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Background. The safety of radiotherapy techniques in the treatment of vestibular schwannoma (VS) shows a high rate of tumor control
with few side effects. Neuropeptide Y (NPY)may have a potential relevance to the recurrence of VS. Further research is still needed on
the key genes that determine the sensitivity of VS to radiation therapy.Materials and Methods. Transcriptional microarray data and
clinical information data from VS patients were downloaded from GSE141801, and vascular-related genes associated with
recurrence after radiation therapy for VS were obtained by combining information from MSigDB. Logistics regression was
applied to construct a column line graph prediction model for recurrence status after radiation therapy. Pan-cancer analysis
was also performed to investigate the cooccurrence of these genes in tumorigenesis. Results. We identified eight VS
recurrence-related genes from the GSE141801 dataset. All of these genes were highly expressed in the VS recurrence samples.
Four collagen family genes (COL5A1, COL3A1, COL4A1, and COL15A1) were further screened, and a model was constructed
to predict the risk of recurrence of VS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses revealed that these four collagen family genes play important roles in a variety of biological functions
and cellular pathways. Pan-cancer analysis further revealed that the expression of these genes was significantly heterogeneous
across immune phenotypes and significantly associated with immune infiltration. Finally, Neuropeptide Y (NPY) was found
to be significantly and negatively correlated with the expression of COL5A1, COL3A1, and COL4A1. Conclusions. Four
collagen family genes have been identified as possible predictors of recurrence after radiation therapy for VS. Pan-cancer
analysis reveals potential associations between the pathogenesis of VS and other tumorigenic factors. The relevance of NPY
to VS was also revealed for the first time.

1. Introduction

Vestibular schwannoma (VS) is a benign tumor that origi-
nates from the auditory nerve sheath and accounts for 8%
to 10% of intracranial tumors with a similar incidence on
the left and right sides, and occasionally bilateral [1]. VS is
most common in adults, 30-50 years old; however, there is
no significant gender difference. The main clinical manifes-

tations are pontocerebellar horn syndrome and increased
intracranial pressure. When the size of the tumor is small,
patients will experience tinnitus, hearing loss, and vertigo
on one side, and a few patients will become deaf after a lon-
ger period. As the tumor continues to grow, the patient will
experience facial muscle twitching, reduced lacrimal secre-
tion, facial numbness, reduced pain and touch, a weakened
corneal reflex, and other symptoms [2]. Surgery is currently
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the main treatment option [3]; however there are many risks
associated with surgical treatment, such as cerebrospinal
fluid leakage with an incidence of around 2% to 30% [4].

Surgical treatment of VS no longer focuses solely on total
removal of the tumor, but instead on protecting neurological
function, reducing the incidence of postoperative complica-
tions, and improving the patient’s post-operative quality
of life. As a result, some of the newer VS treatments
include microsurgery, stereotactic radiosurgery (SRS), frac-
tionated stereotactic radiotherapy (FSRT), and targeted

drug therapy [5–8]. The choice of different treatment
modalities greatly impacts prognosis, functional preserva-
tion, and long-term quality of life. This has necessitated
the medical staff that treats VS to grow from a single neu-
rosurgeon to a multidisciplinary treatment team. The SRS
and FSRT technologies are new technologies born out of
this multidisciplinary collaboration. With the accumulation
of long-term clinical treatment data and practical experi-
ence, the safety of SRS technology for treating VS has
fewer side effects and a high tumor control rate [5–8]. In
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Figure 1: Flowchart of the analysis process. ARGS: angiogenesis-related genes; DEGs: differentially expressed genes; TME: tumor
microenvironment.
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conclusion, radiotherapy shows great potential advantages
as an alternative to surgery, taking into account patient
comfort, quality of life, cost of treatment, and avoidance
of potential surgical complications (i.e., meningitis, hemor-
rhage, cerebrospinal fluid leakage, hearing, and neurologi-
cal collateral damage).

However, 34.7% of VS patients relapsed after SRS treat-
ment [9]. Therefore, further research is still needed on the
efficacy of radiotherapy for different types of VS. [10, 11]
Several studies have examined the transcriptomic profile of
different types of VS, but few have systematically explored
the genes associated with SRS efficacy [12–15]. Indeed, if
the molecular biological features associated with VS recur-
rence can be identified, more precise VS treatments can be
achieved. The GSE141801 dataset from the Gene Expression
Omnibus (GEO) database analyzes the transcriptomic pro-
file of tumors between patients with VS who relapsed after
radiation therapy alone and another group of patients who
underwent direct surgery without radiation therapy [16].

Tumor recurrence after radiotherapy is closely related to
vascular infiltration. Tumor recurrence areas have higher
vascular and cell density, and vascular infiltration plays an
important role in the development of tumors [17, 18]. The
relationship between vascular infiltration and vestibular
Schwannoma has been revealed in recent years [19, 20].
We speculate that excessive vascular infiltration may be
associated with recurrence of VS after radiotherapy. Explor-

ing angiogenic genes can help reveal the mechanism of VS
recurrence.

Neuropeptide Y (NPY) is a 36 amino acid peptide that is
widely distributed in the central and peripheral nervous sys-
tems. NPY infiltration is a manifestation of innervated tis-
sues and cells [21]. Neuropeptides also have an effect on
vascular development, and neuropeptides such as NPY are
widely distributed in the perivascular area [22, 23]. Now,
upregulation of NPY has been found to be associated with
abnormal vascular function [24]. We speculate that NPY
may have a potential relevance to the recurrence of vestibu-
lar schwannoma by regulating vascular-related function.

In this study, we used bioinformatics analysis to obtain
genes associated with VS recurrence and studied important
genes associated with angiogenesis among them and NPY.
Pan-cancer analysis investigated the commonality of these
genes in tumorigenesis.

2. Materials and Methods

2.1. Data Download and Preprocessing. We downloaded
transcriptome microarray data and corresponding clinical
data from the GSE141801 dataset for 67 patients with VS;
of these, nine patients relapsed after radiation therapy and
58 patients were a first diagnosis. We transformed the
microarray gene names according to the microarray plat-
form file and then obtained the gene expression matrix.

Table 1: Up- and downregulated pathways in KEGG.

Description
Adjust
P value

geneID

Up

Nicotine addiction P < 0:001 GRIA1/CACNA1A/GRIA4/GABRA1/GRIA2/GABRD

Retrograde endocannabinoid signaling P < 0:001 ADCY2/GNG4/GRIA1/CACNA1A/GRIA4/GABRA1/GRIA2/ADCY1/
GABRD

GABAergic synapse P < 0:001 ADCY2/GNG4/CACNA1A/GABBR2/GABRA1/ADCY1/GABRD

Morphine addiction P < 0:001 ADCY2/GNG4/CACNA1A/GABBR2/GABRA1/ADCY1/GABRD

Circadian entrainment P < 0:001 ADCY2/GNG4/GRIA1/RYR3/GRIA4/GRIA2/ADCY1

Glutamatergic synapse P < 0:001 ADCY2/GNG4/GRIA1/CACNA1A/GRIA4/GRIA2/ADCY1

cAMP signaling pathway 0.001 ADCY2/GRIA1/SOX9/ATP1B1/GABBR2/GRIA4/PPP1R1B/GRIA2/ADCY1

Insulin secretion 0.001 ADCY2/ATP1B1/KCNN3/SNAP25/PCLO/ADCY1

Adrenergic signaling in cardiomyocytes 0.003 ADCY2/PPP1R1A/ATP1B1/TNNC1/AGT/ADCY1/SCN4B

Synaptic vesicle cycle 0.006 CACNA1A/SYT1/CPLX1/SNAP25/ATP6V1G2

Down

ECM-receptor interaction P < 0:001 COL4A2/COL4A1/ITGA2/ITGB4/COL1A2/LAMB1/LAMA2/FREM2/FRAS1

Protein digestion and absorption P < 0:001 COL4A2/COL4A1/COL1A2/COL5A1/COL28A1/COL3A1/COL15A1

Focal adhesion P < 0:001 COL4A2/COL4A1/BIRC3/ITGA2/ITGB4/COL1A2/LAMB1/LAMA2

Small cell lung cancer P < 0:001 COL4A2/COL4A1/BIRC3/ITGA2/LAMB1/LAMA2

Amoebiasis P < 0:001 COL4A2/COL4A1/COL1A2/LAMB1/LAMA2/COL3A1

Human papillomavirus infection P < 0:001 COL4A2/COL4A1/ITGA2/ITGB4/COL1A2/LAMB1/LAMA2/FZD8

AGE-RAGE signaling pathway
in diabetic complications

P < 0:001 COL4A2/COL4A1/TGFBR2/COL1A2/COL3A1

PI3K-Akt signaling pathway P < 0:001 COL4A2/COL4A1/ITGA2/ITGB4/COL1A2/LAMB1/LAMA2/ERBB3

Relaxin signaling pathway 0.002 COL4A2/COL4A1/TGFBR2/COL1A2/COL3A1

Proteoglycans in cancer 0.012 ITGA2/RRAS/COL1A2/ERBB3/FZD8
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The angiogenesis-associated gene set was retrieved and down-
loaded from the MSigDB database (http://www.gsea-msigdb
.org/gsea/msigdb/index.jsp). 226 angiogenesis-related genes
were downloaded and collated from the MSigDB database.
The 33 pan-cancer transcriptome expression data, immune
subtypes, tumor microenvironment score data, and clinical
information data from the Cancer Genome Atlas (TCGA)
were downloaded from UCSC Xena (https://xenabrowser
.net/datapages/).

2.2. Differentially Expressed Genes. The limma package per-
formed batch correction of gene expression on intersample

microarrays and tested for differences between the postra-
diotherapy relapse and nonradiotherapy groups. Differential
genes were filtered by FDR < 0:05 and log2FC > 1. GO and
KEGG performed a pathway enrichment analysis of up-
and downregulated genes in the tumor tissue, respectively.

2.3. Angiogenesis-Related Genes. We performed intersection
analysis between differential genes and the set of
angiogenesis-related genes. We then obtained the
angiogenesis-related differentially expressed genes (DEGs).
Heat and volcano maps were used to demonstrate the gene
expression and fold change of angiogenesis-related DEGs.
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Figure 2: Results of differential and intersection analysis. (a) Venn diagram showing eight genes after taking intersection of DEGs and
ARGs. (b) Volcano diagram showing differential and intersection genes. (c) Heat map showing expression of intersecting genes in tumor
tissue and relationship to clinical traits.
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2.4. Logistic Regression Model Construction for Predicting
Recurrence Rates after Radiation Therapy. Univariate and
multifactorial logistic regression analyses were used for the
analysis of angiogenesis-related DEGs and clinical character-
istics. The filtering criterion of risk factors for recurrence
after radiotherapy was P < 0:1, and risk factors were then
screened for use in constructing logistic regression models.
Next, we further constructed a nomogram to calculate the
probability of recurrence after radiotherapy in VS patients
for ease of use in the clinic.

2.5. Clinical Predictive Model Validation. The Caret package
was used to split the entire dataset into training and test
groups by 7 : 3. The model was trained in the training group
and then validated in the test group. The receiver operating
characteristic (ROC) curve and C-index were used to assess
the predictive classification ability of the model in the train-
ing group, the overall cohort, and the test group. C-indices
between 0.7 and 1.0 represented good predictive perfor-
mance of the model. A calibration curve was also produced
to assess the calibration of the model. Finally, decision
curves were used to assess the net benefit at different proba-
bility thresholds and also to assess the clinical usability and
safety of the nomogram and the model.

2.6. Pan-Cancer Analysis. We performed a pan-cancer anal-
ysis of the genes included in the model in the TCGA data-
base. First, we performed differential gene expression
analysis of the included genes in pan-cancerous and corre-
sponding paracancerous tissues. Correlation with heat maps
was used to demonstrate the relationship between incorpo-
rated gene expressions in pan-cancerous tissues. Cox pro-
portional regression models divided tumor patients into
the high- and low-expression groups by median gene expres-
sion, and the KM method was then used to perform survival
curve mapping. Finally, the relationship between genes
incorporated into the model, immune-related features, and
tumor microenvironment scores were further analyzed.

Table 2: Eight different expression genes.

Id logFC t P value Adjust P value B

COL4A1 -1.30 -5.30 1:42E − 06 1:00E − 03 5.11

STARD13 -1.25 -4.66 1:54E − 05 2:64E − 03 2.91

TGFBR2 -1.01 -4.38 4:34E − 05 3:81E − 03 1.97

COL1A2 -1.38 -4.29 5:95E − 05 4:18E − 03 1.68

COL5A1 -1.10 -4.25 6:69E − 05 4:40E − 03 1.57

PLA2G4A -1.26 -3.62 5:72E − 04 1:15E − 02 -0.37

COL3A1 -1.34 -3.05 3:28E − 03 3:24E − 02 -1.93

COL15A1 -1.19 -2.97 4:12E − 03 3:73E − 02 -2.13

Table 3: Uni- and multilogistics regression analyses for recurrence after radiation.

Variables
Unilogistics regression Multilogistics regression

β Odds ratio (95% CI) P value β Odds ratio (95% CI) P value

COL4A1 -3.485 0.031 (0.001-0.309) 0.012 -6.812 0.001 (0-0.258) 0.065

STARD13 -1.355 0.258 (0.07-0.579) 0.008 0.613 1.847 (0.141-114.581) 0.670

TGFBR2 -2.171 0.114 (0.009-0.531) 0.052 -6.969 0.001 (0-1.695) 0.177

COL1A2 -1.773 0.17 (0.008-0.703) 0.198

COL5A1 -1.682 0.186 (0.025-0.593) 0.043 -10.102 0 (0-0.066) 0.045

PLA2G4A -0.870 0.419 (0.193-0.758) 0.010 -0.365 0.694 (0.046-9.363) 0.766

COL3A1 -0.551 0.577 (0.281-0.903) 0.037 4.460 86.455 (3.837-16515.578) 0.020

COL15A1 -0.627 0.534 (0.282-0.884) 0.025 3.490 32.775 (2.271-5105.412) 0.058

Tumor_subtype (CYS)

NF2 0.731 2.077 (0.223-45.81) 0.553

SPO 0.223 1.25 (0.171-25.518) 0.847

Note: β is the regression coefficient.

Table 4: Prediction factors for recurrence after radiation.

Variables
Prediction model

β Odds ratio (95% CI) P value

(intercept) 48.356 1:00E + 21 6:21E + 08 − 1:49E + 42ð Þ 0.011

COL5A1 -5.393 0.005 (0-0.429) 0.042

COL3A1 3.812 45.238 (3.515-1849.766) 0.014

COL4A1 -6.648 0.001 (0-0.068) 0.007

COL15A1 1.525 4.596 (0.933-42.261) 0.098

Note: β is the regression coefficient.
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2.7. Statistical Analysis. All statistics were plotted using R
software (version 4.0.5). All statistical defaults were bilateral,
while P < 0:05 was considered to be statistically significant.

The ROCR package was used to plot ROC curves; the Hmisc
package was used to calculate the C-index. The rms package
was used for plotting the nomograms and calibration curves.
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Figure 3: (a) Nomogram showing the column line graph prediction model for recurrence after radiotherapy. (b) Calibration graph showing
the calibration of the prediction model.
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The rmda package was used to plot the decision curve anal-
ysis (DCA) curves.

3. Results

3.1. Analysis of the Differences between the Recurrence Group
and the First Diagnosis Group after Radiotherapy. The
research flow chart is shown in Figure 1. The results of the
differential analysis of gene expression in both groups of
patients were saved in Supplementary table 1, and a total
of 265 DEGs were obtained. GO and KEGG functional
pathway analysis results are presented in a bar chart
(Supplementary Figure 1), and Table 1 shows the top 10
up- and downregulated pathways in KEGG.

3.2. Angiogenesis-Related DEGs. Venn diagrams and volcano
plots (Figures 2(a) and 2(b)) showed that the eight DEGs
were also angiogenesis-related genes. All eight of these DEGs
were highly expressed in the recurrence group after radiation
therapy. Table 2 shows the analysis of variance for these
eight DEGs, and the heat map (Figure 2(c)) shows their
expression of in tumor tissue and their relationship with
clinical traits. These results suggest that the high expression
of these eight DEGs is associated with recurrence after radi-
ation therapy.

3.3. Single- and Multifactor Logistic Regression Analysis. All
characteristics were included for single- and multifactor
logistic regression analyses (Table 3). Seven genes (COL4A1,
STARD13, COL5A1, PLA2G4A, COL3A1, COL15A1, and
TGFBR2) were filtered for multivariate analysis at P < 0:1,
and the final four collagen family genes (COL5A1, COL3A1,
COL4A1, and COL15A1) were retained for further analysis.

3.4. Construction and Evaluation of the Logistics Regression
Model. COL5A1, COL3A1, COL4A1, and COL15A1 were
included for logistic regression model construction. The
weights and statistical differences of the included factors in
the constructed logistics regression model are shown in
Table 4. A nomogram was used to calculate the likelihood
of recurrence after radiotherapy according to a logistics
regression model (Figure 3(a)), and a calibration graph eval-
uated the calibration of the fit of the model predictions and
the actual classification (Figure 3(b)). Figure 4(a) shows the
ROC curves and area under the curve (AUC) values for
the model in the training set, test set, and overall cohort,
respectively (training set: 0.964, validation set: 0.889, and
entire cohort: 0.941). Table 5 shows the C-index for the three
groups and ranges from 0.889-0.964, indicating that this
model had good predictive classification efficacy. The DCA
curve demonstrated that the model had a good range of reli-
ability and safety in clinical prediction (Figure 4(b)). These
results above show that the model has excellent predictive
power. Therefore, the four collagen family genes were fur-
ther screened by combining the clinical information pro-
vided from the database with the results of univariate and
multivariate logistic analyses and were used to construct a
prediction model for the risk of recurrence of VS.

3.5. Pan-Cancer Analysis. We further explored the expres-
sion of these four genes in pan-cancer and their role in the
tumor microenvironment. Figures 5(a)–5(d) show that these
four genes were relatively highly expressed in pan-cancerous
tissues compared to their paracancerous counterparts.
Figure 6(a) shows how the expression of these four genes
was relatively high in GBM, HNSC, STAD, LUAD, and
CHOL and relatively low in UCEC, BLCA, KIRP, and
PRAD, and Figure 6(b) shows the positive correlation
between the expressions of these four genes in the pan-
cancerous tissue.

3.6. Survival Analysis. We applied the KM method and Cox
proportional regression models to the survival analysis of
four genes in pan-cancer. Figure 6(c) shows the results of
applying cox regression analysis to the four genes in the
pan-cancer. The HR and significance results of these four
genes for pan-cancer were shown in Figure 6(c). Figure 7
shows the statistically significant differences in the survival
analysis of these four genes in MESO, KIRP, and LGG
(P < 0:001).

3.7. Immune Subtypes and the Tumor Microenvironment.
We performed differential analysis and correlation analysis
of these four genes and tumor immune subtypes with tumor
microenvironment scores. In these 33 cancers, these four
genes differed significantly in the six tumor immune sub-
types (C1, C2, C3, C4, C5, and C6) (P < 0:05), Figure 8(a)).
These four genes (COL5A1, COL3A1, COL4A1, and
COL15A1) and the stromal, immune, and total scores in
the tumor microenvironment were significantly correlated
in most tumors (Figures 8(b)–8(d)).

3.8. Correlation of NPY with Collagen Family Genes and
Vestibular Schwannoma Recurrence after Radiotherapy. Four
collagen family genes (COL3A1, COL4A1, COL5A1, and
COL15A1) were significantly positively correlated with
each other (Figure 9(a)). Low expression of COL4A1 and
COL5A1 was associated with recurrence of vestibular
schwannoma, while high expression of NPY was associated
with recurrence of vestibular schwannoma (Table 6). In addi-
tion, these genes were not significantly associated with age and
sex (Figures 9(b) and 9(c)). These results suggest that NPY is
significantly associated with four collagen family genes
(COL3A1, COL4A1, COL5A1, and COL15A1) and recur-
rence after radiotherapy for vestibular schwannoma.

4. Discussion

In this study, genes associated with VS recurrence were
obtained using bioinformatics analysis. To investigate the

Table 5: C-index of the nomogram prediction model.

Dataset group
C-index of the prediction model

C-index The C-index (95% CI)

Training set 0.964 0.908-1

Validation set 0.889 0.707-1

Entire cohort 0.941 0.878-1
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role of angiogenic genes in this process, we obtained a col-
lection of angiogenesis-related genes at MSigDB and inter-
sected them with differentially expressed genes from the
GSE141801 dataset. Eight genes were obtained for univariate
and multifactorial logistic analyses, and four genes (COL5A1,
COL3A1, COL4A1, and COL15A1) were screened. A column
line graph prediction model was constructed by applying
logistic regression to predict the recurrence status after radi-
ation therapy. To further investigate the commonality of
these genes in tumorigenesis, pan-cancer analysis was used
to explore the role of these four target genes in tumor devel-
opment. Finally, the relevance of NPY to vestibular schwan-
noma was also revealed for the first time.

We identified eight genes from the GSE141801 dataset
that were highly expressed in the VS recurrence samples
(including: COL15A1, COL4A1, COL1A2, COL5A1,
COL3A1, STARD13, TGFBR2, and PLA2G4A). Four collagen
family genes (COL5A1, COL3A1, COL4A1, and COL15A1)
were further screened by combining the clinical information
provided by the database with the results of univariate and
multifactorial logistic analyses, and a prediction model for
the risk of recurrence of VS was constructed accordingly.
These four collagen family genes were found to be highly
expressed in most tumor tissues. There was significant hetero-
geneity in the expression of these genes in different immuno-
phenotypes. We assessed the association of these four collagen
family genes (COL5A1, COL3A1, COL4A1, and COL15A1)
with immune infiltration using three scoring systems (includ-

ing: ESTIMATEScore, StromalScore, and StromalScore). With
the exception of ACC, LAML, and SARC, all of these genes
(COL5A1, COL3A1, COL4A1, and COL15A1) were found to
be significantly associated with immune infiltration. KEGG
and GO enrichment analyses revealed that these four collagen
family genes played important roles in a variety of biological
functions and cellular pathways. Furthermore, NPYwas found
significantly associated with four collagen family genes
(COL3A1, COL4A1, COL5A1, and COL15A1) and recur-
rence after radiotherapy for VS.

M2-type macrophages in VS are associated with angio-
genesis and tumor growth [25]. Collagen cleavage leads to
increased macrophage adhesion and promotes macrophage
infiltration. [26] The expression of three collagen family
genes (COL5A1, COL3A1, and COL4A1) was negatively
correlated with the expression of NPY, which was found to
promote the migration of macrophages in collagen in vitro
[27]. The crosstalk between collagen production and radio-
therapy has been studied extensively [16, 17]. We have
revealed an important function of these four collagen family
genes (COL5A1, COL3A1, COL4A1, and COL15A1) in VS,
and their high expression may be associated with VS radio-
therapy recurrence. Mutations in COL3A1 are associated
with the development of mesothelioma. [28] High expres-
sion of COL4A1 is associated with poor prognosis in renal
papillary cell carcinoma [29]. In lower-grade glioma,
COL3A1, COL4A1, and COL5A1 are associated with patient
prognosis and tumor progression [30, 31]. Also, the
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Figure 5: Box plot showing the expression of the four genes in the pan-cancerous tissue and its paracancerous tissues.
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prognosis of mesothelioma is associated with COL3A1,
COL4A1, and COL15A1. In addition, COL3A1, COL4A1,
COL5A1, and COL15A1 are associated with immune infil-
tration in head and neck squamous cell carcinoma, breast
cancer, mesothelioma, and other tumors [32–35]. We per-
formed differential analysis and correlation analysis of these
four genes (COL3A1, COL4A1, COL5A1, and COL15A1) and
tumor immune subtypes with tumor microenvironment
scores. Our results are consistent with previous studies,
showing that these four genes and the stromal scores,
immune scores, and total scores in the tumor microenviron-
ment are significantly correlated in most tumors. We used

bioinformatics analysis to obtain genes associated with VS
recurrence and vascularity, and the pan-cancer analysis
allowed the commonality of these genes in tumorigenesis to
be studied. Therefore, our database-based pan-cancer analy-
sis suggests that these four collagen family genes (COL5A1,
COL3A1, COL4A1, and COL15A1) have commonality with
the progression of various tumors.

Low expression of COL4A1 and COL5A1 was associated
with recurrence of vestibular schwannoma; while high
expression of NPY was associated with recurrence of vestib-
ular schwannoma. NPY was found to promote the migration
of macrophages in collagen in vitro [27]. Recent studies have
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Figure 8: Continued.

11Disease Markers



shown that these four collagen family genes (COL3A1,
COL4A1, COL5A1, and COL15A1) are regulated by macro-
phages [27, 36, 37]. We speculate that NPY may influence

VS angiogenesis by affecting macrophages to regulate the
expression of COL5A1, COL3A1, and COL4A1. This
hypothesis needs to be tested by further studies.

−1
−0.6
−0.2
0.2
0.6
1

AC
C

BL
CA

BR
CA

CE
SC

CH
O

L
CO

A
D

D
LB

C
ES

CA
G

BM
H

N
SC

KI
CH

KI
RC

KI
RP

LA
M

L
LG

G
LI

H
C

LU
A

D
LU

SC
M

ES
O

O
V

PA
A

D
PC

PG
PR

A
D

RE
A

D
SA

RC
SK

CM
ST

A
D

TG
CT

TH
CA

TH
YM

U
CE

C
U

CS
U

V
M

COL4A1
COL5A1
COL3A1

COL15A1

ImmuneScore

(d)

Figure 8: The results of the analysis of variance and correlation analysis demonstrate the relationship between the four genes and (a) the
tumor immune subtype and (b–d) the tumor microenvironment score. Blanks in the heat map represent no statistically significant
differences in correlation analysis.
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There are various methods of staging for VS. Among
them, Koos grading method should be used in the future.
According to the size of the tumor, VS can be classified into
4 grades. In grade 1, tumor is confined to the internal audi-
tory tract; in grade 2, tumor invades the pontocerebellar
horn, diameter ≤ 2 cm; in grade 3, tumor occupies the pon-
tocerebellar horn pool without brainstem displacement,
≤3 cm; and in grade 4, huge tumor, >3 cm, with brainstem
displacement. And the specific mechanisms by which these
four collagen family genes are associated with recurrence
after radiation therapy for VS remains unstudied. In the
future, VS-related single-cell RNA-seq would validate our
findings. Second, the association of these four collagen fam-
ily genes with NPY has not been elucidated. Third, more cel-
lular and animal experiments need to be performed to
further explore the mechanisms involved. In addition, we
have only focused on the expression abundance of these
genes; consequently, gene polymorphisms also need to be
explored. Third, all the data are from the database and we
will need sufficient specimens from the clinic in the future
to verify this conclusion. In addition, patients who have
not relapsed after radiotherapy should be selected as controls
versus those who have relapsed after radiotherapy, which
will improve the scientific validity of future studies. There-
fore, future cohort studies and controlled population-based
pathology studies are necessary.

5. Conclusions

In this study, the expression of four angiogenesis-related col-
lagen family genes (COL5A1, COL3A1, COL4A1, and
COL15A1) was a predictor of recurrence after radiation ther-
apy for VS. Pan-cancer analysis also revealed their potential
correlation with the progression of other tumors, revealing
an association between the pathogenesis of VS and other
tumorigenic factors. And the relevance of NPY to VS was
also revealed for the first time.

Abbreviations

ACC: Adrenocortical carcinoma
BLCA: Bladder urothelial carcinoma
BRCA: Breast invasive carcinoma
CESC: Cervical squamous cell carcinoma
CHOL: Cholangiocarcinoma
COAD: Colon adenocarcinoma
DEGs: Differentially expressed genes
DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA: Esophageal carcinoma
FSRT: Fractionated stereotactic radiotherapy
GBM: Glioblastoma multiforme
GEO: Gene Expression Omnibus
GO: Gene Ontology
LGG: Brain lower-grade glioma
HNSC: Head and neck squamous cell carcinoma
KEGG: Kyoto Encyclopedia of Genes and Genomes
KICH: Kidney chromophobe
KIRC: Kidney renal clear cell carcinoma
KIRP: Kidney renal papillary cell carcinoma
KM: Kaplan-Meier
LAML: Acute myeloid leukemia
LIHC: Liver hepatocellular carcinoma
LUAD: Lung adenocarcinoma
LUSC: Lung squamous cell carcinoma
MESO: Mesothelioma
NPY: Neuropeptide Y
OV: Ovarian serous cystadenocarcinoma
PAAD: Pancreatic adenocarcinoma
PCPG: Pheochromocytoma and paraganglioma
PRAD: Prostate adenocarcinoma
READ: Rectum adenocarcinoma
ROC: Receiver operating characteristic
SARC: Sarcoma
SKCM: Skin cutaneous melanoma
SRS: Stereotactic radiosurgery
STAD: Stomach adenocarcinoma

Table 6: The basic characteristics of the patients.

Characteristic First diagnosis Relapsed P value

n 58 9

Sex, n (%) 0.888

9 (13.4%) 1 (1.5%)

Female 20 (29.9%) 4 (6%)

Male 29 (43.3%) 4 (6%)

Age, n (%) 1.000

9 (13.4%) 1 (1.5%)

<40 year 26 (38.8%) 4 (6%)

>40 year 23 (34.3%) 4 (6%)

COL3A1, median (IQR) 8.91 (8.61, 9.31) 8.92 (8.35, 9.48) 0.720

COL4A1, median (IQR) 8.4 (8.09, 8.68) 7.9 (7.44, 8.1) <0.001
COL5A1, median (IQR) 8.42 (8.15, 8.71) 8.13 (7.66, 8.16) 0.009

COL15A1, median (IQR) 8.81 (8.24, 9.22) 8.56 (7.72, 8.66) 0.108

NPY, median (IQR) 2.38 (2.27, 2.52) 2.63 (2.51, 2.66) 0.005
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TCGA: The Cancer Genome Atlas
TGCT: Testicular germ cell tumors
THCA: Thyroid carcinoma
THYM: Thymoma
UCEC: Uterine corpus endometrial carcinoma
UCS: Uterine carcinosarcoma
UVM: Uveal melanoma
VS: Vestibular schwannoma.
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