is considered to be sufficiently practical to
support examiners in fetal cardiac ultrasound screening.

4.1. Combination Analysis of Modules

Among YOLO, ED, and VGG added to the U-net in CSC, YOLO was found to be the most effective
in improving the accuracy. With respect to general images, it was suggested in several studies that the
integration of object detection and segmentation, i.e., instance segmentation, is useful. When the size
of the object to be segmented is small, as is the case with the ventricular septum, it is useful to target
the segmentation area by cropping, as this reduces the risk of detecting the wrong area.

Given that the mIoU and mDice were increased by the addition of ED to YOLO, the video
time-series information was considered as useful for the segmentation of the ultrasound images.
Figure 4 (Cases 6, 7, 10, and 12) shows that the segmentation section expanded to compensate for
the noise upon the addition of ED. Without YOLO cropping, the addition of time-series information
by ED decreased the mIoU and mDice, thus indicating that YOLO is essential when employing
time-series information. In addition, the addition of pre- and post-timing images may allow for the
more unnecessary information to be incorporated, instead of the necessary information. With respect
to the U-net + ED results for Cases 7, 10, 11, and 12, as shown in Figure 4, the addition of ED decreased
the prediction accuracy; thus, it was difficult to identify the ventricular septum. When VGG was
added to U-net + YOLO + ED, an improvement in the accuracy was expected by the incorporation of
information from the complete image before cropping. However, a slight upward trend was observed.
On the basis of the segmentation images, VGG fine-tuned and reduced the number of pixels that were
over-extended by the ED.

4.2. Heart Axis and Ventricular Systole

When comparing the segmentation accuracy with respect to the cardiac axis orientation,
the accuracy was higher in the apical group than in the non-apical group. It is highly probable
that this was because the segmentation images underestimated the ventricular septum. Therefore,
the larger segmentation of the ventricular septum in the images resulted in a larger FN, and therefore
a larger denominator in the IoU and Dice formulas, thus yielding lower values. Accordingly, it was
assumed that the slightly higher mIoU and mDice in the apical group was due to the elongated
ventricular septum and narrower detection target of the apical group. For more detailed explanation,
see Appendix B. Similarly, the mIoU and mDice were slightly higher for the diastolic group than the
systolic group, which can be attributed to the thicker septum, and the target to be detected was larger
in the systolic group. The addition of VGG with respect to the non-apical and systolic groups slightly
increased the mIoU and mDice; thus, the VGG may slightly compensate for the difference of the object.
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4.3. Limitations

There are several limitations in this study. First, only four-chamber view images were used in
this study. The ventricular septum has a different appearance from other views, such as the short-axis
view, long-axis view, and five-chamber view. To detect the ventricular septum from a particular
view, we need more training data from various views. Second, the examiners captured fetal cardiac
ultrasound videos in the dataset using the same type of ultrasonography machine and typical settings
for fetal cardiac ultrasound screening. Hence, the reproducibility of applying CSC to other videos,
which general examiners take with different equipment and settings, is unknown and needs to be
verified in future work. Third, the implementation of CSC requires a GPU-equipped PC so that it
comes at a certain cost. Depending on the performance of GPU and the method of implementation,
the algorithm may be time-consuming. Finally, we only employed normal data in this study and
did not employ abnormal data such as VSDs. Therefore, CSC is a method for precisely detecting the
normal ventricular septum and not for detecting abnormalities. Additionally, we did not compare
CSC with manual operations of clinicians in the accuracy of detecting the ventricular septum. Thus,
CSC has shown progress as a segmentation method in ultrasound videos; however, it is not directly
applicable to clinical applications in the present form.

5. Conclusions

In this study, a novel method was developed for the precise segmentation of the ventricular septum
in fetal cardiac ultrasound videos using the cropped and original image information, in addition
to the time-series information. CSC showed a considerable improvement in segmentation accuracy
comparing with other representative segmentation methods. For future work, the next step is to
validate algorism using normal and abnormal data in experimental settings. The final goal is the
automatic detection of ventricular septal abnormalities in clinical settings. Another direction is the
automatic measurement of cardiac indexes, such as the cardiac axis.
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Appendix A

Datasets and results of YOLOv2: Figure A1 describes YOLO’s pretraining. 6122 normal ultrasound
images were employed for the training data, 1051 images for the test data, and 1009 images for the
validation data. Among the 6122 images in the training data, 1083 were positive data containing the
ventricular septum, and 5035 images were negative data without the ventricular septum. Among the
1051 images in the test data, 247 were positive data and 804 were negative data. Among the
1009 images in the validation data, 351 were positive data and 658 were negative data. This dataset

http://www.mdpi.com/2218-273X/10/11/1526/s1
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was independently produced from the same video dataset of this study. The average precision of the
ventricular septum detection was 0.220 (IoU = 0.5) for the test data, whereas it was 0.376 (IoU = 0.5)
for the validation data. Moreover, YOLO successfully detected the ventricular septum; however,
its specific location was not identified.
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Appendix B

In this appendix, we further discuss why CSC performance of the apical group is higher than that
of the non-apical group. This is because the task settings for image segmentation make the non-apical
group a more difficult problem to solve than the apical group.

For the ground truth label in Figure 5, the apical group showed little change (Figure 5, cases 13–16),
but the non-apical group showed a large change (Figure 5, cases 18–20). This is because the ultrasound
reflects more easily in the non-apical group than in the apical group. Therefore, the changes in the
shape of the ventricular septum are more easily captured in the non-apical group. In other words,
the non-apical group had more variation in ground truth labels than the apical group.

Thus, the algorithm needs to capture more variation in the non-apical group than in the apical
group if ventricular septal segmentation is considered as a task of image segmentation. Hence, it is
more difficult for a machine learning algorithm to segment accurately in the non-apical group than in
the apical group. This does not mean that the apical group is easier for humans to observe than the
non-apical group. In fact, not only for CSC but also for U-net, the performance of the apical group is
higher than that of the non-apical group. This indicates that segmentation in the non-apical group is
more difficult than in the apical group and this is not a CSC-specific characteristic.
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