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Abstract A program for overlaying multiple flexible mol-

ecules has been developed. Candidate overlays are generated

by a novel fingerprint algorithm, scored on three objective

functions (union volume, hydrogen-bond match, and hydro-

phobic match), and ranked by constrained Pareto ranking. A

diverse subset of the best ranked solutions is chosen using an

overlay-dissimilarity metric. If necessary, the solutions can be

optimised. A multi-objective genetic algorithm can be used to

find additional overlays with a given mapping of chemical

features but different ligand conformations. The fingerprint

algorithm may also be used to produce constrained overlays,

in which user-specified chemical groups are forced to be

superimposed. The program has been tested on several sets of

ligands, for each of which the true overlay is known from

protein–ligand crystal structures. Both objective and sub-

jective success criteria indicate that good results are obtained

on the majority of these sets.
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Introduction

Ligand-based drug design techniques such as pharmaco-

phore analysis [1] and 3D quantitative structure–activity

relationships (3D QSAR) [2] are widely used. They usually

require the alignment of a set of ligands known to bind to the

same protein. When the protein structure is unknown, the

likelihood that a given overlay is correct can be judged by

the extent to which it places similar groups from different

ligands near to one another, and on the energies of the ligand

conformations. If the ligands are flexible, there can be an

enormous number of ways in which they could be overlaid.

The problem is therefore challenging. New molecular-

overlay algorithms continue to be published [3–16], sug-

gesting that the state of the art is not considered satisfactory.

In the absence of the protein structure, the molecular-

overlay problem is under-determined. Except in trivial

cases, it is therefore unreasonable to suppose that the

correct solution can be identified unambiguously. A more

realistic aspiration is to produce a small number of sig-

nificantly different but credible alignments, one of which is

close to the truth. With this in mind, we have previously

investigated the use of a multiple-objective genetic algo-

rithm (MOGA) for molecular alignment and pharmaco-

phore elucidation [17–19]. Our method is designed to

produce several overlays of a set of ligands using Pareto

ranking [20]. Each represents a different trade-off between

the various objective functions measuring overlay quality,

such as strain energy, volume, and matching of hydrogen-

bond features. The generation of multiple diverse overlays

produces a range of pharmacophore hypotheses to test.
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While results were promising, we were aware of several

opportunities for improvement. For example, some types of

hydrophobic features were not properly represented; the

scoring protocol sometimes underestimated the degree of

hydrogen-bond matching; clique detection was used to set

up starting overlays for optimisation by the MOGA, but

other approaches seemed worth investigating. We also

wished to make analysis of the results easier: if a molec-

ular-overlay program produces many possible solutions, it

can be time consuming to sift through the output. We

therefore wanted good measures of overlay similarity that

would enable solutions to be clustered, or mapped in low-

dimensional space. Finally, we decided to test the revised

algorithm on several new sets of ligands, including diverse

sets, typical of those used as input for pharmacophore

elucidation, and sets of relatively close homologues, such

as are used in 3D QSAR.

The outcome of our new work has been to change the

algorithm appreciably. A novel method has been developed

for generating promising overlays using bit-string manip-

ulations. The resulting overlays are scored using new

objective functions, Pareto-ranked, and a diverse subset of

the best-ranked solutions chosen using an overlay-dissim-

ilarity measure. Overlays can be refined, subjected to a new

process we call ‘‘overlay multiplication’’, and mapped

using multidimensional scaling. The new algorithm has

been tested on 10 sets of ligands taken from protein–ligand

crystal structures in the Protein Data Bank (PDB) [21].

Methods

Organisation and overview

This section is organised as follows. We begin by defining

key terms and summarising the molecular input required by

the program. We then describe how chemical features such

as hydrogen-bonding and hydrophobic groups are identi-

fied and represented. This is followed by a description of

several scoring functions used to assess the quality of

solution overlays.

We then describe the search algorithm, the first step of

which is overlay generation. This is a fingerprint technique

which generates several thousand possible overlays using

bit-string manipulations. The second step, overlay filtering,

uses the scoring functions referred to above, together with

overlay similarity calculations, to identify a diverse subset

of the best of the solutions that have been generated.

Optionally, some or all of these may be subjected to overlay

refinement—an optimisation process to bring approxi-

mately aligned groups into closer alignment. Finally, a

procedure called overlay multiplication may be applied to

solutions of particular interest. This explores the geometric

variability of specific pharmacophore hypotheses, using a

MOGA to determine whether a particular superposition of

ligand chemical features can be achieved with more than

one set of ligand conformations. The overlay generation and

filtering steps are critical: if they fail to produce good

overlays, it is unlikely that refinement or multiplication will

rectify the problem. Conversely, overlays from the filtering

step may be good enough that no refinement or multipli-

cation is necessary.

The section ends with a description of how overlay

similarity can be quantified, and describes analytical

techniques for helping users understand the relationships

between different overlays.

Nomenclature

The molecules to be overlaid are divided into features such

as hydrogen-bond donors and acceptors, and hydrophobic

groups (hydrophobes). Each feature is represented by one or

more fitting points placed at strategic positions (for example,

on a donor atom or at the centroid of a hydrophobe). A

cluster of fitting points in an overlay, all representing the

same type of feature and each from a different ligand, con-

stitutes a pharmacophore point. If every ligand contributes,

it is a full pharmacophore point; otherwise it is a partial

pharmacophore point. The complete collection of pharma-

cophore points in an overlay (optionally rejecting partial

points involving less than a specified number of ligands) is

the pharmacophore hypothesis (or simply pharmacophore)

suggested by that overlay. The composition of the pharma-

cophore (that is, the ligand features that contribute to the

pharmacophore points) is the feature mapping.

Ligand preparation

The ligands must be built in the protonation states they are

expected to adopt at the protein binding site, as these are

not altered during overlaying. While this is a weakness in

the program, the numbers of ligands being overlaid will

usually be small enough to allow users to assign proton-

ation states manually. Indeed, given knowledge from in-

house chemistry, users may often be better placed to decide

on difficult tautomeric issues than an algorithm. A set of

low-energy conformers must be calculated for each ligand.

We have used OMEGA [22] but other conformer genera-

tors should also be suitable.

Feature definition; fitting-point placement

Two types of hydrophobic features are defined, directional

and non-directional. The former are groups that are more

likely to form hydrophobic interactions in some directions

than others, such as aromatic rings [23] and amide
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linkages. It may seem odd to define amide as a hydrophobe,

but inspection of protein–ligand crystal structures (for

example, using the IsoStar system [24]) shows that this

group tends to form hydrophobic interactions perpendicular

to the amide plane, although interactions in the plane are

invariably hydrogen bonds. Non-directional hydrophobes

are groups that are equally hydrophobic in all directions,

such as alkyl chains. Hydrophobes are represented by a

fitting point at the centroid. Optionally, two further fitting

points may be used for directional hydrophobes, placed on

the normal to the least-squares mean plane, one on each

side, at 1 Å from the centroid.

The algorithm for defining hydrophobic features is

similar to that used by others [25]. All rings of size B7 are

classed as hydrophobes (directional if at least three of the

ring atoms are delocalisable, otherwise non-directional).

Groups such as t-butyl and –CF3 are considered non-

directional hydrophobes. Amide, C=C, C=N and N=N

linkages are classed as directional hydrophobes. Other

hydrophobic portions of the molecule (acyclic chains, rings

of size [7) are divided into segments of up to four atoms,

each segment constituting a separate non-directional

hydrophobe. Segments of only three or two atoms are cho-

sen if it leads to more uniform placement of fitting points.

All other feature types are customisable, being defined

by SMARTS (Smiles arbitrary target specification) strings

[26]. Any number of feature types may be defined, such as

donors, acceptors, metal coordinators, and positive and

negative centres (in this work, we have only used donors

and acceptors, the latter serving as a surrogate for metal

coordinators). It is necessary to provide a list of SMARTS

strings defining the substructures that belong to each feature

type. SMARTS strings defining donors or acceptors must be

accompanied by two additional data items. One defines the

strength of the hydrogen bonds formed by the group, cate-

gorised as strong (only used for ionised groups), medium, or

weak (thiourea sulfur acceptors and thiol and C–H donors).

The second data item specifies the preferred geometry of the

hydrogen bonding group. For example, two-coordinate sp2

nitrogen is defined as a trigonal acceptor (preferentially

hydrogen bonds along its sp2 lone-pair direction).

CH groups are only classified as donors if they are in

particularly electron withdrawing environments (for

example, the 2 position of pyrimidine). Phenyl CH groups

are not considered donors. This can make it difficult for the

algorithm to reproduce certain unusual overlays. In Factor

Xa complexes, for instance, Asp189 often forms strong

hydrogen bonds to ligand groups such as amidinium, but it

can also interact with phenyl CH groups (for example, see

PDB complexes 1lpz and 1iqm). The algorithm, however,

will tend not to overlay amidinium NH on phenyl CH.

The location of donor and acceptor fitting points is

customisable but in practice we always place them on the

donor and acceptor atoms rather than on hydrogen and

lone-pair positions, or at the inferred positions of the

complementary hydrogen-bonding atoms on the protein.

Our choice may make it more difficult to find overlays in

which two ligand atoms can hydrogen bond to the same

protein atom even though they are not close to each other

in the overlay (for example, because they donate to dif-

ferent lone pairs of the same protein carbonyl oxygen).

However, this situation occurs rather infrequently (based

on an analysis of our test-set complexes) and fitting points

at hydrogen, lone pair or inferred protein-atom positions

make the search space larger (for example, may require

hydrogen-atom torsions to be varied). Also, points lying

outside the molecular envelope (that is, at inferred protein-

atom positions) tend to have unduly large leverage during

overlay generation. Atoms that are both donors and

acceptors (notably hydroxyl oxygens) have both a donor

and an acceptor point placed on them.

It is possible to exclude particular atoms from feature

assignment. For example, the hydrogen-bonding atoms of a

ligand solubilising group could be excluded, meaning that

no donor or acceptor fitting points will be placed on them.

Conversely, special feature types can be defined to contain

sets of hand-picked atoms, rather than atoms matching

SMARTS strings.

Scoring functions

Up to five scoring functions are used to quantify overlay

quality.

Volume score

This is the union volume of all ligands, V, calculated by

placing a grid over the overlay and counting the points

within the overlay envelope. Small V scores are considered

desirable, since ligands need to bind in a cavity of limited

size. A grid size of 0.5 Å is used by default. Tests on

neprilysin ligand overlays showed that volumes calculated

with this grid size may be in error by up to about 0.5 %,

which is adequate for our purposes.

Hydrogen bond score

Leader-style cluster analysis [27, 28] is used to find clusters

of donor and acceptor atoms, each cluster containing only

donors or only acceptors, with no more than one atom from

any given ligand. A cluster need not include an atom from

every ligand. The algorithm works by setting up a ‘‘nearest

neighbour list’’ (NNL) for each donor and acceptor (X) in

the overlay. For a given X, the NNL contains X itself and

the closest donor (or acceptor) to X in each of the other

ligands, provided that it is within 1.5 Å of X. NNLs
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therefore vary in length; for example, if a given X is[1.5 Å

away from all donors (or acceptors) in all other ligands, its

NNL will only contain X itself. The longest NNL is chosen

as the first cluster. All members of this cluster are then

removed from the remaining NNLs. The longest of the

remaining NNLs is chosen as the second cluster, and so on

(if NNLs tie on length, the one with the smaller mean square

distance between its members is chosen).

The best consensus hydrogen-bonding direction for the

atoms in each cluster is then determined. Consider, for

example, an acceptor cluster containing phosphate oxygen,

carbonyl oxygen and nitrile nitrogen. For each acceptor,

‘‘virtual points’’ are placed to represent the positions at

which the complementary protein donor might lie. These are

evenly spaced around the base of a cone for phosphate

oxygen; in the sp2 lone-pair directions and at intermediate

positions for carbonyl oxygen; and on the sp axis for nitrile

nitrogen. The largest cluster of virtual points is found, using

the same clustering method as above. This represents the

best consensus direction for hydrogen bonding (Fig. 1). The

size of the largest virtual-point cluster might be less than

the size of the parent cluster of donor or acceptor atoms,

indicating that they cannot all hydrogen-bond in the same

direction. Steric accessibility is assessed by placing points

on the line between the centroid of the donor or acceptor

atoms and the centroid of the chosen virtual-point cluster.

Each point is examined to determine whether it falls within

the hydrophobic envelope of the overlay and an occlusion

factor, X, is calculated which varies from 1 if there is a clear

line of sight to 0.1 if the points are highly occluded.

In the protein–ligand structures of our test set, there is

no example of a protein atom forming hydrogen bonds to a

strong donor or acceptor on one ligand but a weak donor or

acceptor on another (using our definitions of strong and

weak). Hydrogen bonding is always to ligand groups of the

same strength or (less commonly) to a mixture of strong

and medium, or medium and weak. To reflect this, the

similarity of the donor or acceptor atoms in each cluster is

estimated by a factor S = (m/n)2, where n is the actual

number of atoms in the cluster and m is an ‘‘effective’’

number, set equal to n if all atoms in the cluster have the

same strength, but to lower values otherwise.

The hydrogen-bond score (larger values better) is:

HB ¼ R SpXp A2
pfðapÞ þ V2

pgðvpÞ
h in o

ð1Þ

Summation is over the donor and acceptor atom clusters (if a

set of hydroxyl groups contributes to both donor and

acceptor clusters, the contribution of the less well-scoring

cluster is ignored). Sp and Xp are the similarity and occlusion

factors for cluster p; Ap is the number of atoms in the cluster;

Vp is the number of virtual points in the largest virtual-point

cluster (in the event of a tie, the score is calculated for each in

turn and the highest value taken); ap is the mean square

distance of the atoms from their centroid; vp is the corre-

sponding quantity for the virtual-points. f(ap) is a weighting

function which falls linearly from 1.0 to 0.3 as ap increases

from 0.15 to 0.75 Å2, taking constant values of 1.0 and 0.3,

respectively, below and above these distances; g(vp) is

similar but falls between 1.0 and 0.3 as vp varies from 0.5 to

1.5 Å2. The effect is to reward tight clusters.

Hydrophobic score

Leader cluster analysis (see above) is used to find clusters

of directional hydrophobes. A cluster may contain no more

than one hydrophobe from each ligand and need not con-

tain a hydrophobe from every ligand. Inter-planar angles

are calculated between all pairs of hydrophobes in each

cluster. The score (larger values better) is:

HY ¼ R N2
p½fðnpÞ þ gðcpÞ�

n o
ð2Þ

Summation is over the clusters. Np is the number of

hydrophobes in cluster p; np is the mean-square distance of

the centroids of the hydrophobes in the cluster from the

mean position of these centroids; cp is the average cosine of

the inter-planar angles. f(np) is a weighting function which

falls linearly from 1.0 to 0.0 as np increases from 0.0 to

1.25 Å2, remaining constant at zero thereafter, g(cp) is

similar in form but falls from 2.0 to 0.0 as cp decreases

from 1.0 to 0.8. Hence, more weight is placed on the hy-

drophobes being coplanar than on their centroids being

coincident.

Fig. 1 Example overlay of nitrile, carbonyl and phosphate acceptors.

Each acceptor is shown with virtual points representing possible

positions of the protein donor (magenta: nitrile; green: carbonyl;

brown: phosphate). A direction in which all three acceptors can

hydrogen bond is indicated by the cluster of virtual points, one from

each acceptor, at the top left of the figure
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Energy score

This is the sum of the strain energies of the overlaid ligands,

E, calculated from the torsional and van der Waals (vdw)

terms of the Tripos force field [29]. Only repulsive atom–

atom interactions are included in the vdw sum, to avoid

attractive interactions artificially favouring folded confor-

mations. As bond angles are not allowed to relax, all vdw

radii are reduced to 0.85 times their published values; a

similar approach has been used previously by others [30].

Also, the worst atom–atom clash is ignored provided its

energy is \150 kcal/mol, making the function more for-

giving when a conformation has a single bad atom–atom

clash that could probably be relieved if bond angles were

allowed to vary.

Customised-feature score

This is employed when the user has defined customised

features (feature types other than hydrophobes, donors or

acceptors). Clusters of customised-feature centroids are

found, each cluster containing only one type of customised

feature and no more than one centroid from each ligand.

The score (larger values better) is:

CF ¼ R N2
pfðnpÞ

n o
ð3Þ

Summation is over the clusters. Np is the number of

customised-feature centroids in cluster p; np is the mean-

square distance between the customised-feature centroids

and their overall centroid; f(np) is a weighting function

which falls linearly from 1.0 to 0.0 as np increases from 0.0

to 1.25 Å2, remaining constant at zero thereafter.

Chromosome structure

At some stages of the algorithm, it is convenient to represent

overlays not by their atomic coordinates but as a compact

representation which we call a chromosome. We use this

name because, amongst other uses, chromosomes are used to

represent solutions in a MOGA during overlay multiplica-

tion. However, they are also used for other purposes unre-

lated to genetic algorithms: they provide a concise way of

storing the large numbers of putative solutions produced by

the overlay-generation stage of the algorithm; and they are

used for efficient persistent storage of solutions.

A chromosome must fully define the conformation,

position and orientation of each ligand. A ligand confor-

mation is defined by: (a) a conformer index, which refers to

one of the low-energy conformations supplied by the user;

(b) a set of torsion-angle values for the acyclic rotatable

bonds. (A file of SMARTS strings is used to indicate which

types of acyclic bonds are to be considered rotatable and can

also be used to set allowed torsion-angle ranges. For

example, we do not rotate methyl groups, and constrain

esters to lie within 5� of the trans planar geometry.) The

required conformation is generated by setting the molecular

geometry to that of the specified conformer and then driving

the rotatable bonds to their required torsion settings. The

chromosome may contain no torsion data, in which case the

indicated conformer is used directly. When torsion angles

are supplied, it is still necessary to specify a conformer

index in case the ligand contains a flexible ring or invertible

nitrogen, in which case different conformers in the input file

might have different ring or nitrogen geometries.

The positions and orientations of the ligands are defined

by a mapping table which specifies a matching of fitting

points. For example, for a three-ligand overlay it might

look like:

ligand A: 1 7 9; ligand B: 4 6 10; ligand C: 2 4 6

This means that ligand B is to be overlaid on ligand A

(once they have been set to their specified conformations)

by least-squares superposition of its fitting points 4, 6, 10

on 1, 7, 9, respectively, of ligand A. Ligand C is overlaid

by least-squares superposition of its fitting points 2, 4, 6 on

points a, b, c, where a is the centroid of fitting point 1

(ligand A) and fitting point 4 (ligand B), and so on. The

table may contain more than three columns and missing

values are allowed. If there are fewer than three columns in

the table with no missing values, the algorithm will search

for an order in which the ligands can be overlaid. If none

can be found, the chromosome is invalid.

The chromosome may also contain three translations

and three Euler angles per ligand. If so, the ligand positions

are further modified after the mapping-table superpositions

by rigid-body rotations about the x, y and z directions,

followed by translations. This was implemented to allow

ligands to rotate and translate freely during overlay

refinement and multiplication.

Overlay generation

This involves three stages: triplet counting, fingerprint

calculation, and fingerprint searching. For simplicity, the

procedure will be described assuming that only donor,

acceptor and hydrophobe feature types are in use, but

extension to more feature types is straightforward.

Triplet counting

A triplet is defined as three fitting points from the same

conformation of a ligand. Triplets can be classified into

types, defined by: (a) the nature of the features that the

three fitting points represent (donors, acceptors or hydro-

phobes); (b) the inter-point distances. By using a set of
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non-overlapping distance bins, each inter-point distance

can be assigned uniquely to one bin, so each triplet can be

assigned uniquely to one triplet type. The first step is to

find the triplet types that occur most often in the ligand

conformations that the user has supplied. All triplets are

enumerated and typed. Let Li be the number of ligands in

which at least one triplet of type i occurs in at least one

conformation. Let Pij be the proportion of conformations of

ligand j that contain at least one triplet of type i. Let Pi be

the average of the Pij over all ligands. Triplet types are

sorted in descending order of Li and, in the event of ties, in

descending order of Pi. The position of a triplet type in the

sorted list is its rank, starting at 1 for the most common. Let

M be the rank of the lowest-ranked triplet type that occurs

in all ligands. Overlay generation, as described below,

proceeds by iterating over the triplet types from rank 1 to

N, where N is the lesser of M and a user-defined value (set

to 25 for the validation described below). In each iteration

step, overlays are generated by superposition of triplets of

the type under consideration in that step. Overlays from all

iteration steps are pooled and taken forward to the filtering

stage.

All the results discussed below were obtained using

triplets derived solely from fitting points placed on

acceptors, donors and the centroids of hydrophobic groups.

However, we have found that it can sometimes be advan-

tageous to also allow triplets containing fitting points on

the normals to directional hydrophobes.

The use of distance bins may lead to a problem. Two

triplets that are identical in all respects except for a small

discrepancy in one of the distances will be assigned to

different triplet types if the slightly discrepant distances fall

either side of a bin boundary. We therefore run the entire

overlay generation procedure twice, using different bin

definitions. The overlays from the two runs are pooled

before filtering. By default, the first set of bins is: 0.5–3.0,

3.0–5.0, 5.0–7.0, 7.0–9.0, 9.0–11.0, 11.0–13.0 Å. The

second is: 0.5–3.5, 3.5–6.0, 6.0–8.5, 8.5–11.5, 11.5–

13.5 Å. Triplets are ignored if they involve a distance

below the lowest bin boundary, or above the highest.

Fingerprint calculation

For a given iteration step, let the triplet type under consid-

eration be called the base triplet type, and let a triplet

belonging to that type be a base triplet. The aim is to perform

a multiple alignment of all ligand conformations containing

a base triplet so that, for each such conformation, the base

triplet is placed in a standard position and orientation. The

positions in Cartesian space of all fitting points of the aligned

conformations (excluding the base-triplet fitting points) are

mapped onto a 3D grid which is converted into a fingerprint

(Fig. 2). The fingerprint allows rapid searching for

combinations of ligand conformers (one per ligand) whose

fitting points occupy similar positions in space.

The algorithm loops over all conformations of all ligands.

For each conformation, only the fitting points are considered,

not the atoms. If the conformation does not contain a base

triplet it is rejected. If it does, the points of that triplet are

numbered 1, 2 and 3 by a simple canonicalisation algorithm.

(Acceptor points are assigned lower numbers than donor

points, and donors lower than hydrophobes. If all three points

have the same type, numbering is such that the bins in which

the inter-point distances lie are in the order 2–3 B

1–3 B 1–2. When points 1 and 2, but not 3, have the same

type, the rule is 2–3 B 1–3; when 2 and 3, but not 1, have the

same type, then 1–3 B 1–2.) The rotation/translation trans-

formation is calculated that places the triplet centroid on the

origin, point 1 on the ?x axis, and point 2 in the xy plane with

y C 0. This transformation is applied to all fitting points of

the conformation. The resulting fitting-point positions are

stored. If the base triplet is degenerate, so that there is no

unique canonicalised order, all valid orderings are used in

turn, a separate set of fitting-point positions being generated

for each. If the conformation contains more than one base

triplet, the process is repeated for each in turn.

A 3D grid is constructed, large enough to enclose all the

fitting-point positions generated by the above procedure.

By default, a grid resolution of 1.5 Å is used. Let the

number of points in the grid be G. Each set of fitting points,

corresponding to a particular ligand conformation aligned

with a base triplet in the standard orientation, is converted

to a fingerprint as follows. A bit string of length 3G is

created. The first segment of G bits will capture donor

fitting-point positions, each bit corresponding to one of the

grid points. The other two segments will capture acceptor

and hydrophobe-centroid fitting-point positions. All bits

are initialised to 0. Each fitting point in the ligand con-

formation (except those of the base triplet) is mapped to its

nearest grid point and to the six adjacent points in the ±x,

±y and ±z directions. Depending on the type of feature

that the fitting point represents, the bits corresponding to

these seven grid points in the donor, acceptor or hydro-

phobe segment of the bit string are set to 1. The purpose of

setting seven rather than one bit is to smear out the fitting

point and hence make the algorithm more forgiving.

However, this may be unnecessary as results appear

equally good if smearing is switched off (that is, just the bit

corresponding to the nearest grid point is switched on).

When all aligned conformations have been processed, the

result is a fingerprint table (we call it an alignment finger-

print), each row corresponding to an aligned ligand confor-

mation, each column to a particular grid point and feature

type. Empty columns are eliminated. Each row of the table is

quite similar to a Bloom fingerprint, as used in the Pharmer

program [31], but the rows are not hashed, fitting points can
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be ‘‘smeared’’ over several bits, and the objective is phar-

macophore elucidation rather than the screening of phar-

macophore searches.

Fingerprint searching

The alignment fingerprint is searched for combinations of

rows (one row from each ligand) that have high concor-

dance. This is equivalent to searching for ligand confor-

mations (one per ligand) that, when overlaid by

superimposing the base triplet fitting points, have other

fitting points close together. Searching for good row

combinations is the rate-limiting step of overlay genera-

tion. Each trial combination of rows is scored by:

B ¼ wA� O ð4Þ

A is the number of bits set on in the bit string obtained

by logically ANDing the trial set of rows; O is the

corresponding quantity for the bit string produced by

logical OR; w is an integral weight (default w = 2).

A bit value of 1 in the AND string is suggestive of a full

pharmacophore point, since the aligned ligand conformations

corresponding to the ANDed rows must all have the same type

of fitting point mapped to the same grid point. Thus, large

values of A are favourable. Conversely, small values of O are

desired, since the more ‘‘column sharing’’ there is (two or

more of the selected rows having ‘‘on’’ bits in the same col-

umn), the higher the concordance of the selected rows. O is

sensitive both to full and partial pharmacophore points. The

larger the weight w, the greater the premium placed on full

points.

Finding good row combinations is achieved with a

greedy algorithm which involves n steps, where n is the

number of ligands. In the first step, a starting row is chosen.

Selection is biased towards rows containing a large number

of ‘‘on’’ bits in highly occupied columns. In the second

step, one of the ligands is chosen at random, subject to the

constraint that it cannot be the ligand to which the row

selected at step 1 belongs. Every row belonging to the

second ligand is ANDed and ORed with the starting row,

and the one producing the best B value accepted (if there is

a tie, one of the tied rows is selected at random). The

remaining steps proceed in similar fashion. At each step,

rows corresponding to the new ligand are combined with

Fig. 2 Simplified example of fingerprint algorithm. Two molecules

are represented as collections of fitting points, shown as circles for

one molecule, triangles for the other. The fitting points represent two

types of chemical features, red and green. The molecules contain

approximately congruent triangles of fitting points (outlined in black),

the ‘‘core triplets’’. The fitting points of each molecule are oriented so

that their core triplets are approximately superimposed, and a grid

placed over the resulting fitting-point assembly (bottom left). Each

fitting point, except those of the core triplets, is mapped to the nearest

grid point. For example, the red triangle at the top is mapped to the

grid point shown by the purple arrow. A bit string is created for each

molecule to represent grid-point occupancy, the first (last) 16 bits

capturing occupancy by red (green) features. For example, the second

bit for the triangle molecule is set to 1 because the second grid point

(counting in rows starting at top left) is occupied by a red fitting point.

There are two positions in which both bit strings have on bits,

revealing the close proximity of the circled fitting points
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the strings produced by ANDing and ORing all the rows

already accepted.

Typically, we generate 200 solutions (row combina-

tions) from each fingerprint. This number is under the

user’s control. Each run of the greedy algorithm produces

one solution. Thus, if P solutions are required from a fin-

gerprint, they are generated by using P different starting

rows, unless P exceeds the number of rows in the finger-

print. In this case, the rows are iterated over again, but

using different ligand ordering during the greedy algo-

rithm. The larger P, the more thorough the search. All the

solutions from all fingerprints are pooled, giving 10,000

solutions in total when 25 fingerprints are used for each of

two distance-bin definitions. The total number will be less

than this if fewer than 25 fingerprints can be constructed

for either set of distance bins; this will occur if fewer than

25 triplet types occur in all of the ligands. The solutions are

stored as chromosomes. In each chromosome, the mapping

table contains the indices of the fitting points comprising

the base triplets of the rows in the solution, and the con-

former indices reflect the ligand conformations from which

the rows were constructed. Each chromosome can be used

to construct the corresponding molecular overlay.

Stepwise approach

A limitation of the method is that overlays can only be

generated from base triplets that occur in at least one con-

formation of every ligand. If there is no such base triplet, one

possible remedy is to create overlays in stepwise fashion.

The overlay generation is first run on a subset of ligands

which do share a common base triplet. After filtering, this

will result in several overlays of the subset of ligands. The

program can treat these as ‘‘conformations’’ of a ‘‘super-

molecule’’, for each of which fitting points are placed to

represent the features of all the ligands in the overlay. Where

fitting points of the same type from different ligands are

close together, they are merged into a single, average point.

This is done by leader cluster analysis (see above). By

default, points separated by[1.5 Å will not be placed in the

same cluster and therefore will not be merged. Because the

supermolecule has more fitting points than any of the indi-

vidual ligands from which it is comprised, there is an

increased chance of finding common base triplets between it

and the remaining ligands. Overlays of the complete set may

therefore be built up by a succession of steps. Users must

specify the number and nature of the steps in a stepwise

overlay generation. A step can involve overlaying super-

molecules on other supermolecules. For example, when

overlaying ligands L1, L2, L3 and L4, a typical step speci-

fication might be: L1 on L2 to give supermolecules

(L1 ? L2); L3 on L4 to give supermolecules (L3 ? L4);

(L1 ? L2) on (L3 ? L4) to give the final overlays. A step

can involve both supermolecules and ordinary molecules;

for example: L1 on L2 to give (L1 ? L2); (L1 ? L2) on L3

and L4 to give the final overlays.

Constraints

The algorithm can be used to generate constrained overlays.

For example, suppose all the ligands contain a quaternary

nitrogen atom and the user is only interested in overlays in

which these atoms are superimposed. An artificial ‘‘con-

straint’’ feature type is introduced, to which only the qua-

ternary nitrogen atoms belong, a fitting point being placed on

each. During triplet enumeration, triplets which do not con-

tain one of these fitting points are rejected. The ensuing

fingerprint algorithm is therefore constrained to produce only

solutions which superimpose the quaternary nitrogen atoms.

Overlay filtering

Filtering aims to select a diverse subset of the best of the

generated overlays. The procedure begins by scoring the

overlays, using some or all of the objective functions

described earlier, either separately or as a weighted linear

combination. By default, we use volume, hydrogen bond

and hydrophobic scores, but not energy, as all ligand

conformations in the generated overlays will have been

taken directly from the conformers supplied by the user.

The objective functions are computed separately and con-

verted to a single number by Fonseca-Fleming Pareto

ranking [32]. Overlays whose Pareto rank exceeds a

threshold (set by default to 5) are rejected.

When Pareto ranking, we usually set score constraints.

In unconstrained Pareto ranking, one solution will be

deemed to dominate another if, and only if, it scores better

on at least one objective and does not score worse on any

objective. When a score constraint is applied (for example,

V \ 900), an extra rule is invoked: for any pair of solu-

tions, if one breaks a constraint (for example, V = 901)

and the other does not, the solution breaking the constraint

is deemed to be dominated by the other. Score constraints

can be specified in absolute or percentile terms. By default,

we use the latter, requiring that an overlay must be in the

best 30 % of volume scores and the best 30 % of hydrogen-

bond scores to avoid breaking a constraint.

Typically, we limit the final number of solutions after

filtering to B20. Thus, if application of the Pareto rank

threshold leaves too many solutions, they are further

reduced in number as follows. They are ordered on their

Borda tallies (the sum of the ranks of the individual

objective scores [33]). The highest ranking solution (best

on Borda tally) is chosen to be part of the final solution set.

Solutions similar to this one are rejected. The best solution

of those that remain is chosen, similar solutions rejected,
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and so on until the required number of solutions has been

chosen or the solutions are exhausted. Similarity is mea-

sured by the consensus coefficient described later; solutions

are rejected if their dissimilarity from any overlay already

accepted is \0.05.

Overlay refinement

This has the purpose of improving an already good overlay

from the preceding steps by bringing approximately overlaid

groups into tighter alignment. Refinement can be achieved

by simulated annealing, randomly changing one ligand tor-

sion value, or applying a small random rigid-body translation

or rotation to one ligand, in each step. Changed torsion values

must respect any torsion-angle constraints set by the user.

The following cost function usually gives acceptable results:

F ¼ HB� 0:5Vþ HY � 0:3E ð5Þ

The initial annealing temperature is typically set to a low

value, because the aim is to achieve minor improvements

rather than perform a wide exploration of overlay space.

Annealing is usually successful at producing well-refined

solutions, but it is slow. We have recently developed a much

faster method using gradient-based optimisation, full details

of which will be published in a subsequent paper.

Overlay multiplication

This aims to take a good overlay and investigate whether

other alignments exist with the same mapping of features

but different ligand conformations (Fig. 3). This is often

possible if the ligands are flexible, and of practical concern

if the aim is to produce a pharmacophore query for virtual

screening. Ideally, all possible solutions should be found at

the overlay generation stage, but only a limited number of

solutions will normally be requested, and the diversity

algorithm used during filtering may bias selection towards

overlays expressing different feature mappings.

The multiplication procedure is related to the algorithm

described in our earlier publications [17–19]. The first step is

to construct a chromosome mapping table that reflects all the

full and partial pharmacophore points in the starting overlay.

A population of 150 chromosomes is set up, each containing

this mapping table but with randomised torsion-angle values.

The population is subjected to MOGA optimisation. 150

children are produced in each generation by torsion mutations,

torsion crossovers, or small mutations to the rigid-body ligand

rotation or translation data. Each mutation is restricted to a

single torsion value or to the rigid-body translation or rotation

data of a single ligand. In each torsion crossover, the swap is

restricted to torsion angles involving a single ligand. Mutated

torsion values must respect any torsion-angle constraints set

by the user. Parents are chosen by tournament selection.

At each generation, parent and child populations are

merged and Pareto ranked, using the objective functions V,

HB, HY and E. Up to 150 chromosomes from the merged

population are accepted for the next generation. Selection

is based on Pareto ranks, with niching to promote geo-

metric diversity. Chromosomes are placed in the same

niche if the dissimilarity of the overlays for which they

code is less than a set value. Once a niche is full, no further

chromosomes that would belong to that niche can be

accepted. For speed, dissimilarity is measured not by the

coefficients described below but by the following crude

technique. A subset of atoms is chosen, including one from

(or very near to) every feature of every ligand. For each

overlay, the matrix of squared distances between the cho-

sen atoms is calculated. The dissimilarity of an overlay pair

is determined by the mean absolute difference between

corresponding elements of their squared distance matrices.

Solution analysis

The following methods were programmed to aid compar-

ison of the overlays produced for a set of ligands.

Overlay dissimilarity coefficients: introduction

Two questions are relevant when comparing a pair of over-

lays of the same ligands. First, are the same ligand groups

matched (that is, how different are the pharmacophores in

Fig. 3 Two overlays of dihydrofolate reductase ligands with identi-

cal feature mappings but different ligand conformations (and

therefore leading to different pharmacophore queries)
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terms of the number and types of pharmacophore points they

contain, and the individual ligand fitting points that con-

tribute to them)? Second, are the overlays similar geomet-

rically? We therefore use three dissimilarity measures, one

pharmacophore based, one based on geometry, and the third

a consensus measure.

Pharmacophore dissimilarity coefficient

The pharmacophore present in each of the overlays (A, B)

to be compared is identified by cluster analysis of the

ligand fitting points. All pairs of pharmacophore points,

one from A and one from B, that are of the same type (all

donor pairs, all acceptor pairs, and so on) are examined.

For a given pair, PA and PB, let NA be the number of ligand

fitting points in PA, NB be the number in PB, and NAB be

the number that are in both PA and PB. The similarity of the

pair is computed by the Tanimoto metric T = NAB/

(NA ? NB - NAB). The weight of the pair is defined as

w = [(NA ? NB)/2]2.

Pharmacophore points in A are then matched with those

in B, by first matching the pair with the highest Tanimoto

coefficient, then the pair with the next highest (excluding

any pair involving a pharmacophore point that has already

been matched), and so on. Some pharmacophore points

may be left unmatched. For these, the quantity U = RNi
2 is

calculated, where summation is over the unmatched phar-

macophore points and Ni is the number of ligand fitting

points in the ith unmatched point. The pharmacophore

dissimilarity coefficient, Dp, is calculated as

Dp ¼ 1� ðRwiTiÞ=ðUþ RwiÞ ð6Þ

the summations being over the matched pairs.

Geometric dissimilarity coefficient

The geometric dissimilarity of overlays A and B is quan-

tified by least-squares fitting a selection of atoms in A,

chosen to include one atom from (or very near to) every

feature of every ligand, onto the corresponding atoms in B.

To allow for local topological symmetry, a two-step pro-

cedure is used. In step 1, the selected atoms of each ligand

in A are least-squares fitted onto the selected atoms of the

corresponding ligand in B, using all possible ways of

matching the atoms (given that there may be many ways of

matching the ligand graph onto itself). For each ligand, the

atom pairing giving the lowest root mean square deviation

(rmsd) is stored. In step 2, A is least-squared fitted onto B,

using the atom pairings stored from step 1. The interatomic

distance of each matched atom pair in the superposition of

A and B is converted to a normalised quantity q by the

transformation:

q ¼ 0 if d\0:5 Å; q ¼ ðd� 0:5Þ=ð3:5� 0:5Þ
if 0:5� d� 3:5 Å; q ¼ 1 if d [ 3:5 Å

The dissimilarity coefficient, DG, is the average of the q

values.

Consensus dissimilarity coefficient

The consensus dissimilarity, DC, is H(DPDG).

Superposition of overlays

Any two overlays can be superimposed automatically to

aid their comparison. Superposition is achieved either by

least-squares fitting of atoms or of pharmacophores (using

pharmacophore-point pairings derived from calculating the

DP coefficient). If the latter is used, the consensus phar-

macophore of the two solutions is also calculated and

displayed.

Mapping of overlays

Multidimensional scaling (performed with the SMACOF

algorithm [34]) is used to produces 2D or 3D plots of the

final set of overlays, the intention being that similar over-

lays should lie close together on the plot [35]. Three sep-

arate plots are calculated, based on each of the dissimilarity

coefficients described above. Plots can be coloured on any

of the objective scores. The plots can be very revealing. For

example, Fig. 4 shows that solutions fall into two main

clusters, with two gross outliers. However, overlays are

complex objects and variations between them can be rep-

resented only approximately in low dimensional space.

Thus, while useful, the plots should not be over-interpreted.

Fig. 4 Plot of overlays of cycle checkpoint kinase ligands, revealing

that the overlays fall into two distinct clusters, with two outliers (the

horizontal and vertical axes represent the first and second dimensions,

respectively, from the multidimensional scaling calculation)
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Selection of parameter values

Parameters used in the hydrogen bond and hydrophobic

scores were chosen so that the relative contributions to these

scores of the various clusters of donors, acceptors and hy-

drophobes in the true overlays of the test set seemed rea-

sonable, in our subjective judgement. The extent to which

vdw radii were reduced for calculation of the energy score,

and the strategy of ignoring the worst contact provided it

was less repulsive than 150 kcal/mol, were chosen to give

good discrimination between the calculated energies of

(a) OMEGA-generated and (b) randomly-generated con-

formations of the test-set ligands. The premium placed on

full pharmacophore points when searching alignment fin-

gerprints (w in Eq. 4), the number of fingerprints used, the

number of overlays generated per fingerprint, and the filter

thresholds and score constraints, were selected by manual

experimentation on two of the ten sets of ligands used in the

validation (neprilysin and dihydrofolate reductase ligands).

Validation

Test data

The program was tested on ten sets of protein–ligand

complexes from the PDB (Table 1), and on some subsets

thereof (Table 2). All complexes are members of the Astex

Non-Native Set, which was compiled from well-refined

structures with a bias towards therapeutically relevant

proteins [36]. The complexes in each set were superimposed

by least-squares fitting the binding-site atoms in Relibase?

[37], hence producing the true, crystallographically-

observed overlay. Each complex was inspected to establish

probable ligand protonation states and identify protein–

ligand interactions. This enabled the true pharmacophore

points to be determined (clusters of atoms or groups that

form common interactions with the protein) and distin-

guished from incidental clusters of donors, acceptors and

hydrophobes (for example, clusters of acceptors or donors

that interact only with solvent).

Ligand models were created with CORINA [38] with

addition of required hydrogen atoms. Six sets of conformers

were generated for all ligands. Three (RAW5000,

RAW1000 and RAW200) were produced using the raw

CORINA-generated molecules as input, with the maximum

number of conformers per ligand set to 5,000, 1,000 and

200, respectively. The OMEGA rms and ewindow param-

eters were set to 0.5 Å and 10 kcal/mol, respectively, and

the –fromCT flag set to false; default values were used for

other parameters. The remaining conformer sets (OPT5000,

OPT1000 and OPT200) were generated in similar fashion

except that the CORINA models were subjected to geom-

etry optimisation with the SZYBKI molecular mechanics

program [39] before input to OMEGA. OMEGA changed

the bond types of a small number of chemical groupings (in

particular, removing the formal charge on some aromatic

nitrogens by making the ring non-aromatic) but we felt the

error was sufficiently unimportant that it could be ignored (a

conservative decision, since sub-optimum bond types are

likely to worsen rather than improve validation results). A

table is included in the Supporting Information giving, for

each ligand, the non-hydrogen atom rmsd between the

binding conformation and the closest approximation to that

conformation in each conformer set. In general, these are

satisfactorily small.

Table 1 Test sets
Protein Number of

complexes

PDB codes

Protein kinase 5 (PK5) 2 1v0o, 1v0p

Fatty acid binding protein (FABP) 3 1tou, 1tow, 2hnx

Neprilysin (NEP) 4 1dmt, 1r1h, 1r1j, 1y8j

Dihydrofolate reductase (DHFR) 6 1drf, 1hfr, 1mvt, 1pd9, 1s3v, 2dhf

Checkpoint kinase (Chk1) 16 1nvq, 1nvr, 1nvs, 1zlt, 1zys, 2br1, 2brb, 2brg,

2brh, 2brm, 2bro, 2c3l, 2cgu, 2cgw, 2cgx, 2hog

Neuraminidase (NEU) 11 1a4g, 1a4q, 1b9s, 1b9t, 1b9v, 1inf, 1inv, 1ivb,

1nsc, 1nsd, 1vcj

Carbonic anhydrase (CA) 13 1bn3, 1bn4, 1bnq, 1cim, 1eou, 1if7, 1oq5, 1xpz,

1zgf, 1zh9, 2eu3, 2hoc, 2nng

Adenosine deaminase (ADA) 11 1krm, 1ndv, 1ndw, 1ndy, 1o5r, 1qxl, 1uml,

1v7a, 1v79, 1wxy, 2e1w

Heat shock protein 90 (HSP) 10 1byq, 1uy8, 1yc1, 1yc4, 1yet, 2bsm,

2byi, 2bz5, 2cct, 2uwd

Acetylcholinesterase (AChE) 11 1dx6, 1e66, 1eve, 1gpk, 1gpn, 1h23, 1w4l,

1zgb, 2ack, 2c5g, 2ckm
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Success criteria

Choosing success criteria is not easy. First, it cannot be

assumed that the true overlay is the most plausible way in

which the ligands can be aligned. It is possible that an

incorrect solution may look more convincing and such a

solution should be presented to the user for consideration.

Second, it is more important to correctly predict the feature

mappings than the ligand conformations. An overlay with

correct feature mappings is very useful, even if the ligand

geometries are wrong, because: (a) it indicates which

functional groups are important for binding; (b) the phar-

macophore query it suggests will probably find useful hits

(since flexible active molecules in the search database may

be able to adopt the conformations required to match the

query); (c) it can serve as a starting point for overlay

multiplication. Third, the all-atom rmsd from the true

overlay is a poor success measure, since it can be low even

if the prediction has serious faults [15]. We therefore define

success as generating an overlay with substantially correct

feature mappings (preferably, but not necessarily, in their

correct relative positions) in the small number of highly

ranked solutions that a user is likely to view (we have

assumed users will inspect up to 20).

The pharmacophore points (full and partial) in each true

overlay were manually divided into groups. For example,

those of the NEP ligands (Fig. 5) were divided into: (a) the

acceptor points representing the acidic atoms that coordi-

nate the active-site zinc and hydrogen bond to His711 and

Glu584; (b) the pair of donor and acceptor points repre-

senting amide and imidazo groups that hydrogen bond to

Asn542 and Arg717; (c) the hydrophobic point represent-

ing phenyl and isobutyl groups that interact with Val580,

Trp693 and other nearby residues; (d) the acceptor point

corresponding to carboxylate oxygen atoms that hydrogen

bond to Asn542. Each pharmacophore-point group was

classified as being of major, moderate or minor importance,

depending on whether it contains full pharmacophore

points, partial points involving several of the ligands, or

partial points involving only a small number of ligands.

Table 3 summarises the pharmacophore-point groups for

the NEP ligands. Analogous tables for other test sets are

available as Supporting Information, together with anno-

tated ligand chemical diagrams.

We then identified the atoms (donors, acceptors and

dummy atoms at the centroids of hydrophobes) that con-

stituted the pharmacophore points in each group (for

example, the carboxylate oxygens constituting group d of

the NEP ligands). For any given predicted overlay, we

calculated the quantities Ri, i = 1, 2,…, N, where N is the

number of pharmacophore-point groups and Ri is the rmsd

obtained when the atoms constituting the pharmacophore

points of the ith group in the true overlay are least-squares

fitted onto the corresponding atoms in the predicted overlay.

We also calculated Rtotal, the rmsd obtained when all atoms

of the true overlay that were included in any Ri calculation

are least-squares fitted onto the corresponding atoms of the

prediction. If all Ri are small, the predicted overlay has all

the correct pharmacophore points but not necessarily in

their correct relative positions (that is, correct feature

mappings but possibly incorrect ligand conformations). If

both Rtotal and all the Ri are small, the predicted overlay has

correct feature mappings and ligand conformations. In

addition to these objective measures, we also assessed

Table 2 Test subsets

Protein/subset Number of

complexes

PDB codes

ADA/1 10 1ndv, 1ndw, 1ndy, 1o5r, 1qxl, 1uml,

1v7a, 1v79, 1wxy, 2e1w

ADA/2 4 1o5r, 1qxl, 1uml, 1wxy

ADA/3 4 1ndv, 1o5r, 1qxl, 1uml

HSP/1 7 1yc1, 1yc4, 2bsm, 2byi, 2bz5, 2cct,

2uwd

HSP/2 3 1byq, 1uy8, 2cct

AChE/1 9 1dx6, 1e66, 1gpk, 1gpn, 1h23, 1w4l,

1zgb, 2ack, 2ckm

AChE/2 4 1h23, 1w4l, 1zgb, 2ckm

Fig. 5 True overlay of neprilysin ligands showing the pharmaco-

phore-point groups (in ball-and-stick style) referred to in the text
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solutions subjectively by superimposing them on the true

overlay and manually looking for misplaced ligands.

Results

Up to 20 solutions were produced for each test set,

including the subsets in Table 2. RAW5000 conformers

were used as input and all program parameters were set at

their default values. No overlay refinement or multiplica-

tion was performed unless otherwise stated below. The

solutions in each set were ranked from 1 to 20, based on

their Borda tallies for the V, HB and HY objective func-

tions (see Overlay Filtering). Each solution was charac-

terised by its Ri and Rtotal values and many were manually

inspected. Table 4 summarises the results. The Ri and Rtotal

values (in Å) pertain to the solution that appeared to us to

best represent the true overlay. Successive Ri values on

each line correspond to pharmacophore-point groups a, b,

c, etc. in Table 3 and the analogous tables in Supporting

Information, and are separated into those that represent

groups of major, moderate and minor importance. The

number of seriously misplaced ligands (if any) in the

solution is given, together with the solution rank (column

headed ‘‘rank, best’’). The table also shows the rank of the

highest-ranked solution that had substantially correct fea-

ture mappings but not necessarily the correct geometry

(‘‘rank, highest’’). For some sets (listed at the foot of the

table), none of the solutions were considered satisfactory;

Ri and Rtotal are not given in these cases.

Discussion

Discussion is confined to the results from the RAW5000

conformer set, with a brief summary of the effects of using

other conformer sets at the end.

Protein kinase 5

The main problem with this otherwise simple test set is that

both ligands contain acid groups, and we might expect the

algorithm to produce overlays in which these groups are

superimposed. However, the acid groups are widely separated

in the true overlay, neither forming any significant interactions

with the protein. Ideally, the program should generate both the

correct solution and the obvious but incorrect alternative. This

is achieved. Only nine solutions survive the filtering, of which

Table 3 Pharmacophore-point

groups for the neprilysin ligands

a Number of full

pharmacophore points in group
b Number of partial

pharmacophore points in group

Group Description Fulla Partialb Importance

a Acidic groups (including thiolates) binding Zn,

accepting from E584, H711

1 1 Major

b Amide and imidazo groups donating to N542,

accepting from R717

2 0 Major

c Phenyl and isobutyl groups making hydrophobic

contacts in vicinity of V580, H583 and W693

1 0 Major

d Carboxylate oxygens accepting from N542 0 1 Moderate

Table 4 Results obtained from RAW5000 conformers

Set or subset Ri (major) Ri (moderate) Ri (minor) Rtotal Seriously

misplaced

Rank,

best

Rank,

highest

PK5 0.6 – – 0.6 0 2 1

FABP 0.3, 0.6, 1.5, 1.7 – – 1.5 0 5 1

NEP 1.6, 0.4, 0.5 0.4 – 1.2 0 2 1

DHFR 0.4 1.3 0.2, 0.2 2.0 0 2 2

Chk1 0.5 1.2, 1.0 0.3, 2.1 1.2 0 1 1

NEU 0.7, 0.3 0.4 0.9, 0.6, 0.9 0.8 1 4 1

CA 1.3, 0.5 1.6, 1.6 1.4 1.8 2 4 4

ADA/1a – 0.6, 0.5, 0.3, 0.7, 1.1 1.9 1.3 0 1 1

ADA/2 0.9, 0.7, 0.2, 1.3 0.2, 0.2 – 1.9 0 18 1

ADA/3 0.9, 0.8, 0.7, 1.7 0.1, 0.2 – 2.5 0 3 3

HSP/1 0.5, 0.7, 0.2 0.2, 0.2, 0.9 0.2 1.0 0 5 1

No satisfactory solutions were obtained for ADA, HSP, HSP/2; AChE, AChE/1, AChE/2
a Obtained by stepwise method
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six are closely related and similar to the true overlay, while the

other three have the acid groups superimposed (Fig. 6). The

occurrence of clusters of similar solutions in the filtered output

is a consequence of using a low filtering dissimilarity

threshold (0.05), which tends to focus in on the most con-

vincing overlays at the expense of diversity. The optimum

value of this parameter may well vary from case to case,

depending, for example, on how many pharmacophore que-

ries the user wishes to generate.

Fatty acid binding protein

This is a simple set, the only challenge being to find the

folded conformation of the C15 chain of the 2hnx ligand

that places it within the envelope of the other two ligands.

This is not very well achieved in the overlay generation

step, which tends to produce solutions like that shown at

the top of Fig. 7 (solutions from OPT5000 conformers tend

to be better). However, refinement by annealing readily

fixes the problem (Fig. 7, bottom). When applied to the

top-ranked solution, refinement reduces an initial overlay

volume of 451 to 363 Å3, marginally lower than that of the

true overlay. A minor but understandable error in the

hydrogen-bond matching is that the carboxylate oxygens of

the 2hnx and 1tow ligands tend to be matched onto both the

hydroxyl oxygen and one of the pyrimidine nitrogens of the

1tou ligand. In fact, only the hydroxyl oxygen of the latter

ligand appears to hydrogen bond to the protein. It is not

uncommon for the algorithm to find better matching of

hydrogen-bond groups than occurs in reality.

Figure 8 shows the top-ranked solution when the car-

bonyl oxygen of the 1tou ligand is constrained to super-

impose on carboxylate oxygen atoms of the other ligands.

This produces a fundamentally different, but still credible,

overlay. Constrained overlaying is an easy way to explore

specific overlay hypotheses.

Neprilysin

This set contains only four ligands, but they are flexible

and feature rich and therefore moderately challenging to

Fig. 6 Two predictions for protein kinase 5 ligands. The top one is

similar to the true overlay, the bottom one is a credible alternative

with ligand acid groups overlaid Fig. 7 Top ranked solution for fatty acid binding protein ligands

before (top) and after (bottom) refinement
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overlay. The solutions are excellent. Eight of the top ten

solutions have essentially correct feature mappings, though

several involve different ligand conformations from those

seen in the crystal structure. There are invariably minor

errors in the vicinity of the zinc-binding groups but never

sufficient to obscure their obvious significance to binding.

The second-ranked solution has both correct mappings and

almost correct conformations (Fig. 9). Solution 9 is a dif-

ferent but credible overlay in which the thiolate of the 1y8j

ligand is matched with carboxylate oxygens from the other

ligands. Only a small minority of the top twenty solutions

look unconvincing.

The 1r1j and 1y8j ligands in this set were built in their

thiolate forms, since it was known that the sulfur atoms

coordinate zinc and are likely to be ionised. Solutions

generated from the unionised forms would probably have

been much poorer since the sulfur atoms would not have

been regarded as acceptors. In a genuine drug discovery

project, the quality of answers would therefore depend on

whether investigators were aware of the probable presence

of a zinc ion in the binding site of the target protein.

Dihydrofolate reductase

Results on this set are good. The critical requirement is to

generate the correct alignment of heterocycles, in which some

of the bicyclic systems are flipped in order to achieve the

required matching of hydrogen bonding groups. The correct

heterocycle alignment is present in about half of the solutions

that survived filtering. Most of the remainder contain plausible

alternative alignments. The highest ranked solution with the

correct heterocycle alignment (solution 2) also has the amide

and carboxylate groups of the 1drf, 1hfr and 2dhf ligands

correctly superimposed and all six phenyl-ring centroids in

roughly the same position. In the true overlay, there is a dis-

tinct separation between the phenyl groups of the 1drf, 1hfr

and 2dhf ligands and those of the remaining ligands.

Although solution 2 has almost perfect feature match-

ing, it has incorrect ligand conformations (extended rather

than bent). This is typical for these ligands: prediction of

the correct feature matching is easily achieved but almost

always with extended conformations. Only with OPT5000

conformers can solutions be generated with ligand con-

formations similar to those seen in the crystal structures.

(This is probably due to the fact that the RAW5000 con-

formers do not contain good approximations of the binding

conformations of the 1drf and 2dhf ligands whereas the

OPT5000 conformer sets do.) However, the problem is

solved by overlay multiplication. Thus, when solution 2

was subjected to this process, both bent and extended

overlays with correct feature matching were produced.

Figure 3 shows the original solution 2 (top) and the top-

ranked solution from overlay multiplication, after refine-

ment (bottom). The latter is close to the true overlay in both

feature matching and ligand conformations.

Checkpoint kinase

This set includes six very similar ligands (2br1, 2brb, 2brg,

2brh, 2brm, 2bro) but is otherwise quite diverse. Results

are very good. Most solutions are close to the true overlay

Fig. 8 Constrained overlay of fatty acid binding protein ligands

(carbon atoms of 1tou ligand shown in magenta)

Fig. 9 Second-ranked solution for neprilysin ligands (carbons col-

oured green) superimposed on true overlay (carbons in magenta)
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and, in particular, the key pair of donor and acceptor

pharmacophore points is found, with all the correct donors

and acceptors from the individual ligands. It is to this set

that the plot shown in Fig. 4 pertains. The two large

clusters on the right of this plot comprise essentially correct

solutions, the difference between them being that one of

the ligands (1zys) is rotated by about 30� in one cluster

compared to the other. The two outliers on the left of the

plot correspond to a different and incorrect positioning of

the six similar ligands referred to above. In both correct

and outlier solutions, the CH groups at the 2-position of the

fused pyrimidine rings of these ligands are correctly placed

in the key donor cluster but, in the outliers, the six ligands

are flipped so that the wrong pyrimidine nitrogen is placed

in the key acceptor cluster (Fig. 10). In addition, one of the

outliers also has another ligand (1zlt) misplaced, resulting

in a reasonable but incorrect matching. While the multi-

dimensional-scaling plots are not always useful, they can,

as in this case, highlight differences between overlays that

might otherwise be missed.

Neuraminidase

The ligands in this set are all very similar, each containing

a core substructure comprising a 6-membered ring with

para-related acid and amide (or lactam) substituents. It was

included in the validation to mimic the type of set that

might be overlaid in a 3D QSAR exercise. Although the

problem may appear trivial, it is not. Accepting that the

core substructures from the eleven ligands should be

superimposed, there are still many ways of achieving this.

Assume the first ligand is placed arbitrarily. Since the bond

between the 6-membered ring and the amide or lactam

group is rotatable, the second and subsequent ligands may

each be superimposed on the first in two ways whilst

keeping the core substructures well aligned, giving a total

of 210 possibilities for the complete overlay. With this in

mind, we were surprised to find that several of the solu-

tions, including the top-ranked, have each molecule ‘‘the

right way round’’. This is particularly impressive as it

places two cationic (guanidinium) groups on one side of

the overlay and two (a guanidinium and ammonium) on the

other, a correct but perhaps surprising arrangement

(Fig. 11). The correct solution has a particularly low union

volume, which probably explains why it can be found so

readily.

The ligand from 1nsc cannot be placed optimally

because OMEGA does not generate the rather strained ring

conformation reported in the PDB structure. Instead, it

generates chair conformers with the carboxylate group

axial, meaning that this group is not superimposed on the

acid groups of the other ligands. This problem is found

with all the conformer sets.

Carbonic anhydrase

These ligands all contain sulfonamide or sulfamate groups that

coordinate the active-site zinc atom. Although the Ri and Rtotal

values for the best solution look reasonable (Table 4), it is not a

particularly good prediction (Fig. 12). The metal-coordinating

warheads are correctly overlaid (this is true in all solutions) and

there is enough of a cluster of acceptors to indicate the presence

of the partial pharmacophore point corresponding to interac-

tion with Gln92. The hydrophobic side chains of the 1bn3,

1bn4, 1bnq, 1if7, 1oq5, 1xpz, 1zh9 and 2hoc ligands are

overlaid about as well as in the true overlay (which is to say, not

very), but in the wrong position (that is, the ligand conforma-

tions are different from those in the true overlay). The 1eou

Fig. 10 Top: the true overlay of the ligands from the checkpoint

kinase complexes 2br1, 2brb, 2brg, 2brh, 2brm, 2bro (carbons in

magenta) superimposed on the corresponding ligands from one of the

correct solutions obtained for the Chk1 test set (carbons in green,

remaining ligands in set omitted for clarity). Bottom: the same true

overlay superimposed on ligands 2br1… 2bro from one of the

incorrect outlier solutions. Both have the requisite clusters of donor

and acceptor atoms (shown as spheres) but the acceptor cluster in the

incorrect solution involves the wrong pyrimidine nitrogen
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ligand is badly misplaced (as it is in all solutions). Overall, the

predictions for this set, while containing some of the charac-

teristics of the true overlay, add nothing to what is likely to be

discerned by a competent modeler, in contrast to the neur-

aminidase set, where we feel the program genuinely adds

value. Refining the solutions arguably improves the situation

somewhat. We have no insight into why the algorithm finds

this set comparatively difficult, save to note that the peripheral

hydrophobic groups in the true overlay (those remote from the

warhead groups) are not tightly overlaid.

Adenosine deaminase

The correct solution is not found for the complete set. An

obvious reason is that the ligand from the 1krm complex

adopts a binding mode that is drastically different from those

of the other ligands. When this ligand is omitted (subset ADA/

1), correct solutions are still not generated by the standard

approach. All but two of the molecules in the subset are

chemically similar imidazoliums, and these are overlaid with

ease, but the correct positioning of the other two ligands (1ndv

and 1wxy) remains elusive. The problem is that, in the true

overlay of the 1ndv and 1wxy ligands on any of the imi-

dazoliums (the 1ndw ligand, for example; Fig. 13), there is no

protein residue that hydrogen bonds to all three ligands and

the overlap of hydrophobic groups is poor. Thus, no base

triplet exists from which an alignment fingerprint can be built

to generate the correct answer. The algorithm does find

solutions acceptably close to the true overlay for subsets

comprising three of the larger imidazoliums and one or other

(but not both) of the 1ndv and 1wxy ligands, for which subsets

(ADA/2 and ADA/3) a common pharmacophore of size 3

exists in the true overlays.

The correct overlay for ADA/1 can be generated by the

stepwise approach. In our first experiment, the imidazoli-

ums were overlaid without the 1ndv and 1wxy ligands. The

top 20 solutions were treated as ‘‘conformers’’ of a ‘‘su-

permolecule’’ and used as input to a second overlay-gen-

eration job in which the 1wxy ligand was introduced.

Finally, a third step was used to generate overlays involving

the 1ndv ligand. This produced solutions close to the true

overlay. Three other ordering strategies that seemed viable

were also tried (detailed in Supporting Information). The

results in Table 4 were obtained by ranking the pooled

solutions from the four separate stepwise experiments. The

top-ranked solution is similar to the true overlay.

Heat shock protein 90

The 10 ligands in this set may be divided into two groups:

(a) the closely similar pyrazole or isoxazole ligands of 1yc1,

1yc4, 2bsm, 2byi, 2bz5, 2cct, 2uwd together with the struc-

turally unrelated ligand from 2bz5; and (b) two purine ligands

(1byq and 1uy8) and the macrocyclic ligand from 1yet. All the

ligands donate to Asp93 and accept from Thr184 and/or a

conserved water molecule. However, the donor (D) and

acceptor (A) groups in the group b ligands have shorter D���A
distances than in the ligands of group a, potentially making the

results sensitive to the choice of triplet distance bins. More

seriously, the mouth of the binding cavity is rather large and

the ligands from the two groups occupy different parts of it,

resulting in poor volume overlap (Fig. 14). Consequently,

reasonable results are obtained for subset HSP/1 (containing

all the ligands in group a, but none from group b) but not for the

complete set of all ten ligands, or for subsets such as HSP/2

which involve ligands from both groups. An additional

problem with the HSP/2 subset is that many of the false

solutions score better than the true overlay (for example, have

far lower union volumes and better matching of hydrogen-

bonding groups). Thus, it is not clear how the true overlay

could be recognised even if it were generated. We conclude

that this is a difficult test set.

Fig. 11 At top, the true overlay of four of the neuraminidase ligands

(1a4g, 1a4q, 1b9t, 1inf); at bottom, the positions of the same ligands

in the best predicted overlay (remaining ligands in set omitted for

clarity). In both, two cationic groups (shown in ball-and-stick style)

lie on one side of the overlay and two on the other
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Acetylcholinesterase

This is the only protein on which we were entirely unsuc-

cessful. No overlays at all (not even incorrect ones) can be

Fig. 12 True (left) and best

predicted overlay (right) of

carbonic anhydrase ligands. In

the prediction, metal

coordinating groups are overlaid

correctly, and some of the

groups hydrogen bonding to

Gln92 are properly

superimposed (shown as

spheres), but hydrophobic

portions of the ligands are not

correctly positioned and the

1eou ligand (carbons in purple)

is badly misplaced. Overall, it is

a rather poor result

Fig. 13 True overlay of three adenosine deaminase ligands from

PDB complexes 1ndw, 1ndv and 1wxy (carbon atoms coloured in

green, magenta and orange, respectively)

Fig. 14 True overlay of ten heat shock protein ligands, showing the

poor volume overlap of three ligands (from PDB complexes 1byq,

1uy8, 1yet, coloured in magenta) with the remainder (1yc1, 1yc4,

2bsm, 2byi, 2bz5, 2cct, 2uwd, coloured in green)
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generated for the complete set of eleven ligands because the

algorithm cannot find any base triplet from which to con-

struct an alignment fingerprint. The ligands from 2c5g and

1eve must be omitted (subset AChE/1) before any solutions

can be produced, but nothing close to the true answer is

found. The exceptional difficulty of the set may be

explained as follows. (a) Binding is almost entirely hydro-

phobic in nature. No protein atom forms hydrogen bonds to

more than three of the eleven ligands; several ligands form

only one hydrogen bond to the protein; and one (1eve)

forms no hydrogen bonds at all. Hydrophobic interactions

are much less directional than hydrogen bonds, so this

makes overlay prediction far harder. Further, most of the

ligands have donor groups, so the algorithm tends to find

false solutions with partial donor pharmacophore points.

(b) The true overlay is in some respects less convincing than

some of the solutions produced by the algorithm. For

example, Fig. 15 shows the true and a predicted overlay for

the subset of large ligands, AChE/2. In the true overlay, the

heterocyclic systems in the vicinity of the AChE ‘‘periph-

eral binding site’’ (Trp279 and nearby residues) are much

less closely overlaid that in the prediction. (c) There are

significant ligand-induced conformational changes to the

protein at Phe330, altering the space accessible to ligands.

Perhaps the biggest problem is that binding to AChE is

dominated by electrostatic attraction between the electron-

rich aromatic system of Trp84 and hydrophobic groups on

the ligands that are rendered electron deficient by the

inductive effect of nearby positive centres (all the ligands

can safely be assumed to be cations). This type of

electropositive hydrophobe is not specifically represented

in our feature-typing scheme. Possibly, the set may be

more amenable to field-based overlay methods [40].

Influence of conformer input; computational

requirements

Results obtained from the other conformer sets were

inspected in sufficient detail to enable qualitative conclu-

sions to be drawn. Optimising the geometry of the molecular

models from which OMEGA generates conformers has

variable effects. For DHFR, it is advantageous, since the

geometry optimisation allows solutions to be found that have

correct feature mappings and ligand conformations similar to

those seen in the true overlay. In contrast, solutions gener-

ated from unoptimised starting points often have correct

feature mappings but invariably with incorrect ligand con-

formations. For neuraminidase, however, optimisation was

counter-productive, since it produced a poor geometry for

the ligand from 1vcj, making it difficult to place correctly.

There seems to be a gradual improvement in results as

the number of conformers is increased, but the effect is

small. For example, the RAW200 set yields results for PK5,

FABP, NEP, DHFR and Chk1 that are of are comparable

quality to those obtained from the RAW5000 set, while the

overlays for NEU are nearly as good. Computation times

decrease dramatically for some sets as the number of con-

formers is reduced; example figures are given in Table 5.

Memory requirements, which can be over a gigabyte in

some cases, are also appreciably reduced by decreasing the

number of input conformers. The faster speeds obtainable

by using the smaller conformer sets probably outweigh any

consequential loss in solution quality.

Sensitivity of results to scoring functions

The hydrogen bond and hydrophobic scoring functions

involve several empirical parameters and we wished to

Fig. 15 True overlay (left) and top-ranked prediction (right) for a

subset of acetylcholinesterase ligands (1h23, 1w4l, 1zgb, 2ckm). The

heterocyclic systems at the top are more closely aligned in the

prediction than in the true overlay

Table 5 Computation times (minutes) as a function of maximum

number of conformers per ligand (based on RAW conformer sets)

Maximum number of conformers per ligand

Sets 5000 1000 200

NEP 38.4 19.8 4.2

DHFR 17.5 11.0 3.5

Chk1 2.8 2.6 1.8

NEU 3.6 3.6 3.4

CA 4.9 4.8 2.7

ADA 52.2 16.2 5.4

Elapsed times for overlay generation and filtering on an Intel T7500

2.2 GHz processor, excluding time required for conformer generation

but including solution analysis
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establish whether simpler functions might be adequate.

Accordingly, we repeated the RAW5000 validation,

replacing the hydrogen-bond score of Eq. (1) with the

function:

HBðsimpleÞ ¼ RA2
p ð7Þ

where the summation is over the clusters of donor atoms

and acceptor atoms in the overlay, and Ap is the number of

atoms in the pth such cluster. Similarly, the hydrophobic

score was computed as:

HYðsimpleÞ ¼ RH2
p ð8Þ

where the summation is over the clusters of hydrophobic

groups in the overlay, and Hp is the number of hydrophobes

in the pth such cluster. All other aspects of the methodol-

ogy were unchanged. The results obtained were nearly as

good as those described above (see Supporting Informa-

tion), the only substantive difference being that the correct

solution was no longer reliably obtained for ADA/1 using

the stepwise method. We still prefer the more complicated

functions because the score contributions made by indi-

vidual clusters make more sense when these functions are

used. For example, a buried cluster of hydrogen-bonding

atoms in the true overlay of neuraminidase ligands gets a

poor score contribution from Eq. (1) but a much larger

contribution if (7) is used. The former is intuitively more

reasonable and, in fact, the hydrogen-bonding atoms in

question do not interact with the protein. Nevertheless, it is

interesting that the simple functions perform so well.

Conclusions

The alignment fingerprints described above have several

useful characteristics. Each bit is set according to the pres-

ence or absence of a particular type of chemical feature at or

near to a particular position in Cartesian space, when con-

formers are aligned in a consistent frame of reference defined

by a triplet pharmacophore known to be present in all con-

formers contributing to the fingerprint. This is different from

pharmacophore fingerprint techniques that assign bits

according to the presence or absence of a pair of features

separated by a particular distance [1]. The use of Cartesian-

based fingerprints avoids the necessity of performing clique

detection to confirm the presence of a pharmacophore, a step

that is usually required when distance-based fingerprints are

used. Every overlay generated from a fingerprint is guaran-

teed to have at least three full pharmacophore points, cor-

responding to the base triplet. The method takes into account

partial as well as full pharmacophore points and is sensitive

to whether two features in different molecules are exactly

aligned (map to the same grid point) or only closely aligned

(map to adjacent grid points). The B score calculated from

the fingerprint correlates reasonably well with our more

accurate hydrogen bond and volume scores, but is very quick

to compute, allowing a large number of trial conformer

combinations to be tested. The algorithm lends itself easily to

constrained overlay generation.

In the validation, the algorithm performed well when the

true overlay contained at least three full pharmacophore

points. Thus, good results were obtained for the test sets

PK5, FABP, NEP, DHFR, Chk1, NEU, ADA/2 and ADA/3:

a high-ranking solution with the correct feature mappings

and ligand conformations close to those seen in the PDB

structures was almost always found. Results for CA (where

the true overlay has the requisite 3 full pharmacophore

points) were less good: the major features of the true

overlay were predicted adequately but minor details were

not reliably reproduced. For DHFR, solutions with correct

feature mappings were easily found but tended to have

incorrect ligand conformations. However, overlay multi-

plication was effective in finding alternative overlays with

the same mappings but different conformations, including

conformations similar to those in the crystal structures.

When the true overlay of a set of ligands did not contain

three full pharmacophore points, the algorithm often per-

formed poorly. This is sometimes understandable. For

example, the binding of the 1krm ligand in the ADA set is

very different from that of the other ligands. Similar situa-

tions occur in HSP with the 1byq, 1uy8 and 1yet ligands,

and in AChE, where the binding of the 1eve ligand is idi-

osyncratic. Sometimes, false solutions look more convinc-

ing than the true overlay (for example, for the subsets HSP/

2, AChE/2). If the true overlay looks unconvincing, it is

likely to be overlooked by users even if it can be generated.

In the ADA/1 ligand set, however, the true overlay looks

convincing even though it does not have three full pharma-

cophore points. Here, we were able to find the correct solution

by a stepwise approach. This is an important proof of concept

since it significantly extends the range of problems on which

the algorithm might be successful (the use of fitting points on

hydrophobe normals can also achieve this, since it can make a

common pharmacophore of size 2 ‘‘look like’’ one of size 3).

Currently, a limitation of the stepwise approach is that the

user must choose manually the order in which the overlay is

pieced together. This is probably not as hard as it sounds

because it may often be obvious which ligands are causing

difficulty, and the simple strategy of leaving these ligands to

the end of the stepwise process may be successful, as it was

for ADA/1. Nevertheless, an automated way of selecting the

order in which ligands are introduced in stepwise overlay

generation is an important goal for the future, as are a further

investigation of the influence of the input conformer sets,

validation against more test sets, and a systematic optimisa-

tion of program parameters.
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