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ABSTRACT

Recently approved cancer drugs remain out-of-reach to most patients due to 
prohibitive costs and only few produce clinically meaningful benefits. An untapped 
alternative is to enhance the efficacy and safety of existing cancer drugs. We 
hypothesized that the response to topoisomerase II poisons, a very successful group 
of cancer drugs, can be improved by considering treatment-associated transcript 
levels. To this end, we analyzed transcriptomes from Acute Myeloid Leukemia (AML) 
cell lines treated with the topoisomerase II poison etoposide. Using complementary 
criteria of co-regulation within networks and of essentiality for cell survival, we 
identified and functionally confirmed 11 druggable drivers of etoposide cytotoxicity. 
Drivers with pre-treatment expression predicting etoposide response (e.g., PARP9) 
generally synergized with etoposide. Drivers repressed by etoposide (e.g., PLK1) 
displayed standalone cytotoxicity. Drivers, whose modulation evoked etoposide-like 
gene expression changes (e.g., mTOR), were cytotoxic both alone and in combination 
with etoposide. In summary, both pre-treatment gene expression and treatment-
driven changes contribute to the cell killing effect of etoposide. Such targets can be 
tweaked to enhance the efficacy of etoposide. This strategy can be used to identify 
combination partners or even replacements for other classical anticancer drugs, 
especially those interfering with DNA integrity and transcription.
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INTRODUCTION

Topoisomerase II (TOP2) poisons belong to the 
most efficient class of anti-cancer drugs. They prevent 
re-ligation of otherwise transient DNA single and double 
strand breaks generated by TOP2, ultimately triggering 
apoptosis [1, 2]. Unfortunately, due to the involvement 
of TOP2 in such fundamental cellular processes as 
DNA replication and transcription, its poisoning affects 
both cancerous and normal cells. Thus, in addition to 
the transient bone marrow toxicity, TOP2 poisons cause 
irreversible side-effects such as secondary leukemia [3] 

and cardiotoxicity [4]. They are, therefore, gradually being 
supplemented by drugs targeting molecules and processes 
more specific to cancer cells.

Taking AML as an example, midostaurin 
and enasidenib can be nowadays added to standard 
chemotherapeutic regimens [5, 6] in patients carrying 
specific mutations in the protein targets of these drugs, 
FLT3 and IDH2, respectively. It is expected that, 
eventually, each cancer patient’s molecular tumor profile 
will be matched to a tailored treatment regimen. However, 
reaching the point where we can do this will take many 
years, as drugs targeting such individual targets will have 
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to be developed, tested, and approved for even smaller 
patient cohorts. Furthermore, new cancer drugs remain 
out-of-reach to most patients due to prohibitive costs and 
they confer rather modest clinical benefits [7].

Here we explore the alternative and largely untested 
approach of fine-tuning established cancer therapies by 
combining them with already approved or experimental 
drugs targeting their cytotoxicity drivers. To this end, 
we analyzed gene expression profiles preceding and 
following the exposure to TOP2 poison etoposide. We 
reasoned that: (i) these profiles co-determine cell-killing 
effects of TOP2 poisons; and (ii) drugs targeting some 
of the involved genes’ protein products would be already 
available for testing as combination partners. We chose 
the TOP2 poison etoposide as a case scenario since 
apoptosis resulting from etoposide-driven DNA damage 
is accompanied by considerable gene expression changes 
of unexplored consequences [8, 9]. Furthermore, etoposide 
acts exclusively via TOP2, in contrast to anthracyclines, 
which additionally intercalate with DNA and target 
cellular mitochondria [10].

We chose AML as a cancer model, since AML is 
frequently treated with etoposide, especially relapsed 
cases [11]. We employed transcription analysis, since this 
is currently the most sensitive technique interrogating 
the expression of all genes, while broadly correlating 
with expression levels of their protein products. We 
assessed etoposide-driven gene expression changes by 
comparing pre-and post-treatment cell transcriptomes. 
We also considered the impact of prior-to-treatment gene 
expression levels on the response to etoposide across AML 
cell lines. Here, we reasoned that, in addition to expression 
changes, the response to etoposide is likely to be affected 
by pre-existing levels of proteins modulating its effects.

Tumor growth and metastasis are driven only by 
a fraction of the accompanying molecular changes. We 
assumed a similar relationship for etoposide response and 
gene expression levels. We intended to enrich for drivers 
as opposed by bystanders of etoposide cytotoxicity using 
two parallel approaches. Firstly, we focused on genes 
co-regulated within networks correlating with etoposide 
cytotoxicity. Here, we reasoned that genes involved in 
such networks are more likely to be involved in etoposide 
response compared to genes taken individually [12, 13]. 
Secondly, we focused on individual, but essential genes, 
i.e., on those reducing the survival of each of the AML cell 
lines investigated when knocked down using shRNA [14]. 
Among drivers thus identified, we differentiated between 
modulators, mediators, and emulators of etoposide 
response. Etoposide modulators are genes, whose 
expression correlates with etoposide cytotoxicity, but 
remains unchanged upon treatment. Etoposide mediators 
are genes that convey cytotoxicity via etoposide-driven 
changes in their expression levels. Etoposide emulators 
are upstream gene modulations and other drugs that evoke 
gene expression profiles resembling those evoked by 
etoposide.

RESULTS

Overview of the pipeline

To identify drugs that could supplement or replace 
etoposide, we determined, analyzed, and functionally 
verified gene expression profiles prior and after etoposide 
treatment (Figure 1A). Two parallel approaches were 
followed. First, we identified networks of co-regulated 
genes (step 1 in Figure 1A). Genes derived from these 
networks, whose co-regulation was unaffected by 
etoposide and whose expression correlated with etoposide 
IC50, were defined as potential modulators of etoposide 
cytotoxicity (step 2). Second, among the etoposide-evoked 
individual gene expression changes (step 3), the essential 
genes were identified by applying the PAch-derived 
cancer cell essentiality filter (step 4). Putative etoposide 
emulators, i.e., gene modulations and drugs that cause 
gene expression changes either similar or contrary to 
those evoked by etoposide, were identified using CMap 
(step 5). Putative modulators, effectors, and emulators 
thus identified were further analyzed based on their: (i) 
biological function; (ii) relevance to a majority of AML 
cell lines; and (iii) inhibitor availability, and subjected to 
functional validation.

AML cell lines differ in etoposide sensitivity

We applied the WST8 cell viability assay to 11 AML 
cell lines following 24 hours of exposure to 0.02–50 µM 
etoposide. The cell lines exhibited differential sensitivity 
to etoposide (Figure 1B, Supplementary Table 1), with IC50 
concentrations ranging from 0.3 µM (OCI-AML2) to 99 
µM (F-36P). Since WST8 assay rely on metabolic activity 
of cells, we validated the IC50 concentrations by measuring 
apoptosis with Annexin V-FITC staining. The percentages 
of dead cells at WST8-derived IC50 values differed, 
on average, by 16% (1.4–30.6%) from percentages of 
apoptotic cells in the same cell lines treated identically 
but interrogated using Annexin V-FITC (Supplementary 
Figure 1).

Modulators synergize with etoposide

The AML cell lines were then treated for 24 hours 
with cell line-specific IC50 concentrations of etoposide to 
obtain similar cytotoxicity levels. We discarded RNA-Seq 
data from etoposide-treated OCI-AML2 cells, because 
it failed in the quality control of raw RNA sequences. 
Using WGCNA, we identified genes co-regulated in all 
11 untreated AML cell lines, as well as in the remaining 
10 etoposide-treated cell lines. By comparing pre- 
and post-treatment networks, we first identified and 
analyzed the genes with co-regulation unaffected by the 
treatment (Supplementary Figure 2). The 24 treatment-
unaffected clusters comprised 5711 genes. The genes with 
expression levels correlating with etoposide response 
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were involved in processes such as apoptosis, proteasomal 
catabolism, response to DNA damage, and DNA repair 
(Figure 2A and Supplementary Table 3). The 71 genes 
correlating positively with etoposide IC50 concentrations 
were considered putative assisting modulators; the 
909 negatively correlating ones as putative impeding 
modulators (p < 0.05, Pearson’s r > |0.5|, Supplementary 
Table 3). Among them, we identified the previously 
reported modulators SLFN11 [15, 16] and SMARCA4 [17] 
whose expression correlated with etoposide sensitivity 
(Supplementary Table 3).

The putative impeding modulators BIRC5 and 
PARP9 (Figure 2B) were selected for experimental 
validation using chemical inhibitors against their protein 
products because of their involvement in apoptosis 
regulation and in double strand break repair, respectively. 
NOTCH1 (Figure 2B) was selected for experimental 
validation to confirm its putative etoposide-assisting 
activity. AML cell lines were treated for 24 hours with 
3 concentrations (0.001 µM, 0.1 µM, and 10 µM) of 
chemical inhibitors alone, as well as in combination 
with cell line-specific IC25 concentrations of etoposide. 
The BIRC5 inhibitor GDC-0152 and the PARP inhibitor 
nicotinamide exhibited effects synergistic or additive 
to etoposide in 9 and 10 cell lines, respectively (Figure 
2C and Table 1). The NOTCH1 inhibitor LY-3039478 
antagonized with etoposide in 8 out of 11 AML cell lines 
(Figure 2C, Table 1, and Supplementary Table 4). Stand-
alone cytotoxicity was observed in OCI-AML3 cells 
following BIRC5 inhibition and in two cell lines following 

NOTCH1 inhibition (Table 1 and Supplementary Table 5).  
In summary, all putative modulators investigated were 
confirmed by chemical inhibitors.

Mediators exhibit standalone cytotoxicity

We next analyzed co-regulated genes with 
expression levels correlating with the etoposide IC50 
concentrations, but transcriptionally altered by etoposide 
treatment. The co-regulated genes found only in untreated 
cells, e.g., BRD4, MATL1, and MYC, regulate, among 
others, cell proliferation, transcription, and apoptosis 
(Supplementary Table 6). The genes co-regulated only in 
networks newly formed after etoposide treatment, e.g., 
SIRT1, regulate, among others, transcription, response 
to DNA damage, and DNA repair (Supplementary Table 
7). BRD4 and MYC were transcriptionally repressed, 
while MALT1 and SIRT1 were transcriptionally induced 
by etoposide in the less responsive AML cell lines 
(Supplementary Figure 3). However, all of them, except 
MYC, were essential in only 4 AML cell lines, based on 
their DEMETER scores.

Therefore, we next analyzed and functionally 
verified etoposide-driven gene expression changes at 
the level of individual genes. Gene inductions accounted 
for 81% of etoposide treatment-driven transcriptional 
changes (Supplementary Table 8). Essentiality analysis 
suggested that, on average, about 33% of etoposide-
driven changes could have reduced AML cell survival 
(Supplementary Table 9). An example of gene expression 

Figure 1: Identifying drivers of differential etoposide sensitivity in AML cell lines. (A) Pipeline integrating experimental data 
with publicly available resources to identify drivers of etoposide-mediated cytotoxicity. Numbers in circles identify major procedural steps 
(See Results section for details). (B) Concentration-dependent effect of etoposide on survival of AML cell lines after 24 hours. The most 
(OCI-AML2) and the least (F-36P) sensitive cell lines are depicted in black and red dotted lines respectively.
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changes grouped according to essentiality in F-36P 
cell line is shown in Figure 3A. We selected IGF1R 
for experimental validation, since it was essential for 7 
AML cell lines and repressed in 4 AML cell lines after 
etoposide treatment (Figure 3B and Supplementary Table 
10). Likewise, PLK1, was essential as well as repressed in 
4 AML cell lines (Figure 3B and Supplementary Table 10). 
We pursued PLK1 because it exhibited highest essentiality 

for the least etoposide-sensitive F-36P cell line (Figure 
3A and Supplementary Table 10). BCL2A1 and PRKCH 
were selected because of their predicted essentiality for 6 
AML cell lines each, and because they were induced by 
etoposide in 9 and 6 AML cell lines, respectively (Figure 
3B and Supplementary Table 10).

We treated all AML cell lines with the inhibitors of 
the protein products of these genes alone, as well as in 

Table 1: Drivers of etoposide cytotoxicity identified in this study

Drivers type Targets (inhibitors) Standalone cytotoxicity (no. 
of cell lines)

Synergy/additivity with 
etoposide (no. of cell lines)

Modulators
NOTCH1 (LY-3039478) 2 2

BIRC5 (GDC-0152) 1 9
PARP9 (Nicotinamide) 0 10

Mediators

BCL2A1 (Sabutoclax) 11 1
PRKCH (Sotrastaurin) 7 3

PLK1 (Volasertib) 11 1
IGF1R (GSK-1838705A) 9 2

Emulators

MYC (TWS-119) 10 2
mTORi (Rapamycin) 7 6
HDACi (Vorinostat) 9 9
ROCK1 (Rockout) 3 7

The drivers exhibiting stand-alone cytotoxicity in at least 6 AML cell lines are highlighted in light grey, drivers synergizing 
with etoposide in at least 6 AML cell lines in dark grey.

Figure 2: Impeding modulators synergize with etoposide. (A) Top 20 biological processes for the co-expressed genes from the 
consensus network negatively correlating with etoposide sensitivity. The scale represents number of genes enriched for individual biological 
processes. Processes previously linked to etoposide are shown in bold type. (B) Pearson correlations between the pre-treatment basal gene 
expression level of the impeding modulators BIRC5 and PARP9 and of the assisting modulator NOTCH1 with etoposide sensitivity across 
AML cell lines. (C) Combination index (CI; see Methods for details) for the cytotoxicity following treatment with IC25 concentrations of 
etoposide with inhibitors targeting the impeding modulators BIRC5 and PARP9 and the assisting modulator NOTCH1. CI < 1: synergism, 
CI = 1: additivity, and CI > 1: antagonism.
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Figure 3: Essential mediators exert cytotoxicity in AML cell lines. (A) Scatterplot of etoposide-evoked differentially expressed 
genes in F-36P cell line, arranged according to essentiality for survival. DEMETER score < 0 signifies essentiality. The genes essential for 
tumor cell survival and differentially expressed after etoposide treatment were considered as putative essential mediators. The mediators 
shortlisted for experimental validation (BCL2A1, IGF1R, PLK1, and PRKCH) are depicted in larger font. Other gene names are random 
examples taken from the entire gene set. (B) Experimental validation of putative essential mediators shortlisted in (A). Cell viability was 
assessed by WST-8 assay after treatment with inhibitors targeting protein products of shortlisted drivers. Filled symbols represent predicted 
essentiality for survival in individual AML cell lines. Circles around the symbols represent experimentally confirmed cytotoxicity.
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combination with IC25 concentrations of etoposide. The 
inhibitors targeting the protein products of BCL2A1 and 
PLK1 exerted standalone cytotoxicity in all AML cell 
lines, while the IGF1R inhibitor and the PKC inhibitor 
exhibited cytotoxicity in 9 and 7 AML cell lines, 
respectively (Figure 3B, Table 1, and Supplementary 
Figure 4). Inhibition of BCL2A1 and PLK1 synergized 
with etoposide in MOLM-13 and NB-4 cell lines, 
respectively. Inhibition of PRKCH and IGF1R exhibited 
synergy with etoposide in 2 AML cell lines each 
(Table 1 and Supplementary Table 4). We additionally 
investigated in HL-60 cells the cytotoxic effects of the 
essential mediators BCL2A1 and IGF1R using shRNA-
mediated knockdown. Knockdown of the mediator 
IGF1R was cytotoxic to HL-60 cells. (Supplementary 
Figure 5). In summary, all putative etoposide mediators 
investigated were confirmed to be cytotoxic in most 
AML cell lines.

Emulators are cytotoxic and synergize with 
etoposide

Using the CMap resource, we identified gene 
modulations and drugs that cause gene expression 
changes either similar or contrary to those evoked by 
etoposide. There were 32 gene knockdowns and 76 
drugs whose application led to etoposide-like gene 
expression changes. They were referred to as putative 
etoposide-like emulators. The majority of the drugs 
belonged to the classes mTOR inhibition, topoisomerase 
inhibition, and HDAC inhibition. We also identified 
12 drugs evoking opposite gene expression changes, 
referred to as putative etoposide-contrary emulators 
(Supplementary Table 11). We measured cell viability 
in AML cell lines treated with inhibitors targeting the 
protein products of selected putative etoposide-like 
emulators individually, as well as in combination with 
etoposide (IC25 concentrations) for 24 hours. Targeting 
of the etoposide-like emulator MYC with TWS-119 led 
to cytotoxicity in all AML cell lines except MONO-
MAC-6 (Figure 4A and Table 1). Similarly, inhibition 
of etoposide-like emulators HDAC with vorinostat and 
of mTOR with rapamycin evoked cell death in in 9 and 
6 AML cell lines, respectively (Figure 4B and 4C, and 
Table 1). Interestingly, vorinostat and rapamycin also 
exhibited synergy or additivity with etoposide in 9 and 
6 AML cell lines, respectively (Figure 4D, Table 1, and 
Supplementary Table 4).

The etoposide-contrary emulator ROCK1 also 
synergized or exhibited additivity with etoposide in 7 
out of 11 AML cell lines, when inhibited with rockout. 
Inhibition of ROCK1 was cytotoxic in only 3 AML cell 
lines (Table 1 and Supplementary Table 5). The target 
specificity of rockout was confirmed by demonstrating 
cytotoxicity in HL-60 cells upon shRNA-mediated 
knockdown of ROCK1 (Supplementary Figure 5).

Driver-etoposide combinations enhance 
cytotoxicity without increasing DNA damage

To assess the safety of the experimentally validated 
combinations of etoposide with other drugs, we examined 
their effect on DNA damage in the HL-60 cell line. We 
measured the number of FITC-conjugated anti-phospho 
H2A.X-labelled HL-60 cells by flow cytometry before and 
after the treatment with etoposide alone or in combination 
with other drugs for 24 hours. Etoposide caused, as an 
effect of TOP2-poisoning, DNA damage in 45% of cells 
at IC25 concentration. None of the investigated etoposide-
combinations elevated the amount of DNA damage in 
comparison to etoposide alone (Figure 5A). The BIR 
inhibitor GDC-0152 even reduced the amount of DNA 
damage in comparison to etoposide alone.

Drivers of etoposide cytotoxicity form 
unfavorable prognostic markers in AML patients

To assess the clinical relevance of identified drivers, 
we inspected gene expression and clinical data of 173 
AML patients from TCGA and compared with gene 
expression in 30 normal blood samples from GTEx. The 
analysis revealed an association between high expression 
of BCL2A1 and PARP9 with poor survival in AML patients 
(Figure 5B and 5C). Furthermore, these genes were highly 
expressed in AML patients compared to healthy individuals 
(Figure 5D and 5E). Additionally, the Human Protein Atlas 
resource revealed high expression of BIRC5 or PLK1 to 
be associated with poor survival in renal, liver, and lung 
cancer patients and high expression of ROCK1 to be a 
marker of unfavorable prognosis in pancreatic cancer [18].

DISCUSSION

In this work, we demonstrate that etoposide kills 
cancer cells depending on expression levels of driver 
genes, some of which it modulates. Since WST8 data 
correlated well with Annexin V, we speculate that cell 
loss predominates over growth inhibition. This effect is 
distinct from the etoposide concentration-driven increase 
in DNA double stranded breaks [19]. Targeting these 
drivers genetically or pharmacologically mimics or 
augments the response to etoposide, indicating a potential 
for clinical exploration. The pipeline used to discover 
drivers of etoposide cytotoxicity is applicable to other 
TOP2 inhibitors and to cytotoxic drugs in general.

DNA double-strand-breaks independent 
cytotoxicity of etoposide

Since the response of cancer cells to TOP2 
poisons is variable, attempts have been made to explain 
it by considering pre-treatment gene expression levels  
[15, 20–23]. SLFN11 [15, 16] and SMARCA4 [17], 
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Figure 4: Etoposide-like emulators are cytotoxic and synergize with etoposide. Concentration-dependent cytotoxicity after 
inhibiting etoposide-like emulators (A) MYC with TWS-119, (B) HDAC with vorinostat, and (C) mTOR with rapamycin. (D) Combination 
index (CI; see Methods for details) of etoposide treatment with protein inhibitors targeting MYC, HDAC, and mTOR. CI < 1: synergism, 
CI = 1: additivity, and CI > 1: antagonism. Two-way ANOVA with Benjamini and Hochberg FDR correction was performed to identify 
statistically significant cytotoxicity in comparison to vehicle treated cells (indicated by asterisks, *Adj. P < 0.05). Data are represented as 
mean ± SD.
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Figure 5: Safety and clinical relevance of transcriptional drivers of etoposide. (A) Fraction of phospho-H2A.X-positive 
cells counted using flow cytometry (black bars) and percentages of cell death after treatment with different inhibitors alone as well as in 
combination with IC25 concentration of etoposide in HL-60 cell line (gray bars). (B) and (C) Kaplan-Meier plots representing survival of 
AML patients with high and low expression of BCL2A1 and PARP9, respectively. (D) and (E) Basal expression of BCL2A1 and PARP9, 
respectively, in AML and normal blood cells. One-way ANOVA with Dunnett’s multiple comparisons test was performed to identify 
significant γH2AX formation and cell death induction in comparison to etoposide alone (indicated by asterisks, *Adj. P < 0.05, ***Adj.  
P < 0.0005). Data are represented as mean ± SD.
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re-discovered in our study, have been identified as 
modulators of TOP2 poisons, including etoposide, but 
failed to make clinical impact. Treatment-driven gene 
expression changes have been likewise reported [24, 25], 
but not explored for optimizing response to TOP2 poisons. 
We considered both pre-treatment gene expression levels 
and drug-evoked changes, as a surrogate of pre- and post-
treatment protein expression levels.

Post-treatment transcriptomes were particularly 
important, since they were essential for the discovery 
of 8 out of 11 functionally confirmed drivers (i.e., of all 
mediators and emulators depicted in Table 1). Only gene 
repressions can be expected to arise directly from DNA 
damage within regulatory or coding gene sequences. 
Furthermore, the number of etoposide-driven DNA 
double strand breaks, assessed by H2A.X, is typically 
1–2 orders of magnitude lower than the number of gene 
expression changes [26]. Hence, most of the observed 
etoposide-evoked gene expression changes were likely 
secondary, which is also consistent with the predominance 
of gene inductions over reductions. Unsurprisingly, these 
secondary changes partly reflected the activation of DNA 
damage response.

The filtering strategies used, WGCNA and 
essentiality analysis, were originally meant to maximize 
the specificity of driver detection. Genes co-regulated 
across specimens are more likely to play important roles in, 
for example, drug response, than individual genes [12, 13].  
The same applies to the genes essential for cancer cell 
survival [14]. This strategy was successful, since all 11 
potential drivers identified were functionally confirmed 
according to pre-set criteria. In addition, combining 
these two strategies may have improved the sensitivity 
of our approach. For example, MYC missed detection in 
WGCNA analysis, but was identified as a potential driver 
in mediator and emulator screens.

We based our classification of etoposide drivers 
primarily on gene expression, with modulators remaining 
unchanged, mediators undergoing changes, and 
emulators mimicking etoposide-like expression profiles. 
Interestingly, this classification broadly correlates with 
the functional validation. Thus, mediators displayed 
standalone cytotoxicity but little synergy with etoposide, 
modulators behaved inversely, whereas emulators 
exhibited a mix of both (Table 1). The absence of synergy 
of etoposide with mediators likely reflects the convergence 
of etoposide (via expression change) and a mediator’s 
chemical inhibitor on one and the same target. Conversely, 
modulators may synergize with etoposide precisely 
because they remain unaffected by etoposide. Emulators 
may be cytotoxic alone and synergize with etoposide due 
to the complex expression changes they evoke.

Potential application to AML and other cancers

Etoposide effects can clearly be optimized by 
targeting drivers of its toxicity, but how relevant is 

this strategy to AML management? AML relapse 
occurs in around 40% of patients treated with first-line 
chemotherapy, typically comprising cytarabine and 
daunorubicin [27]. Although there is no standard treatment, 
relapsed cases are often treated with mitoxantrone, 
etoposide, and cytarabine (MEC) combinations. However, 
many patients do not tolerate the associated increased side-
effects [27, 28]. Hence, there is a need to improve efficacy 
and reduce the toxicity of these treatment regimens. 
Similar needs exist for other etoposide applications, such 
as testicular, prostate, and small cell lung cancer.

Interestingly, some of the drivers described in this 
work have been or are currently undergoing testing. 
This provides an additional validation of our approach. 
Supplementing etoposide with the inhibitor of its emulator 
mTOR with rapamycin has already been shown to reduce 
the survival of cancer cells in a mouse model of AML 
[29]. A phase II trial for managing high-risk AML patients 
with rapamycin in combination with MEC regimen is 
ongoing (NCT02583893). The etoposide-synergy with 
HDAC inhibition is currently undergoing testing for Acute 
Lymphoblastic Leukemia (NCT02553460). Due to the 
interaction of TOP2 with HDAC1 and 2, etoposide-evoked 
DNA double strand breaks could affect the chromatin 
architecture [30]. Interestingly, we observed etoposide-
evoked induction in SIRT1. It is evident that SIRT1 
induction synergizes with HDAC inhibition [31]. This is in 
agreement with the observed etoposide-evoked induction 
of SIRT1 and its observed synergy with vorinostat.

Improved clinical outcomes in AML patients have 
been already reported for the PLK1 inhibitor volasertib 
[32] and a Phase III trial is ongoing (NCT01721876). 
Strikingly, PLK1 inhibition with volasertib was cytotoxic 
in all 11 AML cell lines. This suggests that cytotoxicity 
drivers can be efficient beyond the cohort subset in which 
they were detected. Inhibition of IGF1R (Insulin-like 
growth factor receptor 1) has been found to be efficacious 
together with etoposide and cisplatin in small-cell lung 
cancer [33] and further clinical trials are undergoing with 
other drugs and cancer types.

The use of DNA damaging drugs, including 
etoposide, is associated with increased risk of secondary 
leukemia because of chromosomal aberrations [34, 35]. 
Hence, it is crucial to formulate combination partners 
that do not increase the risk even further. Our primary 
investigation using DNA double strand breaks marker 
γH2A.X  revealed that none of the combinational partners 
elevated the DNA damage compared to etoposide alone. 
We speculate that etoposide in combination with its 
cytotoxicity drivers would exert less side effects because 
of its dose reduction. However, this needs in-depth 
investigation using AML mouse models.

Limitations

The approach used in this study has certain 
limitations and caveats, beginning with the assumption of 
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gene expression reflecting protein expression. While this 
assumption is generally true, the expression and activity 
levels of some proteins are regulated without changes 
in the RNA expression level. Nevertheless, all potential 
drivers selected for validation displayed standalone 
toxicity or modified that of etoposide. Altogether, using 
transcriptome data is sufficiently sensitive and specific 
to detect and confirm cytotoxicity drivers worth further 
exploration in animal models and in the clinic.

Furthermore, it seems that some genes identified as 
drivers serve as markers of additional, undetected drivers. 
For example, inhibiting the etoposide modulator BCL2A1 
with sabutoclax caused cytotoxicity in all AML cells. In 
contrast, a shRNA-mediated knockdown of BCL2A1 
in HL-60 cells had no effect. Additional members of 
the Bcl2 family may have contributed to the effect of 
sabutoclax, a pan-Bcl2 inhibitor. shRNA-mediated 
knockdowns did confirm the specific involvements 
of IGF1R and ROCK1. Wherever possible, putative 
drivers should undergo verification both by genetic and 
pharmacological means.

Perspective

Our results suggest a major and yet untapped 
contribution of etoposide-evoked gene expression changes 
to this drug’s anti-cancer effects. In order to make a clinical 
impact, the etoposide drivers will have to be validated in 
ex vivo models using AML patient samples, as well as in 
animal models.

Even though modulators generally exhibited 
synergy and mediators generally exhibited standalone 
cytotoxicity, their effect was not alike in all AML cell 
lines. None of the common AML oncogenic alterations 
correlated with observed response. However, few 
etoposide-evoked changes were in agreement with the 
response. For example, the absence of synergy between 
GDC-0152 (targeting the modulator BIRC5) and 
etoposide in MV-4-11 and OCI-AML3 cell lines may 
have resulted from bypassing TP53-mediated apoptosis 
because of high expression of CDKN1A (P21) and MDM2 
after etoposide treatment. Furthermore, high expression 
BRCA1 in HL-60 cells may have contributed to efficient 
DNA double strand repair and absence of synergy 
between nicotinamide (targeting the modulator PARP9) 
and etoposide. Along the same line, presence of synergy 
between sabutoclax (targeting the mediator BCL2A1) and 
etoposide may have resulted from high expression of BAX 
after etoposide treatment in MOLM-13 cells. Finally, the 
highest basal expression of PLK1 and etoposide-driven 
dynamics may have contributed to observed synergy 
between volasertib (targeting the mediator PLK1) and 
etoposide.

Similar studies could be conducted with other 
classical cancer drugs. New anti-cancer drugs provide 
limited clinical benefits and they are prohibitively 
costly. We envision fine-tuning and individualization of 

established chemotherapies based on their transcriptional 
response and resulting changes to cellular dynamics.

MATERIALS AND METHODS

Cell culture and drug treatment

Acute Myeloid Leukemia (AML) cell lines F-36P, 
HL-60, KASUMI-1, MOLM-13, MONO-MAC-6, MV-
4-11, NB-4, NOMO-1, OCI-AML2, OCI-AML3, and 
THP-1 were purchased from Deutsche Sammlung von 
Mikroorganismen und Zellkulturen (DSMZ, Germany). 
Cell lines were maintained at 37°C and 5% CO2 in 
appropriate media (Supplementary Table 1). 293T cells 
were cultured in DMEM (Gibco, Germany) along with 
10% FBS (Biochrom, Germany). Cell lines were routinely 
verified for mycoplasma contamination using Venor®GeM 
Mycoplasma Detection Kit (Sigma-Aldrich, Germany). 
Cell lines were authenticated by Multiplexion, Germany. 
The inhibitors were purchased from Abcam (UK), Biozol 
(Germany), and Santa Cruz Biotechnology (US).

WST-8 cell viability assay

Reduction of WST-8 by cellular dehydrogenases 
produce formazan, whose signal is directly proportional to 
the number of viable cells. Both reduced cell proliferation 
and cell loss due to drug toxicity diminish the WST-
8 signal. We seeded 1 × 104 cells per well in a 96-well 
plate and incubated overnight. Cells were then treated 
for 24 hours with various concentrations of etoposide 
(0.02, 0.05, 0.1, 0.2, 0.37, 0.78, 1.56, 3.13, 6.25, 12.5, 25,  
50 µM). Cell viability was measured using a colorimetric cell 
viability kit (WST-8) from PromoKine, Germany. In short, 
after the treatment with etoposide, 10% WST-8 reagent was 
added to the cells. After 1-4 hours incubation in dark at room 
temperature, absorbance was measured at 450 nm using 
Spectramax iD3 (Molecular Devices, USA) spectrometer. 
Absorbance from the DMSO-treated cells (vehicle control) 
was considered as 100% cell viability and used to calculate 
percentage cell viability after etoposide treatment.

Annexin V apoptosis assay

We seeded 2 × 105 cells/ml in a 6-well plate and 
incubated overnight. Cells were then treated with cell line-
specific etoposide IC50 concentrations, derived from the 
cell viability assay, for 24 hours, washed twice with ice-
cold PBS, and resuspended in binding buffer (1 × 106 cells/
ml). Thereafter, 100 µl of cell suspension (1 × 105 cells) 
was transferred to a new tube, followed by addition of 5 µl 
each of Annexin V and PI staining solution (FITC Annexin 
V apoptosis detection kit I, BD Biosciences, USA). Cells 
were then gently vortexed and incubated in dark for 15 
minutes at room temperature. 400 µl of binding buffer was 
then added to the cells and analyzed using BD Accuri C6 
flow cytometer (BD Biosciences, USA).
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RNA-Seq: RNA extraction and library 
preparation

The gene expression profiles in 11 untreated and 
etoposide-treated AML cell lines were determined by 
RNA sequencing. 1 × 106 cells per well were seeded in 
a 6 well plate containing 5 ml of the media. Cells were 
incubated overnight and then treated for 24 hours with 
etoposide at cell line-specific IC50 concentrations. Cells 
from 3 wells were then pooled together and total RNA 
was isolated using TriFast, peqGOLD total RNA kit and 
DNase I Digest kit (VWR PEQLAB GmbH, Germany) 
according to manufacturer’s instructions. The quality 
and integrity of the extracted RNA was examined using 
a 2100 Bioanalyzer (Agilent technologies). Samples 
were sequenced by Illumina HiSeq 2000 using TruSeq 
stranded mRNA HT sample prep kit at the Genomics Core 
Facility at the Institute of Molecular Biology (IMB, Mainz, 
Germany). The targeted sequencing depth was 30 million 
reads.

RNA-Seq: analysis

We assessed the quality of raw sequencing reads 
using FastQC (Babraham Bioinformatics, Cambridge, 
UK). We then mapped these reads to the human reference 
genome (gencode release 25 GRCh38. p7) using the STAR 
aligner (v2.5.3a) [36], with the option “–quantMode 
GeneCounts” to count the number of reads mapped 
per gene. Quality of the expression data was assessed 
using NOISeq (v2.20.0) [37] R package [38]. We then 
performed differential gene expression analysis using 
edgeR (v3.20.1) [39]. Genes with fold change higher 
than 2 folds and FDR below 0.05 were considered as 
differentially expressed. Data is available at GEO Series 
accession number GSE126895 [40].

Weighted gene co-expression network analysis 
(WGCNA)

To identify modulators and mediators of etoposide 
sensitivity, we performed weighted gene co-expression 
network analysis (WGCNA) using basal gene expression 
in AML cell lines prior and after etoposide treatment. Prior 
to WGCNA analysis, raw RNA-Seq counts were subjected 
to trimmed mean of M values (TMM) normalization, a 
preferred method for between-sample normalization [41]. 
The resulting co-regulated networks were compared to 
identify genes: (i) co-regulated only before treatment; 
(ii) co-regulated only after treatment; and (iii) unaffected 
by treatment. Gene Ontology analysis was performed for 
identified networks using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/). Cell line specific expression levels 
of co-regulated genes unaffected by treatment were 
correlated with cell specific etoposide IC50 concentrations 

by Pearson correlation statistics using the WGCNA 
package in R [12]. The co-regulated genes with positive 
and negative correlation with etoposide IC50 were selected 
for Gene Ontology analysis using DAVID.

Identification of mediators among etoposide-
evoked gene expression changes

The Project Achilles (PAch) [42] dataset was 
utilized to retrieve genes most likely to be essential for 
AML cell survival. PAch investigated the effect of more 
than 11k shRNA-mediated individual gene knockdowns 
on cell survival in 501 cancer cell lines, including all 
AML cell lines used in the present study. Genes with 
negative DEMETER scores (defined in a previous study 
[14]) were considered essential for cancer cell survival. 
Genes essential for 6 or more AML cell lines as well as 
differentially expressed after etoposide treatment were 
considered potential essential mediators and experimental 
validated.

Prediction of etoposide emulators

Emulators, i.e., gene modulations and compounds 
that evoke gene expression changes similar to those evoked 
by etoposide, were identified using the Connectivity Map 
(CMap, Broad Institute) [43]. CMap provides changes in 
the expression of 1000 genes following gene perturbations 
and treatments with numerous small-molecule compounds. 
These genes and drugs were identified by uploading the 
top 300 overlapping etoposide-evoked gene expression 
changes (150 up- and 150 down-regulated) from AML cell 
lines to CMap via the CLUE platform (CMap and LINCS 
Unified Environment).

Driver validation using inhibitors

The inhibitors against the selected drivers were 
identified using the GeneCards [44], IUPHAR/BPS guide 
to pharmacology [45], and CMap [43] resources. These 
drivers were then validated using WST-8 cell viability 
assay. AML cell lines were treated for 24 hours with 1 
nM, 100 nM, and 10 µM of each inhibitor alone, as well 
as in combinations with cell-specific IC25 concentrations 
of etoposide, followed by WST-8 cell viability assay. 
Percentage cell viability compared to vehicle-treated cells, 
taken as 100%, was calculated for single and combination 
treatments. For combination treatment screening, the 
synergy was defined as per-response additivity approach 
[46]. The combination index (CI) was calculated as 
CI =

E +E

E

A B

AB

 where EA is the effect of inhibitor A, EB is the
 

effect of etoposide and EAB is the effect of combination 
of inhibitor A and etoposide. CI < 1 was considered as 
synergy with etoposide, while CI > 1 was considered as 
antagonism, and CI = 1 was considered as additive effect.
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Driver validation using shRNA-mediated gene 
knockdown

To investigate the effect of individual gene 
knockdowns on AML cell survival, we cloned shRNA 
targeting BCL2A1, IGFIR, and ROCK1 into Tet-pLKO.1-
puro vector (kindly provided by Dimitri Wiederschain, 
Novartis Institutes for BioMedical Research, Cambridge, 
MA). shRNA sequences were obtained from the PAch 
resource and were synthesized by Sigma-Aldrich, 
along with RHS4743 expressing scrambled shRNA 
(Supplementary Table 2). These sequences have been 
validated at the protein levels in several previous 
publications [47–49]. Lentiviral particles were generated 
by co-transfecting psPAX2, pMD2. G along with 
previously generated shRNA expressing vectors into 293T 
cells. Transfection was carried out using TransIT (Mirus) 
as per the manufacturer’s instructions. To achieve stable 
transduction, AML cell lines were seeded 1 × 106 in a 
6-well plate, with indicated virus supernatant in presence of 
5 µg/mL polybrene and spin-infected at 2500 rpm at 32° C  
for 1 and 45 hours. Following 16 hours incubation at 37° C,  
cells were supplemented with 1–2 µg/mL puromycin 
(Sigma-Aldrich, Germany). Furthermore, to induce 
knockdown of the indicated drivers, we seeded 5 × 105 
cells per well in 6-well cell culture plates. We then induced 
the knockdown by treating the cells with doxycycline (200 
ng/ml) and measured the cell viability after 24, 48, and 
72 hours using the WST-8 assay. The effect of shRNA-
mediated gene knockdown on cell viability was calculated 
by comparing doxycycline-untreated and -treated cells.

DNA damage measurement using flow cytometry

To compare the amount of DNA damage caused by 
etoposide alone and in combination with other drugs, we 
measured the levels of phosphorylated H2A.X  in HL-60 
cells using flow cytometry. We stained the fixed HL-60 
cells using the H2A.X  phosphorylation assay kit (Merck, 
Germany) according to manufacturer’s instructions. In 
short, 5 × 105 HL-60 cells were seeded per well in a 6-well 
plate and incubated overnight. Cells were treated for 24 
hours with IC25 concentration of etoposide alone and in 
combination with other drugs. Next, cells were harvested 
and washed with PBS followed by fixation. Cells were 
then stained with either FITC-conjugated anti-phospho-
Histone H2A.X  (Ser139) or with the negative control 
mouse IgG-FITC conjugate for 20 minutes on ice. The 
amount of H2A.X  was then measured using BD Accuri 
flow cytometer. The data was then analyzed using FlowJo 
software (v10).

TCGA survival analysis

We retrieved the raw gene expression counts for 151 
AML patients from The Cancer Genome Atlas (TCGA) 

through the Broad GDAC Firehose, along with the clinical 
data, using the R package RTCGAToolbox (v2.8.0) [50]. 
We then performed univariate survival analysis comparing 
the groups with high expression (above median) and 
low expression (below median) of selected drivers. We 
generated Kaplan-Meier plots with p-values calculated 
using Log-rank test. The comparison between gene 
expression in AML patients, from TCGA, and normal 
blood samples, from The Genotype-Tissue Expression 
(GTEx) [51], was performed using Gene Expression 
Profiling Interactive Analysis (GEPIA) web server [52].

Statistical analysis

Unless otherwise specified, the experiments reflect 3 
biological replicates. Data was analyzed using R language 
packages and GraphPad Prism software (v7). Graphs were 
plotted as mean ± SD. The etoposide IC50 concentrations 
were calculated using GraphPad Prism software by fitting 
the dose response curve by non-linear regression. Shapiro-
Wilk test was performed to determine normal distribution 
for parametric tests. Two-way ANOVA with Benjamini 
and Hochberg FDR correction was performed to identify 
inhibitors with significant cytotoxicity [53]. Multiple 
t-tests with Benjamini and Hochberg FDR correction were 
performed to identify significant gene expression change 
between resistant and sensitive AML cell lines. One-
way ANOVA with Dunnett’s multiple comparisons test 
was performed to identify significant γH2AX formation 
and cell death induction with drug-combinations in 
comparison to etoposide alone. Two-way ANOVA with 
Dunnett's multiple comparisons test was performed to 
identify statistically significant cytotoxicity after shRNA-
mediated gene knockdown in comparison to cells treated 
with scrambled shRNA.

Availability of data and material

The RNA sequencing data included in this work 
have been deposited in NCBI’s Gene Expression Omnibus 
(GEO) database with the accession number GSE126895 
(https://www.ncbi.nlm.nih.gov/geo/) [40].
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