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Abstract: Model-free variable selection has attracted increasing interest recently due to its flexibility
in algorithmic design and outstanding performance in real-world applications. However, most of the
existing statistical methods are formulated under the mean square error (MSE) criterion, and susceptible
to non-Gaussian noise and outliers. As the MSE criterion requires the data to satisfy Gaussian noise
condition, it potentially hampers the effectiveness of model-free methods in complex circumstances.
To circumvent this issue, we present a new model-free variable selection algorithm by integrating kernel
modal regression and gradient-based variable identification together. The derived modal regression
estimator is related closely to information theoretic learning under the maximum correntropy criterion,
and assures algorithmic robustness to complex noise by replacing learning of the conditional mean with
the conditional mode. The gradient information of estimator offers a model-free metric to screen the key
variables. In theory, we investigate the theoretical foundations of our new model on generalization-bound
and variable selection consistency. In applications, the effectiveness of the proposed method is verified by
data experiments.

Keywords: modal regression; maximum correntropy criterion; variable selection; reproducing kernel
Hilbert space; generalization error

MSC: 62J02; 68T05; 62F35

1. Introduction

Variable selection has attracted increasing attention in the machine learning community due to the
massive requirements of high-dimensional data mining. Under different motivations, many variable
selection methods have been constructed and shown promising performance in various applications.
From the viewpoint of hypothesis function space, there are mainly two types of variable selection
approaches with respect to linear assumption and nonlinear additive assumption, respectively.
For the linear model assumption, variable selection algorithms are usually formulated based on
the least-squares empirical risk and the sparsity-induced regularization, which include Least Absolute
Shrinkage and Selection Operator (Lasso) [1], Group Lasso [2] and Elastic net [3] as special examples.
For the nonlinear additive model assumption, various additive models have been developed to relax
the linear restriction on regression function [4,5]. It is well known that additive models enjoy the
flexibility and interpretability of their representation and can remedy the curse of dimensionality of
high-dimensional nonparametric regression [6–8]. Typical examples of additive models include Sparse
Additive Models (SpAM) [9], Component Selection and Smoothing Operator (COSSO) [10] and Group
Sparse Additive Models (GroupSpAM) [11]. Most of the above approaches are formulated under
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Tikhonov regularization scheme with special hypothesis function space (e.g., linear function space,
nonlinear function space with additive structure).

More recently, some works have been made in [12–15] to alleviate the restriction on the hypothesis
function space, which just require that the regression function belongs to a reproducing kernel Hilbert
space (RKHS). In contrast to the traditional structure assumption on regression function, these methods
identify the important variable via the gradient of kernel-based estimator. There are two strategies to
improve the model flexibility through the gradient information of predictor. One follows the learning
gradient methods in [13,14,16], where the functional gradient is used to construct the loss function
for forming the empirical risk. Under this strategy, two model-free variable selection methods are
presented by combining the error metric associated with the gradient information of estimator and
the coefficient-based `2,1-regularizer in [13] and ‖ · ‖K-regularizer in [14], respectively. In particular,
the variable selection consistency is also established based on the properties of RKHS and mild
parameter conditions (e.g., the regularization parameter, the width of kernel). The other follows
the structural sparsity issue in [15,17], where the functional gradient is employed to construct the
sparsity-induced regularization term. Rosasco et al. in [17] proposes a least-squares regularization
scheme with nonparametric sparsity, which can be solved by an iterative procedure associated with
the theory of RKHS and proximal methods. Magda et al. [15] introduces a nonparametric structured
sparsity by considering two regularizers based on partial derivatives and offers its optimization
with the alternating direction method of multiples (ADMM) [18]. Moreover, to further improve the
computation feasibility, a three-step variable selection algorithm is developed in [12] with the help of
the three building blocks: kernel ridge regression, functional gradient in RKHS, and a hard threshold.
Meanwhile, the effectiveness of the proposed algorithm in [12] is supported by theoretical guarantees
on variable selection consistency and empirical verification on simulated data.

Despite the aforementioned methods showing promising performance for identifying the active
variables, all of them rely heavily on the least-squares loss under the MSE criterion, which is sensitive
to non-Gaussian noise [19,20], e.g., the heavy-tailed noise, the skewed noise, and outliers. In essence,
learning methods under MSE aim to find an approximator to the conditional mean based on empirical
observations. When the data are contaminated by a complex noise without zero mean, the mean-based
estimator is difficult to reveal with the intrinsic regression function. This motivates us to formulate a
new variable selection strategy in terms of other criterion with respect to different statistical metric
(e.g., the conditional mode). Following the research line in [12,19], we consider a new robust variable
selection method by integrating the issues of modal regression (for estimating the conditional mode
function) and variable screening based on functional derivatives. To the best of our knowledge, this is
the first paper to address robust model-free variable selection.

Statistical models for learning the conditional mode can be traced back to [21,22], which include
the local modal regression in [23,24] and the global modal regression in [25–27]. Recently, the idea of
modal regression has been successfully incorporated into machine learning methods from theoretical
analysis [19] and application-oriented studies (e.g., cognitive impairment prediction [20] and cluster
estimation [28]). Particularly, Feng et al. [19] considers a learning theory approach to modal regression
and illustrates some relations between modal regression and learning under the maximum correntropy
criterion [29–31]. In addition, Wang et al. [20] formulates a regularized modal regression (RMR) under
modal regression criterion (MRC), and establishes its theoretical characteristics on generalization
ability, robustness, and sparsity. It is natural to extend the RMR under linear regression assumption to
general model-free variable selection setting.

Inspired by recent works in [12,19], we propose a new robust gradient-based variable selection
method (RGVS) by integrating the RMR in RKHS and the model-free strategy for variable screening.
Here, the kernel-based RMR is used to construct the robust estimator, which can reveal the truly
conditional mode, even when facing data with non-Gaussian noise and outliers. Moreover, we evaluate
the information quantity of each input variable by computing the corresponding gradient of estimator.
Finally, a hard threshold is used to identify the truly active variables after offering the empirical norm
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of each gradient associated with hypothesis function. The above three steps assure the robustness and
flexibility of our new approach.

To better highlight the novelty of RGVS, we present Table 1 to illustrate its relation with other
related methods, e.g., linear models (Lasso [1], RMR [20]), additive models (SpAM [9], COSSO [10]),
and General variable selection Method (GM) [12].

Our main contributions can be summarized as follows.

• We formulate a new RGVS method by integrating the RMR in RKHS and the model-free strategy
for variable screening. This algorithm can be implemented via the half-quadratic optimization [32].
To our knowledge, this algorithm is the first one for robust model-free variable selection.

• In theory, the proposed method enjoys statistical consistency on regression estimator under
much general conditions on data noise and hypothesis space. In particular, the learning rate
with polynomial decay O(n− 2

5 ) is obtained, which is faster than O(n− 1
7 ) in [20] for linear RMR.

It should be noted that our work is established under the MRC, while all previous model-free
methods are formulated under the MSE criterion. In addition, variable selection consistency is
obtained for our approach under a self-calibration condition.

• In application, the proposed RGVS shows the empirical effectiveness on both simulated and
real-world data sets. In particular, our approach can achieve much better performance than the
model-free algorithm in [12] for complex noise data, e.g., containing Chi-square noise, Exponential
noise, and Student noise. Experimental results together with theoretical analysis support the
effectiveness of our approach.

The rest of this paper is organized as follows. After recalling the preliminaries of modal regression,
we formulate the RGVS algorithm in Section 2. Then, theoretical analysis, optimization algorithm,
and empirical evaluation are provided from Section 3 to Section 5 respectively. Finally, we conclude
this paper in Section 6.

Table 1. Properties of different regression algorithms.

Lasso [1] RMR [20] SpAM [9] COSSO [10] GM [12] Ours

Learning criterion MSE MRC MSE MSE MSE MRC
Model assumption linear linear additive additive model-free model-free

2. Gradient-Based Variable Selection in Modal Regression

Let X ∈ Rp and Y ∈ R be a compact input space and an output space, respectively. We consider
the following data-generating setting

y = f ∗(x) + ε, (1)

where x ∈ X , y ∈ Y and ε is a random noise. For the feasibility of theoretical analysis, we denote
the intrinsic distribution of (x, y) ∈ Z := (X ,Y) generated in (1) as ρ. Let z = {(xi, yi)}n

i=1 ∈ Zn be
empirical observations drawn independently according to the unknown distribution ρ. Unlike sparse
methods with certain model assumption (e.g., Lasso [1], SpAM [9]), the gradient-based sparse
algorithms [12,13] mainly aim at screening out the informative variables according to the gradient
information of intrinsic function. For input vector u = (u1, ..., up)T ∈ Rp, the variable information
is characterized by the gradient function g∗j (u) := ∂ f ∗(u)/∂uj. Clearly, g∗j (u) = 0 implies that the
j-th variable is uninformative [12,17]. Considering an `2-norm measure on the partial derivatives,
we denote the true active set as

S∗ = {j : ‖g∗j ‖2
2 > 0}, (2)

where ‖g∗j ‖2
2 =

∫
X (g∗j (x))2dρX (x) and ρX is the marginal distribution of ρ.
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Indeed, all the gradient-based variable selection algorithms [12,13,17] are constructed under
Tikhonov regularization scheme in RKHSHK [33,34]. The RKHSHK associated with the Mercer kernel
K is the closure of the linear span of {Kx := K(x, ·) : x ∈ X}. Such a Mercer kernel K : X ×X → R
is a symmetric and positive semi-definite function. Denote < ·, · >K as the inner product in HK,
the reproducing properties of RKHS means < f , Kx >K= f (x), ∀ f ∈ HK.

2.1. Gradient-Based Variable Selection Based on Kernel Least-Squares Regression

In this subsection, we recall the gradient-based variable selection algorithm in [12] associated
with least-squares error metric. When the noise ε in (1) satisfies E(ε|X) = 0 (i.e., Gaussian noise),
the regression function equals to the conditional mean, which can be represented by

f ∗(x) = E(Y|X = x) =
∫
Y

ydρY|X=x(y). (3)

Here ρY|X=x denotes the conditional distribution of Y given x. Theoretically, the regression
function f ∗ in (3) is the minimizer of expected least-squares risk

E( f ) =
∫
Z
(y− f (x))2dρ(x, y).

As ρ is unknown in practice, we cannot get f ∗ directly by minimizing E( f ) over certain hypothesis
space. Given training samples z, the empirical risk with respect to the expected risk E( f ) is denoted by

Ez( f ) =
1
n

n

∑
i=1

(yi − f (xi))
2. (4)

The gradient-based variable selection algorithm in [12] depends on the estimator defined as below:

f̃z = arg min
f∈HK
{Ez( f ) + λ|| f ||2K}, (5)

where λ > 0 is the regularization parameter and || f ||K is the kernel-norm of f . The properties of
RKHS [33] assure that

f̃z(x) =
n

∑
i=1

α̃iK(xi, x) = (α̃z)
TKn(x),

where Kn(x) = (K(x1, x), · · · , K(xn, x))T ∈ Rn and α̃z = (α̃1, · · · , α̃n)T ∈ Rn. Denote K =

(Kn(x1), · · · , Kn(xn)) ∈ Rn×n and Y = (y1, ..., yn)T ∈ Rn, the closed-form solution is

α̃z = (KTK + nλK)−1KY.

Following Lemma 1 in [12], for any j ∈ {1, · · · , p}, we have g̃j(x) = (α̃z)T∂jKn(x), where

∂jKn(u) =
(∂K(x1, u)

∂uj
, ...,

∂K(xn, u)
∂uj

)T
, u = (u1, ..., up)

T ∈ X .

After imposing the empirical norm on g̃j, i.e.,

‖g̃j‖2
n =

1
n

n

∑
i=1

(g̃j(xi))
2,

we get the estimated active set
S̃ = {j : ‖g̃j‖2

n > vn},

where vn is a pre-configured constant for variable selection.
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The general variable selection method has shown some theoretical advantages in [12], e.g.,
the representation flexibility and the computation feasibility. However, the gradient-based method [12]
may result in a degraded performance for real-world data without the zero-mean noise condition.
Inspired by the modal regression [19,35] to learn the conditional mode, we propose a new robust
gradient-based variable selection method under much general noise condition.

2.2. Robust Gradient-Based Variable Selection Based on Kernel Modal Regression

Unlike the traditional zero-mean noise assumption [12,17], the modal regression requires that the
conditional mode of random noise ε is zero for any x ∈ X , i.e.,

mode(ε|X = x) = arg max
t∈R

Pε|X(t|X = x) = 0,

where Pε|X is the conditional density of ε conditioned on X. In fact, this assumption imposes no
restrictions on conditional mean, and can include the heavy-tailed noise, the skewed noise, and outliers.
Then, we can verify that the mode-regression function

f ∗(x) = mode(Y|X) = arg max
t∈R

PY|X(t|X = x), (6)

where PY|X(·|X) denotes the conditional density of Y conditioned on x ∈ X . It is worth noting
that PY|X(·|X = x) is assumed to be unique and existing here. As shown in [19,20], f ∗ in (6) is the
maximizer of the MRC over all measurable functions, which is defined as

R( f ) =
∫
X

PY|X( f (x)|X = x)dρX (x).

The maximizer of R( f ) is difficult to be obtained since both PY|X and ρX are unknown.
Fortunately, Theorem 5 of [19] has proved thatR( f ) = PE f (0), where PE f (0) is the density function of
E f = Y− f (x) at 0 and which can be easily approximated by the kernel density method [20]. With the
help of modal kernel Kσ : R×R→ R for the density estimation, we can formulate an empirical kernel
density estimator P̂E f at 0

P̂E f (0) =
1

nσ

n

∑
i=1

Kσ(yi − f (xi), 0) =
1

nσ

n

∑
i=1

Kσ(yi, f (xi)) := Rσ
z ( f ). (7)

Setting φ( y− f (x)
σ ) := Kσ(y, f (x)), we get the corresponding expected version

Rσ( f ) =
1
σ

∫
X×Y

φ(
y− f (x)

σ
)dρ(x, y). (8)

In addition, the modal regression also can be interpreted by minimizing a mode-induced error
metric [19]. When φ(u) ≤ φ(0) for any u ∈ R, the mode-induced loss can be defined as

Lσ(y− f (x)) = σ−1(φ(0)− φ((y− f (x))/σ)),

which is related closely with the correntropy-induced loss in [19,36]. Given training samples z =

{(xi, yi)}n
i=1, we can formulate the RMR in RKHS as

fz = arg max
f∈HK

{
Rσ

z ( f )− λ|| f ||2K
}

, (9)

where λ > 0 is a turning parameter that controls the complexity of the hypothesis space, and ‖ f ‖2
K =

〈 f , f 〉K is the kernel-norm of f ∈ HK.
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Denote α̂ = (α̂1, ..., α̂n)T ∈ Rn, Kn(x) = (K(x1, x), ..., K(xn, x))T ∈ Rn and K = (K(xi, xj))
n
i,j=1 ∈

Rn×n. From the representer theorem of kernel methods, we can deduce that

fz(x) =
n

∑
i=1

α̂z,iK(xi, x) = α̂T
z Kn(x),

with

α̂z = arg max
α∈Rn

{ 1
nσ

n

∑
i=1

φ(
yi −KT

n (xi)α

σ
)− λαTKα

}
. (10)

From Lemma 1 in [12], we know that for any f ∈ HK and u = (u1, ..., up)T ∈ Rp,

ĝj(u) =
∂ f (u)

∂uj
= 〈 f ,

∂K(u, ·)
∂uj

〉K.

The empirical measure on gradient function ĝj(x) is

‖ĝj‖2
n =

1
n

n

∑
i=1

(ĝj(xi))
2 =

1
n

n

∑
i=1

(α̂T
z ∂jKn(xi))

2. (11)

Then, the identified active set can be written as

Ŝ = {j : ‖ĝj‖2
n > vn}, (12)

where vn is a positive threshold selected under the sample-adaptive tuning framework [37].

3. Generalization-Bound and Variable Selection Consistency

This section establishes the theoretical guarantees on generalization ability and variable selection
for the proposed RGVS. Firstly, we introduce some necessary assumptions.

Assumption 1. The representing function φ associated with modal kernel Kσ : R×R→ R+ satisfies: (i) φ

is bounded with
∫
R φ(u)du = 1, φ(u) = φ(−u) and φ(u) ≤ φ(0), ∀u ∈ R; (ii) φ(·) is differentiable with

‖φ′‖∞ < ∞ and
∫
R u2φ(u)du < ∞.

Observe that some smoothing kernels meet Assumption 1, such as Gaussian kernel and Logistic
kernel, etc.

Assumption 2. The conditional density function Pε|X is second-order differentiable and ‖P′′
ε|X‖∞ is bounded.

Assumption 2 has been used in [19,20], which assures upper bound on |R( f )−Rσ( f )| together
with Assumption 1.

Assumption 3. Let Cs be a space of s-times continuous differentiable functions. Assume that sup
x∈X

√
K(x, x) <

∞ with K ∈ Cs with s > 0, and for a given constant M, the target function satisfies f ∗ ∈ HK with ‖ f ∗‖∞ ≤ M.

Assumption 3 has been used extensively in learning theory literatures, see, e.g., [38–44].
In particular, the Gaussian kernel belongs to C∞.

Our error analysis begins with the following inequality in [19], where the relationship between
Rσ( f ) andR( f ) is provided.

Lemma 1. Under Assumptions 1–2, there holds∣∣R( f ∗)−R( f )− (Rσ( f ∗)−Rσ( f ))
∣∣ ≤ c1σ2
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for any measurable function f : X → R, where c1 = ||P′′
ε|x||∞

∫
R u2φ(u)du.

This indicates us to bound the excess riskR( f ∗)−R( f ) via estimatingRσ( f ∗)−Rσ( fz). To be
specific, we further make an error decomposition as follows.

Lemma 2. Under Assumptions 1–3, there holds

R( f ∗)−R( fz) ≤ Rσ( f ∗)−Rσ( fz)− (Rσ
z ( f ∗)−Rσ

z ( fz)) + λ|| f ∗||2K + c1σ2.

Proof. According to the definition of fz in (9), we have

Rσ
z ( f ∗)− λ‖ f ∗‖2

K − (Rσ
z ( fz)− λ‖ fz‖2

K) ≤ 0.

Then, we can deduce that

Rσ( f ∗)−Rσ( fz) = Rσ( f ∗)−Rσ
z ( f ∗) +Rσ

z ( f ∗)− λ‖ f ∗‖2
K + λ‖ f ∗‖2

K

−(Rσ
z ( fz)− λ‖ fz‖2

K)− λ‖ fz‖2
K +Rσ

z ( fz)−Rσ( fz)

≤ Rσ( f ∗)−Rσ
z ( f ∗) +Rσ

z ( fz)−Rσ( fz)

+
{
Rσ

z ( f ∗)− λ‖ f ∗‖2
K − (Rσ

z ( fz)− λ‖ fz‖2
K)
}
+ λ‖ f ∗‖2

K

≤ Rσ( f ∗)−Rσ( fz)− (Rσ
z ( f ∗)−Rσ

z ( fz)) + λ‖ f ∗‖2
K.

This together with Lemma 1 yields the desired result.

Observe that Rσ( f ∗)−Rσ( fz)− (Rσ
z ( f ∗)−Rσ

z ( fz)) characterizes the divergence between the
data-free riskRσ( f ) and the empirical riskRσ

z ( f ). To establish its uniform estimation, we need to give
the upper bound of ‖ fz‖K firstly.

According to the definition of fz, we have

Rσ
z (0) ≤ Rσ

z ( fz)− λ‖ fz‖2
K.

Then,

‖ fz‖K ≤
√
Rσ

z ( fz)−Rσ
z (0)

λ
≤
√
‖φ‖∞

λσ
.

Lemma 3. For fz in (9), there holds

‖ fz‖K ≤
√
‖φ‖∞

λσ
.

Lemma 3 tells us that fz ∈ Br with r =
√
‖φ‖∞

λσ for any z ∈ Zn, where Br =
{

f ∈ HK : ‖ f ‖K ≤ r
}

.
This motivates us to measure the capacity of Br through the empirical covering number [45].

Definition 1. Suppose thatF is a set of functions on x = {x1, ..., xn} with the `2-empirical metric d2,x( f , g) =(
1
n

n
∑

i=1
( f (xi)− g(xi))

2
) 1

2
, ∀ f , g ∈ F . Then, the `2-empirical covering number of function set F is defined as

N2(F , ε) = sup
n∈N

sup
x
N2,x(F , ε), ε > 0,

where
N2,x(F , ε) = inf

{
l ∈ N : ∃{ f j}l

j=1 ⊂ F , s.t.,F ⊂ ∪l
j=1B( f j, ε)

}
with B( f j, ε) = { f ∈ F : d2,x( f , f j) < ε}



Entropy 2019, 21, 403 8 of 19

Next, we introduce a concentration inequality established in [46].

Lemma 4. Let T be a function set associated with function t. Suppose that there are some constants B, cs, cθ > 0
and s ∈ [0, 1] satisfying ‖t‖∞ ≤ B, Et2 ≤ cs(Et)s for any t ∈ T . If for 0 < θ < 2 and logN2(T , ε) ≤
cθε−θ , ∀ε > 0, then for any 0 < δ < 1 and given z = {zi}n

i=1 ⊂ Z , there holds

Et− 1
n

n

∑
i=1

t(zi) ≤
1
2

η1−s(Et)s + c
′
θη + 2(

cs log(1/δ)

n
)

1
2−s +

18B log(1/δ)

n
, ∀t ∈ T ,

where c
′
θ is a constant only depending on θ and

η = max
{

c
2−θ

4−2s+θs
s (

cθ

n
)

2
4−2s+θs , B

2−θ
2+θ (

cθ

n
)

2
2+θ

}
.

Theorem 1. Under Assumptions 1–3, taking σ = n−
1
5 and λ = n−

2
5 , we have for any 0 < δ < 1

R( f ∗)−R( fz) ≤ Cn−ζ log(
1
δ
)

with confidence at least 1− δ, where ζ = min
{ 8−9θ

20 , 8−6θ
5(2+θ)

, 2
5
}

and

θ =


2p

p+2s 0 < s ≤ 1
2p

p+2 1 < s ≤ 1 + p
2

p
s s > 1 + p

2 .

(13)

Proof. Denote a function-based random variable set by

T =
{

t(z) := t f (z) =
1
σ

(
φ(

y− f ∗(x)
σ

)− φ(
y− f (x)

σ
)
)

: f ∈ Br

}
.

Under Assumption 1, for any f1, f2 ∈ Br, we have

|t f1(z)− t f2(z)| =
1
σ

∣∣φ(y− f1(x)
σ

)− φ(
y− f2(x)

σ
)
∣∣

≤ ‖φ′‖∞

σ

∣∣y− f1(x)
σ

− y− f2(x)
σ

∣∣
≤ ‖φ′‖∞

σ2 | f1(x)− f2(x)|.

Combining the above inequality and the properties of empirical covering number [40,41], we have

logN2(T , ε) ≤ logN2(B1,
εσ2

r‖φ′‖∞
) ≤ C

′
θrθσ−2θε−θ , (14)

where θ is defined in (13).
According to Assumption 1, there exists ‖t‖∞ ≤ ‖φ‖∞

σ . Furthermore, we get

Et2 =
‖φ‖∞

σ
E
[

1
σ

φ(
y− f ∗

σ
)− 1

σ
φ(

y− f (x)
σ

)

]
=
‖φ‖∞

σ
(Rσ( f ∗)−Rσ( f ))

≤ ‖φ‖∞

σ
(PE f ∗ (0)− PE f (0) + c1σ2) ≤ ‖φ‖∞

σ
(PE f ∗ (0)− PE f (0)) + ‖φ‖∞c1σ

≤ σ−1c2 + σc3, (15)

where c2 = ‖φ‖∞(PE f ∗ (0)− PE f (0)) and c3 = c1‖φ‖∞ are the bounded constants.
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Recalling (14) and (15), we know Lemma 4 holds true for t ∈ T with cθ = c
′
θrθσ−2θ , B = ‖φ‖∞

σ ,
s = 0, and cs = c2σ−1 + c3σ. That is to say, for any t ∈ T and 0 < δ < 1, with confidence 1− δ

Rσ( f ∗)−Rσ( f )− (Rσ
z ( f ∗)−Rσ

z ( f ))

≤ (
1
2
+ c

′
θ)max

{
(c2σ−1 + c3σ)

2−θ
4 (

c
′
θrθσ−2θ

n
)

1
2 , (
‖φ‖∞

σ
)

2−θ
2+θ (

c
′
θrθσ−2θ

n
)

2
2+θ

}
+2

√
(c2σ−1 + c3σ) log(1/δ)

n
+

18‖φ‖∞ log(1/δ)

nσ
. (16)

Combining Lemma 2 and (16) with r =
√
‖φ‖∞/λσ, we have with confidence at least 1− δ

R( f ∗)−R( fz) ≤ Cn,σ,λ log(
1
δ
)
(

max{σ−
2+5θ

4 n−
1
2 , σ−

2+4θ
2+θ n−

2
2+θ λ−

θ
2+θ }+ n−

1
2 σ−

1
2 + λ + σ2), (17)

where Cn,σ,λ is positive constants independently of n, σ, λ.
Setting σ2 = n−

1
2 σ−

1
2 and λ = σ2, we have σ = n−

1
5 and λ = n−

2
5 . Putting these selected

parameters into (17), we get the desired estimation.

Theorem 1 provides the upper bound to the excess risk of fz under the MRC, which extends the
previous ERM-based analysis in [19] to the regularized learning scheme. In addition, we can further
bound ‖ fz − f ∗‖2

L2
ρX

after imposing Assumption 3 in [19].

Corollary 1. Let the conditions of Theorem 1 be true. Assume that K ∈ C∞, we have

R( f ∗)−R( fz) ≤ O(n−
2
5 log(1/δ))

with confidence at least 1− δ.

The learning rate derived in Corollary 1 is faster than O(n−
1
7 ) for the linear regularized modal

regression [20]. Meanwhile, it should be noted that some kernel functions meet K ∈ C∞, e.g., Gaussian
kernel, Sigmoid kernel, and Logistic kernel.

Since the proposed RGVS employs the non-convex mode-induced loss, our variable selection
analysis is completely different from kernel method with least-squares loss [12]. Here, we introduce
the following self-calibration inequality, which addresses that a weak convergence on risk implies a
strong convergence in kernel-norm under certain conditions.

Assumption 4. For any given σ and Br with r = ‖φ‖
1
2
∞n

1
4 σ−

1
4 , there exists a universal constant C1 > 0

such that
Rσ( f ∗)−Rσ( f ) ≥ C1‖ f ∗ − f ‖2

K, ∀ f ∈ Br.

Assumption 4 characterizes the concentration of our estimator near f ∗ with the kernel-norm
metric. Indeed, the current restriction is related to Assumption 4 in [12], Theorem 2.7 in [47] for quartile
regression, and the so-called RNI condition in [48,49] as well.

In addition, the following condition is required, which implies that the gradient function
associated with truly informative variables is separated well from zero. Similar assumptions can
also be found in [12,50]. For simplicity, we denote ‖gj‖2 := inf

X
(gj(x))2dρX (x).

Assumption 5. There exists some constant C2 > 0 such that

min
j∈S∗
‖g∗j ‖2

2 > C2n−min{ 1
8 , 4−θ

16+8θ }.
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Theorem 2. Let Assumptions 1–5 be true. For any given σ > max{n−
4−θ

8+14θ , n−
2

4+10θ }, set λ = n−
1
2 σ−

1
2 in

(9) and vn = C2n−min{ 1
8 , 4−θ

16+8θ } in (12). Then, Prob{Ŝ = S∗} → 1 as n→ ∞.

Proof. As shown in [12], by direct computation, there holds∣∣∣‖ĝj‖2
n − ‖g∗j ‖2

2

∣∣∣ ≤ a1
(
3‖ fz − f ∗‖K + ‖D̂∗j D̂j − D∗j Dj‖HS

)
, ∀j, (18)

where HS denotes the Hilbert-Schmidt operator on HK, D∗j Dj f =
∫

αjKxgj(x)dρX (x), D̂∗j D̂j f =

1
n

n
∑

i=1
αjKxj gj(xi), and a1 is a positive constant. The concentration inequality for kernel operator in [17]

states that

‖D̂∗j D̂j − D∗j Dj‖HS 6

√
8κ2

n
log (

4p
δ
) (19)

with confidence 1− δ.
Meanwhile, with the similar proof of Theorem 1, we can deduce that

Rσ( f ∗)−Rσ( fz) 6 a2
{

log(1/δ)max{σ−
2+5θ

4 n−
1
2 , σ−

2+4θ
2+θ n−

2+4θ
2+θ }+ n−

1
2 σ−

1
2 + λ

}
with confidence at least 1− δ, where a2 is a positive constant. Setting λ = n−

1
2 σ−

1
2 , σ−

2+5θ
4 n−

1
4 6 1

and σ−
4+7θ
4+2θ n−

4−θ
8+4θ 6 1, we further get

Rσ( f ∗)−Rσ( fz) 6 a3 log(1/δ)n−min{ 1
4 , 4−θ

8+4θ }

with confidence 1− δ. This excess risk estimation together with Assumption 4 implies that

‖ fz − f ∗‖2
K 6 a3C−1

1 log(1/δ)n−min{ 1
4 , 4−θ

8+4θ } (20)

with confidence 1− δ, where a3 is a positive constant.
Combining (18)–(20), we have with confidence 1− δ

∀j,
∣∣‖ĝj‖2

n − ‖g∗j ‖2
2
∣∣ 6 a4

√
log(p/δ)n−min{ 1

8 , 4−θ
6+8θ }, (21)

where a4 > 0 is a constant independently of n, δ, λ.
Now we turn to investigate the relationship between Ŝ in (12) and S∗ in (2). Firstly, we suppose

there exists some j′ ∈ S∗ but j′ /∈ Ŝ. That is to say ‖ĝj′‖2
n 6 vn. By Assumption 5 with C2 =

2a4
√

log(p/δ), we have

∣∣‖ĝj′‖2
n − ‖g∗j′‖

2
2
∣∣ ≥ ‖g∗j′‖2 − ‖ĝj′‖2

n > a4

√
log(p/δ)n−min{ 1

8 , 4−θ
16+8θ },

which contradicts with (21). This implies that S∗ ⊂ Ŝ with confidence 1− δ.
Secondly, we suppose there exists some j′ ∈ Ŝ but j′ /∈ S∗. This means ‖g∗j′‖

2
2 = 0 and ‖ĝj′‖2

n > vn.
Then ∣∣‖ĝj′‖2

n − ‖g∗j′‖
2
2
∣∣ = ‖ĝj′‖2

n > vn = a4

√
log(p/δ)n−min{ 1

8 , 4−θ
16+8θ },

which contradicts with (21) with confidence 1− δ. Therefore, the desired property follows by combining
these two results.

Theorem 2 demonstrates that the identified variables are consistent with truly informative
variables with probability 1 as n→ ∞. This result guarantees the variable selection performance of our
approach, provided that the active variables have enough gradient signal. In the future, it is necessary
to further investigate the self-calibration assumption for RMR in RKHS.
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When choosing Gaussian kernel as the modal kernel, the modal regression is consistent with
regression under the maximum correntropy criterion (MCC) [36]. In terms of the breakdown point
theory, Theorem 24 in [19] established the robustness characterization of kernel regression under
MCC and Theorem 3 in [36] provided robust analysis for RMR. These results imply the robustness of
our approach.

4. Optimization Algorithm

With the help of half-quadratic (HQ) optimization [32], the maximization problem (9) can be
transformed into a weighted least-squares problem, and then get the estimator via the ADMM [18].
Indeed, the kernel-based RMR (9) can be implemented directly by the optimization strategy in [36,51]
for Gaussian kernel-based modal representation, and in [20] for Epanechnikov kernel-based modal
representation. For completeness, we provide the optimization steps of (9) associated with Logistic
kernel-based density estimation.

Consider a convex function

f (a) = 1/(exp(
√

a) + 2 + exp(−
√

a)), a > 0.

As illustrated in [52], a convex function f (a) and its convex conjugate function g(b) satisfy

f (a) = max
b

(ab− g(b)). (22)

According to the Logistic-based representation φ and (22), we have

φ(t) = f (t2) = max
b

(t2b− g(b)), t ∈ R. (23)

Applying (23) into (10), we can obtain the augmented objective function

max
α∈Rn ,b∈Rn

{ 1
nσ

n

∑
i=1

(
bi(

yi − αTKn(xi)

σ
)2 − g(bi)

)
− λαTKα

}
, (24)

where α = (α1, ..., αn)T ∈ Rn, and b = (b1, ..., bn)T ∈ Rn is the auxiliary vector. Then the maximization
problem (24) can be solved by the following iterative optimization algorithm.

According to Theorem 1 in [20], we have arg max
b

(ab− g(b)) = f
′
(a). Then, for a fixed α, bi can

be updated by bi = f ′(( yi−αTKn(xi)
σ )2). While b is settled down, update α via

arg max
α∈Rn

{ n

∑
i=1

bi
σ
(yi − αTKn(xi))

2 − λαTKα
}

. (25)

For K = (K(xi, xj))
n
i,j=1 ∈ Rn×n and Y = (y1, ..., yn) ∈ Rn, the problem (25) can be rewritten as

arg min
α∈Rn

(Y−Kα)Tdiag(− b
σ
)(Y−Kα) + λαTKα

where diag(·) is an operator that transforms the vector into a diagonal matrix. By setting ∂[(Y−
Kα)Tdiag(−b/σ)(Y−Kα) + λαTKα]/∂α = 0, we have

α = 4(Kdiag(− b
σ
) + λI)−1diag(− b

σ
)Y. (26)

When α is obtained from (26), we can calculate the gradient-based measure ‖ĝj‖2
n by (11) directly.

Then we apply a pre-specified threshold vn to identify the truly active set Ŝn = {j : ‖ĝj‖2
n > vn}.

Here, the threshold vn is selected by the stability-based criterion [37], which include two steps as
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below. Firstly, the training samples are randomly divided into two subsets, and the identified active
variable sets Jz,1k and Jz,2k are obtained under given vn for the k-th splitting of training samples. Then,

the threshold vn is updated by maximizing the Cohen kappa statistical measure 1
T

T
∑

k=1
κ(Jz,1k,Jz,2k).

The optimization steps of RGVS are summarized in Algorithm 1.

Algorithm 1: Optimization algorithm of RGVS with Logistic kernel

Input: Samples z, the modal representation φ (Logistic kernel), Mercer kernel K;
Initialization: t = 0, α, bandwidth σ, Max-iter= 102, ε = 10−3;
Obtain fz in RKHS:

While α not converged and t < Max-iter;

1. Fixed αt, update bt+1
i = − exp(q)−exp(−q)

2q(exp(q)+2+exp(−q))2 , q =
yi−KT

n (xi)α
t

σ ;

2. Fixed bt+1, update αt+1 = 4(Kdiag(− bt+1

σ ) + λI)−1diag(− bt+1

σ )Y;
3. Check the convergence condition: ‖αt+1 − αt‖2 < ε;
4. t← t + 1;

End While
Output: α̂z = αt+1;

Variable Selection: Ŝn = {j : 1
n ∑n

i=1(α̂
T
z ∂jKn(xi))

2 > vn}.
Output: Ŝn

5. Empirical Assessments

This section assesses the empirical performance of our proposed method on simulated and
real-world datasets. Three variable selection methods are introduced as the baselines, which include
Least Absolute Shrinkage and Selection Operator (Lasso) [1], Sparse Additive Models (SpAM) [9], and General
Variable Selection Method (GM) [12].

In all experiments, the RKHS HK associated with Gaussian kernel Kh(u, v) = exp
(
− ‖u−v‖2

2
2h2

)
is employed as the hypothesis function space. For simplicity, we denote RGVSGau and RGVSLog as
the proposed RGVS method with Gaussian modal kernel and Logistic modal kernel, respectively.
In the simulated experiments, we generate three datasets (with identical sample size) independently
as the training set, the validation set, and the testing set, respectively. The hyper-parameters are tuned
via grid research on validation set, and the corresponding grids are displayed as follows: (i) the
regularization parameter λ: {10−3, 5× 10−3, 10−2, 5× 10−2, ..., 1, 5, 10}; (ii) the bandwidth σ and h:
{1 + 10−1i, i = 0, 1, ..., 100}; (iii) the threshold vn: {10−3+0.1t, t = 0, ..., 60}.

5.1. Simulated Data

Now we evaluate our approach on two synthetic data used in [12,13]. The first example is a
simple additive function and the second one is a function that includes interaction terms.

Example 1. We generate the p-dimension input xi = (xi1, ..., xip) by xij =
Wij+ηVi

1+η , where both Wij and
Vi are extracted from the uniform distribution U(−0.5, 0.5) and η = 0.2. The output yi is generated by
yi = f ∗(xi) + εi, where f ∗(xi) = 5xi1 + 4(xi2 − 1)2 + 0.5 sin(πxi3) + cos(πxi3) + 1.5(sin(πxi3))

2 +

2.5(sin(πxi3))
3 + 2(cos(πxi3))

3 + 6 sin(πxi4)/(2− sin(πxi4)) and εi is a random noise. Here, we consider
the Gaussian noise N (0, 1), the Chi-square noise X 2(2), the Student noise t(2), and the Exponential noise
E(2), respectively.

Example 2. This example follows the way of Example 1 to generate data. The differences are that Wij and Vi are
extracted from the same distribution U(0, 1) and the true function f ∗(xi) = 20xi1xi2xi3 + 5x2

i4 + 5xi5.

For each evaluation, we consider training set with different size n = 100, 150, 200 and dimension
p = 150. To make sure the results are reliable, each evaluation is repeated 50 times. Since the truly
informative variables are usually unknown in practice, we evaluate the algorithmic performance
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according to the average squares error(ASE) defined as ASE := 1
n ∑n

i=1( f ∗(xi) − fz(xi))
2. To better

evaluate the algorithmic performance, we also adopt some metrics used in [12,13] to measure the
quality of model regression, e.g., Cp (correct-fitting), SIZE (the average number of selected variables),
TP (the average number of the selected true informative variables), FP (the average number of
the selected uninformative variables), Up (under-fitting probability), Op (over-fitting probability).
The detail result is summarized in Tables 2 and 3. To further support the competitive performance of
the proposed method, we also provide the experimental results on ASE in Figure 1 and Cp in Figure 2
with n = [100 : 50 : 300] and p = 100, 200, 400. Figures 1 and 2 show that our method has always
performed well with different n.

Empirical evaluations on simulated examples verify the promising performance of RGVS
on variable selection and regression estimation, even for data with non-Gaussian noises (e.g.,
the Chi-square noise X 2(2), the Student noise t(2), and the Exponential noise E(2)). Meanwhile,
GM and RGVS have similar performance under the Gaussian noise setting, which is consistent with
our motivation for algorithmic design.
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(a)Gaussian noise (A)

100 150 200 250 300

Sample size

1.2

1.4

1.6

1.8

2

2.2

A
S

E

(b)Gaussian noise (B)

100 150 200 250 300

Sample size

2.5

3

3.5

4

4.5

5

5.5

6
A

S
E
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100 150 200 250 300

Sample size

3

3.5

4

4.5

5

5.5

A
S

E

(f)Exponential noise (B)

100 150 200 250 300

Sample size

0

0.5

1

1.5

2

2.5

3

3.5

4

A
S

E

(g)Student noise (A)
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Figure 1. The average squares error (ASE) vs. the sample size n under different noise (A and B represent
Example 1. and Example 2 respectively).
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Table 2. The averaged performance on simulated data in Example 1 (left) and Example 2 (right).

Noise (n, p) Method SIZE TP FP Up Op Cp ASE SIZE TP FP Up Op Cp ASE

(100, 150) Lasso 3.92 3.92 0.00 0.36 0.00 0.64 1.369 4.40 4.28 0.12 0.44 0.12 0.44 5.112
n < p SpAM 4.12 3.92 0.20 0.08 0.16 0.76 1.075 5.02 4.98 0.04 0.04 0.04 0.92 1.611

GM 4.12 3.88 0.24 0.12 0.16 0.72 1.123 5.14 4.98 0.16 0.04 0.12 0.84 1.775
RGVSGau 4.00 3.92 0.08 0.08 0.04 0.88 1.003 5.12 5.00 0.12 0.00 0.08 0.92 1.565
RGVSLog 3.84 3.80 0.04 0.20 0.04 0.76 1.131 5.12 4.92 0.20 0.08 0.16 0.76 1.914

N (0, 1) (150, 150) Lasso 4.20 3.92 0.04 0.16 0.12 0.72 1.245 4.48 4.28 0.20 0.40 0.16 0.44 4.794
Gaussian Noise n = p SpAM 4.00 4.00 0.00 0.00 0.00 1.00 0.804 5.00 5.00 0.00 0.00 0.00 1.00 1.612

GM 3.96 3.92 0.04 0.08 0.04 0.88 1.011 5.04 5.00 0.04 0.00 0.04 0.96 1.627
RGVSGau 3.96 3.96 0.00 0.04 0.00 0.96 0.899 5.00 5.00 0.00 0.00 0.00 1.00 1.500
RGVSLog 3.96 3.80 0.04 0.08 0.04 0.88 1.083 5.02 5.00 0.02 0.00 0.03 0.97 1.622

(200, 150) Lasso 4.00 3.92 0.08 0.20 0.00 0.80 1.252 4.52 4.52 0.00 0.40 0.00 0.60 2.507
n > p SpAM 4.00 4.00 0.00 0.00 0.00 1.00 0.829 5.04 5.00 0.04 0.00 0.02 0.98 1.497

GM 3.96 3.96 0.00 0.04 0.00 0.96 1.012 5.06 5.00 0.06 0.00 0.04 0.96 1.528
RGVSGau 4.00 4.00 0.00 0.00 0.00 1.00 0.813 5.00 5.00 0.00 0.00 0.00 1.00 1.485
RGVSLog 3.96 3.96 0.00 0.04 0.00 0.96 0.915 5.00 5.00 0.00 0.00 0.00 1.00 1.453

(100, 150) Lasso 3.72 3.64 0.08 0.36 0.04 0.60 5.854 4.32 3.72 0.60 0.68 0.12 0.20 6.888
n < p SpAM 4.24 3.76 0.48 0.24 0.28 0.48 4.342 5.52 5.00 0.52 0.00 0.40 0.60 4.328

GM 4.24 3.80 0.44 0.20 0.36 0.44 4.012 4.48 4.44 0.04 0.30 0.05 0.65 3.611
RGVSGau 4.16 3.96 0.20 0.04 0.20 0.76 2.937 5.08 4.92 0.16 0.06 0.16 0.78 3.486
RGVSLog 4.18 3.90 0.28 0.16 0.12 0.72 2.681 5.08 4.84 0.24 0.08 0.18 0.74 3.968

X 2(2) (150, 150) Lasso 5.32 3.84 1.48 0.16 0.48 0.36 5.392 5.16 4.16 1.00 0.60 0.16 0.24 4.503
Chi-square Noise n = p SpAM 4.04 3.96 0.08 0.04 0.08 0.88 2.765 5.32 5.00 0.32 0.00 0.24 0.76 3.748

GM 4.00 3.88 0.12 0.12 0.08 0.80 2.873 4.98 4.92 0.06 0.05 0.05 0.90 4.173
RGVSGau 3.96 3.92 0.04 0.08 0.04 0.88 2.809 5.02 5.00 0.02 0.00 0.02 0.98 2.929
RGVSLog 4.08 3.96 0.12 0.04 0.12 0.84 2.097 5.04 5.00 0.04 0.00 0.04 0.96 3.519

(200, 150) Lasso 4.24 4.00 0.24 0.00 0.28 0.72 5.805 4.36 4.32 0.04 0.52 0.04 0.44 3.754
n > p SpAM 4.08 4.00 0.08 0.00 0.08 0.92 2.463 5.04 5.00 0.04 0.00 0.04 0.96 3.634

GM 4.04 4.00 0.04 0.00 0.04 0.96 2.523 5.18 5.00 0.18 0.00 0.20 0.80 3.816
RGVSGau 3.96 3.96 0.00 0.04 0.00 0.96 2.449 5.00 5.00 0.00 0.00 0.00 1.00 2.989
RGVSLog 3.96 3.96 0.00 0.04 0.00 0.96 1.738 5.00 5.00 0.00 0.00 0.00 1.00 3.457

(100, 150) Lasso 3.46 3.46 0.00 0.60 0.00 0.40 4.631 4.64 4.00 0.64 0.60 0.20 0.20 4.567
n < p SpAM 4.28 3.88 0.40 0.12 0.28 0.60 4.599 5.84 5.00 0.84 0.00 0.44 0.56 4.224

GM 4.20 3.64 0.56 0.36 0.36 0.28 3.941 5.36 4.68 0.68 0.32 0.28 0.40 4.528
RGVSGau 4.20 3.88 0.32 0.12 0.20 0.68 3.274 5.06 4.82 0.24 0.14 0.14 0.72 3.907
RGVSLog 3.96 3.80 0.16 0.20 0.16 0.64 2.775 5.12 4.92 0.20 0.04 0.16 0.80 3.667

E(2) (150, 150) Lasso 5.30 3.66 1.64 0.20 0.44 0.36 4.747 5.64 4.16 1.48 0.48 0.28 0.24 4.786
Exponential Noise n = p SpAM 4.04 3.96 0.08 0.04 0.08 0.88 3.403 5.28 5.00 0.28 0.16 0.00 0.84 4.969

GM 4.08 3.96 0.12 0.04 0.12 0.84 3.177 4.98 4.92 0.06 0.08 0.04 0.88 4.129
RGVSGau 4.00 4.00 0.00 0.00 0.00 1.00 2.724 5.02 4.98 0.04 0.02 0.04 0.94 2.964
RGVSLog 4.00 4.00 0.00 0.00 0.00 1.00 2.643 5.00 4.96 0.04 0.04 0.04 0.92 3.918

(200, 150) Lasso 3.80 3.80 0.00 0.20 0.00 0.80 4.291 4.68 4.60 0.08 0.28 0.08 0.64 3.669
n > p SpAM 4.00 4.00 0.00 0.00 0.00 1.00 2.988 5.24 5.00 0.24 0.00 0.20 0.80 4.808

GM 3.96 3.96 0.00 0.04 0.00 0.96 3.016 4.98 4.98 0.00 0.04 0.00 0.96 3.878
RGVSGau 4.00 4.00 0.00 0.00 0.00 1.00 2.884 5.00 5.00 0.00 0.00 0.00 1.00 3.041
RGVSLog 3.96 3.92 0.04 0.09 0.00 0.91 3.113 4.96 4.96 0.00 0.04 0.00 0.96 3.771

(100, 150) Lasso 4.92 3.80 1.12 0.28 0.32 0.40 2.301 6.52 3.92 2.60 0.64 0.20 0.16 6.971
n < p SpAM 4.90 3.80 1.1 0.24 0.20 0.56 1.698 7.92 4.72 3.20 0.24 0.44 0.32 4.658

GM 5.00 3.64 1.36 0.32 0.32 0.36 1.551 5.68 4.32 1.32 0.40 0.32 0.28 3.561
RGVSGau 4.14 3.94 0.20 0.05 0.10 0.85 0.822 5.00 4.84 0.16 0.08 0.16 0.76 2.308
RGVSLog 4.14 3.88 0.26 0.12 0.16 0.72 1.208 4.96 4.80 0.16 0.16 0.12 0.72 2.339

t(2) (150, 150) Lasso 5.08 3.72 1.36 0.24 0.40 0.36 1.793 6.32 3.80 2.52 0.68 0.20 0.12 6.020
Student Noise n = p SpAM 4.30 4.00 0.30 0.00 0.32 0.68 0.955 5.44 5.00 0.44 0.00 0.28 0.72 2.739

GM 4.04 3.80 0.24 0.16 0.16 0.68 1.046 5.56 4.60 0.96 0.28 0.08 0.64 2.557
RGVSGau 4.00 4.00 0.00 0.00 0.00 1.00 0.757 4.98 4.98 0.00 0.08 0.00 0.92 1.716
RGVSLog 3.92 3.88 0.04 0.12 0.04 0.84 1.169 4.96 4.96 0.00 0.04 0.00 0.96 1.723

(200, 150) Lasso 5.00 3.92 1.08 0.32 0.20 0.48 1.262 5.44 4.36 1.08 0.44 0.28 0.28 2.976
n > p SpAM 4.10 4.00 0.10 0.00 0.27 0.73 1.060 5.64 5.00 0.64 0.00 0.28 0.72 2.427

GM 4.00 3.96 0.04 0.04 0.04 0.92 1.011 5.20 4.72 0.48 0.20 0.04 0.76 2.350
RGVSGau 4.04 4.00 0.04 0.00 0.10 0.90 0.681 5.00 5.00 0.00 0.00 0.00 1.00 1.517
RGVSLog 4.04 4.00 0.04 0.00 0.04 0.96 0.884 4.96 4.96 0.00 0.04 0.00 0.96 1.672
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Table 3. The averaged performance with simulated data in Example 1.

Noise (n, p) Method SIZE TP FP Up Op Cp ASE

(300, 500) Lasso 1.98 1.98 0.00 1.00 0.00 0.00 1.98
n < p GM 4.04 4.00 0.04 0.00 0.04 0.96 0.80

RGVSGau 4.06 4.00 0.06 0.00 0.06 0.94 0.63
RGVSLog 4.14 3.98 0.16 0.01 0.03 0.96 0.88

N (0, 1) (500, 500) Lasso 1.92 1.92 0.00 1.00 0.00 0.00 1.35
Gaussian Noise n = p GM 4.06 4.00 0.06 0.00 0.06 0.94 0.78

RGVSGau 4.02 4.00 0.02 0.00 0.02 0.98 0.59
RGVSLog 4.04 4.00 0.04 0.00 0.02 0.98 0.74

(700, 500) Lasso 1.88 1.88 0.00 1.00 0.00 0.00 1.55
n > p GM 4.04 4.00 0.04 0.00 0.04 0.96 0.77

RGVSGau 4.02 4.00 0.02 0.00 0.02 0.98 0.62
RGVSLog 4.00 4.00 0.00 0.00 0.00 1.00 0.73

(300, 500) Lasso 1.80 1.80 0.00 1.00 0.00 0.00 4.45
n < p GM 4.18 4.00 0.18 0.00 0.14 0.86 2.92

RGVSGau 4.09 4.00 0.09 0.00 0.11 0.89 2.39
RGVSLog 4.06 3.88 0.18 0.12 0.14 0.74 1.95

X 2(2) (500, 500) Lasso 1.74 1.74 0.00 1.00 0.00 0.00 4.62
Chi-square Noise n = p GM 4.14 4.00 0.14 0.00 0.14 0.86 3.01

RGVSGau 4.08 4.00 0.08 0.00 0.06 0.94 2.22
RGVSLog 4.04 3.98 0.06 0.02 0.06 0.92 1.82

(700, 500) Lasso 1.86 1.86 0.00 1.00 0.00 0.00 4.37
n > p GM 4.28 4.00 0.28 0.00 0.24 0.76 2.96

RGVSGau 4.02 4.00 0.02 0.00 0.02 0.98 2.13
RGVSLog 4.02 4.00 0.02 0.00 0.02 0.98 1.72

(300, 500) Lasso 2.04 2.04 0.00 1.00 0.00 0.00 4.25
n < p GM 3.94 3.87 0.07 0.13 0.05 0.82 3.14

RGVSGau 4.02 4.00 0.02 0.00 0.02 0.98 2.36
RGVSLog 3.98 3.94 0.04 0.06 0.02 0.92 1.92

E(2) (500, 500) Lasso 1.94 1.94 0.00 1.00 0.00 0.00 4.34
Exponential Noise n = p GM 4.12 4.00 0.12 0.00 0.10 0.90 2.35

RGVSGau 3.99 3.96 0.03 0.04 0.03 0.93 2.37
RGVSLog 4.02 4.00 0.02 0.00 0.02 0.98 1.71

(700, 500) Lasso 1.90 1.90 0.00 1.00 0.00 0.00 4.67
n > p GM 4.08 4.00 0.08 0.00 0.06 0.94 2.33

RGVSGau 3.99 3.99 0.00 0.01 0.00 0.99 1.74
RGVSLog 4.05 4.00 0.05 0.00 0.05 0.95 1.92

(300, 500) Lasso 1.96 1.96 0.00 1.00 0.00 0.00 4.63
n < p GM 3.50 3.46 0.04 0.24 0.04 0.72 2.48

RGVSGau 4.14 3.94 0.20 0.06 0.10 0.84 0.82
RGVSLog 4.00 3.98 0.02 0.02 0.00 0.98 0.90

t(2) (500, 500) Lasso 1.76 1.76 0.00 0.98 0.00 0.02 3.83
Student Noise n = p GM 4.30 4.00 0.30 0.00 0.16 0.84 1.96

RGVSGau 4.00 4.00 0.00 0.00 0.00 1.00 0.76
RGVSLog 4.02 4.00 0.02 0.00 0.01 0.99 0.75

(700, 500) Lasso 1.96 1.96 0.00 0.96 0.00 0.04 2.46
n > p GM 4.06 4.00 0.06 0.00 0.04 0.96 1.95

RGVSGau 4.04 4.00 0.04 0.00 0.06 0.94 0.68
RGVSLog 4.00 4.00 0.00 0.00 0.00 1.00 0.74
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Figure 2. The correct-fitting probability (Cp) vs. the sample size n under different noise (A and B
represent Example 1. and Example 2 respectively).

5.2. Real-World Data

We now evaluate our RGVS on Auto-Mpg and Requirements of buildings, which are all collected
from UCI. Since the variable number is very limited for the current datasets, 100 irrelative variables
are added, which are generated from the distribution of U(−0.5, 0.5).

Auto-Mpg data describes the mile per gallon of automobile (MPG). It contains 398 samples
and 7 variables, including Cylinders, Displacement, Horsepower, Weight, Acceleration, Model year,
and Origin. The second real data sets is obtained to assess the heating load and cooling load
requirements of buildings which contains 768 samples and 8 input variables, including Relative
Compactness, Surface Area, Wall Area, Roof Area, Overall Height, Orientation, Glazing Area,
and Glazing Area Distribution. In particular, it has two response variables (heating load and
cooling load).

Now, we use the 5-fold cross validation to tune the hyper-parameters and employ the relative
sum of the squared errors (RSSE) to measure learning performance. Here RSSE = ∑x∈Xtest( f (x) −
fz(x))2/ ∑x∈Xtest( f (x)− E( f ))2, where fz is the estimator of f and E( f ) denotes the average value of
f on the test set Xtest. Experimental results are reported in Tables 4 and 5.

As shown in Table 4, our method identifies similar variables as GM, but can achieve the smaller
RSSE. At same time, SpAM and Lasso tend to select less variables than GM and RGVS, which may
discard the truly informative variable for regression estimation. Table 5 shows RGVS has better
performance for both the Heating Load data and the Cooling Load data. All these empirical evaluations
validate the effectiveness of our learning strategy consistently.

http://archive.ics.uci.edu/ml/index.php
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Table 4. Learning performance on Auto-Mpg.

Variable CyL DISP HPOWER WEIG ACCELER YEAR ORIGN RSSE(std)

Lasso - - - X - X - 0.5918(0.3762)
SpAM X X - X - - - 0.2754(0.0191)

GM X X X X - X X 0.2547(0.0313)
RGVSGau X X X X - X - 0.1425(0.0277)
RGVSLog X X X X - X X 0.1379(0.0183)

Table 5. Learning performance on Heating Load (UP) and Cooling Load (DOWN).

Variable RC SA WA RA OH ORIENT GA GAD RSSE(std)

Lasso - - - - X - X - 0.1739(0.0801)
SpAM - - - X X - - - 0.1684(0.0045)

GM X X X X X - - - 0.1244(0.0383)
RGVSGau - X X X X - X - 0.0935(0.0099)
RGVSLog - - X X X - X - 0.1110(0.0066)

Lasso - - X - X - X - 0.2119(0.0926)
SpAM - - - X X - - - 0.1910(0.0131)

GM X X X X X - - - 0.1515(0.0120)
RGVSGau - X X X X - X - 0.1339(0.0116)
RGVSLog X X X X X - - - 0.1368(0.0077)

6. Conclusions

This paper proposes a new RGVS method rooted in kernel modal regression. The main advantages
of RGVS are its flexibility on mimicking the decision function and adaptivity on screening the truly
active variables. The proposed approach is evaluated by the theoretical analysis on the generalization
error and variable selection, and by the empirical results on data experiments. In theory, our method
can achieve the polynomial decay rate with O(n−

2
5 ). In applications, our model has shown the

competitive performance for data with non-Gaussian noises.
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