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Abstract: Musashi-1 (MSI1) is an RNA-binding protein that regulates progenitor cells in adult and
developing organisms to maintain self-renewal capacities. The role of musashi-1 in the bone healing
environment and its relation with other osteogenic factors is unknown. In the current study, we
analyze the expression of MSI1 in an experimental model of rat femoral bone fractures. We also
analyze the relation between MSI1 expression and the expression of two osteogenic markers: periostin
(POSTN) and runt-related transcription factor 2 (RUNX2). We use histological, immunohistochemical,
and qPCR techniques to evaluate bone healing and the expression of MSI1, POSTN, and RUNX2 over
time (4, 7, and 14 days). We compare our findings with non-fractured controls. We find that in bone
calluses, the number of cells expressing MSI1 and RUNX2 increase over time and the intensity of
POSTN expression decreases over time. Within bone calluses, we find the presence of MSI1 expression
in mesenchymal stromal cells, osteoblasts, and osteocytes but not in hypertrophic chondrocytes. After
14 days, the expression of MSI1, POSTN, and RUNX2 was significantly correlated. Thus, we conclude
that musashi-1 potentially serves in the osteogenic differentiation of mesenchymal stromal cells and
bone healing. Therefore, further studies are needed to determine the possibility of musashi-1's role
as a clinical biomarker of bone healing and therapeutic agent for bone regeneration.
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1. Introduction

’

Bone tissue has self-repair properties depending on mesenchymal stromal cells
(MSCs’) recruitment and differentiation, angiogenesis, formation of a bone fracture callus,
and endochondral and intramembranous bone ossification. MSCs can be found in the bone
marrow, endosteum, and periosteum. Thus, during bone repair, these are the main sources
of cells for the healing process [1]. That is the reason why MSCs have been proposed for
the treatment of several bone diseases.

The Musashi family is a group of two RNA-binding proteins with two
ribonucleoprotein-type RNA-binding domains (RBDs) [2]. The function of Musashi-1
(MSI1, gene Msil) is exerted by indirectly activating Wnt through a slower degradation
of 8-catenin [3]. It also blocks leWAF_1 [4], an inhibitor of the Wnt pathway. On the
other hand, MSI1 inhibits numb, whose main function is to block the actions of Notch on
maintaining the self-renewal capabilities of stem cells [5]. Taken together, this evidence
shows that MSI1 acts as translational regulator of target mRNAs to maintain the stemness
and self-renewal capabilities of undifferentiated cells [6].

A role of MSI1 has been previously suggested in bone repair by demonstrating an
increased detection in articular joints under repair after induction of arthritis [7]. This can

Int. ]. Mol. Sci. 2021, 22, 3395. https:/ /doi.org/10.3390/1jms22073395

https:/ /www.mdpi.com/journal/ijms


https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6222-1341
https://orcid.org/0000-0003-1184-7859
https://orcid.org/0000-0002-6614-6470
https://orcid.org/0000-0001-9207-2287
https://doi.org/10.3390/ijms22073395
https://doi.org/10.3390/ijms22073395
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22073395
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/7/3395?type=check_update&version=2

Int. J. Mol. Sci. 2021, 22, 3395

20f 17

be explained by the interaction of MSI1 with the Notch and Wnt/$-catenin pathways. In the
downstream of the mentioned pathways, runt-related transcription factor 2 (RUNX2, gene
Runx2) appears as the main focal point for signaling integration [8]. RUNX2 is necessary
for the maturation of chondrocytes [9]. When expressed in conjunction with osterix, the
differentiation is directed towards osteogenic tissues [10].

A cross-talk between some of these pathways involves members of the transforming
growth factor-beta (TGF£) family such as the bone morphogenetic proteins (BMPs) [11].
TGEFf-1, in particular, plays a fundamental role in inducing the expression of periostin
(POSTN, gene Postn), a matricellular molecule highly expressed in mechanically demand-
ing tissues such as dental pulp [12], periodontal ligament [13,14], periosteum, and cardiac
valves [15]. POSTN has been shown to promote cell mobility, survival, and proliferation
in a number of cell types [16-18], to act as a key regulator of bone formation via its in-
teractions with BMP and Wnt pathways [19] and to increase collagen cross-linking and
extracellular matrix stability [20], necessary for supporting later mineralization in bone and
dental tissues. In fact, POSTN deficiency increases bone damage and alters the reparative
process [21]. Not surprisingly, serum levels of POSTN have been proposed as markers of
bone metabolism [22].

Thus, the aim of this study was to evaluate the expression of Musashi-1 in the context
of bone healing in a preclinical model of long bone fracture and correlate it with the
expression of other osteogenic markers, including RUNX2 and POSTN. Results will be
compared with those of non-fractured controls with the hypothesis that the expression is
higher in the bone callus.

2. Results

In the present study, we evaluate the number and distribution of MSI1 positive cells
in different tissue compartments of the bone calluses after inducing femoral diaphysis
fractures without osteosynthesis. We then analyze the relation between MSI1, RUNX2,
and POSTN-positive cells within different tissue compartments and their overall nRNA
expression.

2.1. Histomorphometric Study

The fracture site after four days already showed the presence of fusiform mesenchymal
cells in a moderate proportion (72% of the incipient callus area). These cells were located
between the striated muscle cells with the presence of mild interstitial edema without
hematoma. At day seven, the proportion of mesenchymal cells (49%) was reduced and
areas of mature and immature hyaline cartilage predominated (39%) with formation of bone
trabeculae (12% of the callus area) (Figure 1). At day 14 (Figure 2), the presence of mature
hyaline cartilage (50%) and formation of bone trabeculae generated through enchondral
ossification (41.7%) was more evident. On average, newly formed bone trabecula contained
850.9(262.5) bone-forming cells in the interface between mineralized and non-mineralized
areas of the bone (i.e., osteoblasts), 451.0(60.1) cells inside lacunae in the mineralized areas
of the bone (osteocytes), and 31.3(18.4) multinucleated cells adjacent to mineralized areas

of the bone (osteoclasts) per mm?.
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Figure 2. (A) Histomorphological confirmation after 14 days of an effective endochondral and intramembranous repair
around a bone fracture callus involving fibrocartilage (red arrow), cartilage (green arrow), and newly formed bone trabecula
(yellow arrow). An adequate number of new vessels can be observed (B) as well as normal distribution of osteoclasts (arrow
in (C)), and osteocytes (orange arrow in (D)), and osteoblasts (blue arrow in (D)). Masson’s trichrome staining. Original
magnification: 4x (A), 10x (B) and 40x (C,D).

2.2. Immunohistochemical Analyses
2.2.1. Musashi-1
In unfractured controls, after 14 days, cells in the fibroconnective tissue showed weak

to none MSI1 staining, in contrast with those in the bone fracture callus (Figure 3). MSI1
was not detected in mature adipocytes (not shown).
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Figure 3. Negative detection of musashi-1 at day 14 in (A) unfractured controls in comparison with (B) bone fracture callus,
as also represented in Figure 1. Peroxidase-conjugated micropolymer detection. Original magnification: 10x.

An intense nuclear expression of MSI1 was observed in fusiform mesenchymal cells
and immature chondrocytes in the fibrocartilage. In osteoblasts, MSI1 was detected in the
nucleus and the cytoplasm. MSI1 was not detected in mature hypertrophic chondrocytes
(Figure 4).

Mesenchymal
Cells

Cartilage

New Mineralized
Tissue

Figure 4. (A) Overview of musashi-1 detection in a bone fracture callus (in brown) and detail observations in (B) fusiform
mesenchymal cells (green arrow), and immature chondrocytes (red arrow) in the fibrocartilage, (C) negative detection in
mature hypertrophic chondrocytes (orange arrow), and (D) intense detection in the nucleus and cytoplasm of osteoblasts
(blue arrow), and osteocytes (black arrow) in the newly formed bone. Peroxidase-conjugated micropolymer detection in
samples from the 14-day time point. Original magnification: 10x (A), 20x (B,C) and 40x (D).
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This expression of MSI1 increased over time from day 4 to day 14. The difference
in number of positive MSI1 osteoblasts, osteocytes, immature chondrocytes, and mes-
enchymal cells per mm? in the bone fracture callus compared to unfractured controls was
statistically significant (p < 0.05, Mann-Whitney U test) at almost all time points (Table 1
and Figure 5).

Table 1. Comparison between the expression of Musashi-1 in bone fracture callus and unfractured control areas.

Expression of Musashi-1

Unfractured Control

Bone Fracture Callus

Mann-Whitney U Test

(Positive Cells/mm?) (p-Values)

32.0 (8.8) 87.2(37.2) 0.024

Osteoblasts (4, 7, and 14 days) 35.2(7.4) 270.8 (126.4) 0.008
483 (53.4) 512.9 (131.7) 0.001

6.0 (2.9) 0.0 (0.0) 0.007

Osteocytes (4, 7, and 14 days) 8.4 (5.0) 177.4 (30.3) 0.012

8.0 (5.7) 373.8 (77.4) 0.001
0.0 (0.0) 0.0 (0.0) >0.999

Immature chondrocytes (4, 7, and 14 days) 0.0 (0.0) 164.6 (75.0) 0.008
0.0 (0.0) 544.3 (158.3) 0.001

0.0 (0.0) 150.6 (39.8) 0.008

Mesenchymal cells (4, 7, and 14 days) 0.0 (0.0) 351.6 (66.8) 0.007
0.0 (0.0) 383.0 (173.5) 0.001
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Figure 5. Graphical representation of the expression of musashi-1 in bone fracture callus (orange line)

and unfractured control areas (blue line) over time in (A) osteoblasts, (B) osteocytes, (C) immature
chondrocytes and (D) MSCs (mesenchymal stromal cells).
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A positive and statistically significant correlation was found at day 14 between the
expression of MSI1 in MSCs and osteogenic cells (tho = 0.841, p < 0.001, Spearman test)
(Table 2).

Table 2. Correlations between the expression of the different markers under study at day 14.

Marker Osteogenic Cells Mesenchymal Cells Rho (p < 0.01, Spearman)
Musashi-1 X X X 0.841
RUNX2 X X X 0.204
Periostin X X
Rho (p < 0.01, Spearman) 0.852 0.881 0.933
2.2.2. RUNX2

Unfractured control bone did not show staining for RUNX2 in the cortical or trabec-
ular bone. In the periosteum, a weak expression was visible in the closest areas to the
cortical while the rest was negative. Similarly, a very weak staining was detected in the
hematopoietic and lymphoid cells of the bone marrow.

In the callus, an intense nuclear expression of RUNX2 was detected after 14 days
similarly to the detection of MSI1 in MSCs and immature chondrocytes; similarly, RUNX2
was not detected in mature hypertrophic chondrocytes (Figure 6).

Mesenchymal
Cells

Cartilage

Mineralized
Tissue

Figure 6. (A) Overview of RUNX2 detection in a bone fracture callus (in brown) and detail observations in (B) fusiform
mesenchymal cells (green arrow), and immature chondrocytes (red arrow) in the fibrocartilage, (C) negative detection in
mature hypertrophic chondrocytes (orange arrow), and (D) intense detection in the nucleus and cytoplasm of osteoblasts
(blue arrow), and osteocytes (black arrow) in the newly formed bone. Peroxidase-conjugated micropolymer detection in
samples from the 14-day time point. Original magnification: 10x (A) and 20x (B-D).
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This expression did not change notably over time except in MSC and immature
chondrocytes. The expression of RUNX2 was statistically higher in osteoblasts, osteocytes
and immature chondrocytes of the fracture callus than in unfractured controls at all time
points. Although the differences in mesenchymal cells were significant at seven days, it
was rather marginal to none at day 4 and 14 (Table 3 and Figure 7).

Table 3. Comparison between the expression of RUNX2 in bone fracture callus and unfractured control areas.

Expression of RUNX2 Mann-Whitney U Test

(Positive Cells/mm?) Unfractured Control Bone Fracture Callus (p-Values)
96.1 (19.0) 245.2 (95.9) 0.008
Osteoblasts (4, 7, and 14 days) 111.4 (41.3) 200.6 (51.3) 0.016
80.6 (29.6) 393.3 (146.1) 0.002
0.0 (0.0) 129.2 (111.3) 0.008
Osteocytes (4, 7, and 14 days) 0.0 (0.0) 187.0 (258.2) 0.007
0.0 (0.0) 249.1 (95.9) 0.001
0.0 (0.0) 129.0 (37.5) 0.007
Immature chondrocytes (4, 7, and 14 days) 0.0 (0.0) 109.8 (13.4) 0.007
0.0 (0.0) 610.2 (182.1) 0.001
69.0 (35.0) 83.4 (44.7) 0.548
Mesenchymal cells (4, 7, and 14 days) 99.8 (30.7) 217.0 (40.0) 0.008
212.9 (80.7) 270.6 (105.9) 0.190
Values are expressed as mean (SD).
A) RUNX2 in Osteoblasts B) RUNX2 in Osteocytes
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Figure 7. Graphical representation of the expression of RUNX2 in bone fracture callus (orange line)
and unfractured control areas (blue line) over time in (A) osteoblasts, (B) osteocytes, (C) immature
chondrocytes and (D) MSCs (mesenchymal stromal cells).
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Although low, there was a positive significant correlation at day 14 between the
expression of RUNX2 in MSCs and osteogenic cells (rho = 0.204, p < 0.001, Spearman test).
The expression of RUNX2 and MSI1 in osteogenic cells was strongly and significantly
correlated (rho = 0.852, p < 0.001, Spearman test) (Table 2 and Figure 8).

Figure 8. Staining of consecutive sections at 4 (A,D), 7 (B,E) and 14 days (C,F) for musashi-1 (A-C) and RUNX2 (D-F). Both
markers increased over time. In general, the same cell types expressed both musashi-1 and RUNX2. Peroxidase-conjugated
micropolymer detection. TB: trabecular bone; IC: immature chondrocytes; MSCs: mesenchymal stromal cells. Original

magnification: 10x.

2.2.3. Periostin

The immunohistochemical detection of POSTN was mainly interstitial. Over time, the
intensity of POSTN expression decreased from 2.8 (0.4) after 4 days, to 2.6 (0.5) at day 7,
and 1.8 (0.4) at day 14. After 14 days, POSTN was intensely detected in the fibrocartilage,
specifically in the areas occupied by MSCs, and focally in the cytoplasm of mature hyper-
trophic chondrocytes (Figure 9). In the forming bone, there was an intense positivity in the
intertrabecular interstitium. The cortical and trabecular bone as well as the cartilage tissue
did not express POSTN. In the periosteum, the detection was weak/moderate.

The expression of POSTN was higher in the bone fracture callus than in unfractured
control areas (p < 0.001; Chi-square test). The comparisons between the expression in
fibrocartilage (p < 0.001; Chi-square test) and periosteum (p = 0.013; Chi-square test) were
also statistically significant.

A positive correlation was found between the expression of POSTN and MSI1 in
osteogenic cells in the fibrocartilage (rho = 0.881, p < 0.001, Spearman test) but negative in
the periosteum (rtho = —0.820, p < 0.001, Spearman test). Similar correlations were found
with the expression of RUNX2 in the same cells and locations (rho = 0.933 and rho = —0.782,
respectively; p < 0.001, Spearman test) (Table 3).
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Figure 9. Weak to negative detection of periostin at day 14 in (A) unfractured controls in comparison with (B) bone fracture
callus, where it can be observed mainly in the fibrocartilage (green arrow) and in the intertrabecular interstitium (red arrow).
Peroxidase-conjugated micropolymer detection. Original magnification: 10x.

2.3. mRNA Evaluation

The evaluation of the expression of Msil, Postn, and Runx2 mRNA was in accordance
with the protein detection by immunohistochemical analyses. In summary, higher expres-
sion of Msil, Postn, and Runx2 was detected in the bone fracture calluses compared to
unfractured controls at all time points. The differences between fractured and unfractured
bone were statistically significant at day 4 and 14 (ANOVA model with Sidak’s multiple
comparison test) (Table 4 and Figure 10).

Table 4. Relative mRNA expression of Msil, Postn, and Runx2 in the different areas under study. Note the significant
differences between detection of Msil, Postn, and Runx2 in fracture and unfractured controls, particularly at day 4 and 14. *:

p values for the comparisons of unfractured control vs. callus (Sidak’s multiple comparisons post-hoc test).

mRNA Unfractured Control Bone Fracture Callus Adjusted Sidak Test *
1.00 (0.38) 304.16 (29.77) <0.001
Msil (4, 7, and 14 days) 4.75(0.47) 116.09 (22.61) 0.086
15.24 (7.19) 596.62 (87.96) <0.001
1.00 (0.24) 793.40 (77.65) 0.004
Postn (4, 7, and 14 days) 0.81 (0.20) 593.63 (279.84) 0.016
4.85 (0.24) 1179.38 (181.43) <0.001
1.00 (0.19) 115.98 (28.14) 0.117
Runx2 (4, 7, and 14 days) 0.52 (0.13) 22.99 (5.06) 0.929
4.12 (0.60) 274.22 (104.48) 0.003

Values are expressed as mean (SD).
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Figure 10. Graphical representation of the relative mRNA expression over time in bone fracture
callus (orange line) and unfractured control areas (blue line) of (A) Msil, (B) Postn and (C) Runx2.

3. Discussion

In the current study, the detection of RUNX2, POSTN, and MSI1 proteins and thir
mRNA expression during bone repair is reported for the first time in the literature, as far
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as we know. This correlation highlights a potential role of Musashi-1 in the osteogenesis
process during bone repair and regeneration. We have to keep in mind that this is a
descriptive study. Thus, our findings need further confirmation. Yet, those findings are
novel and interesting and set the basis for future analyses.

The animal model we selected presents a number of advantages. First, it is known that
bone remodeling in rodents is similar to that in humans. Second, it is a well-characterized
model. The femur also presents some advantages compared to other models in tibiae, being
the most important at regular and comparable macroscopic diameter across animals. We
did not perform osteosynthesis on the bone fractures because osteosynthesis complicates
the procedure, increases the possibility of local infection, and gives less evidence of a
histopathological response in terms of bone callus formation. Subchondral areas of non-
fractured bone were used as control because, in bone fracture models, osteosynthesis is
achieved primarily through endochondral ossification, as opposed to direct ossification
(“per priman consolidation”) that occurs when true stabilization is achieved. Furthermore,
the use of subchrondral areas allowed us to observe articular cartilage and the growth plate.
Thus, in our opinion, the use of this control is appropriate. However, this methodology is
temporarily uncomfortable for the animals so the veterinarian was especially careful with
their welfare.

Evaluating the samples at different time points up to 14 days allowed an overview
of the process. After 14 days, a reduction of the inflammatory infiltrate and granulation
tissue and a more mature osseous tissue was observed, as well as a good number of vessels
per mm?, a key factor for bone fracture healing [23]. This observation timeframe also
allowed the endochondral and intramembranous formation of new trabecular bone with
low remodeling activity, as is shown by the number of osteogenic cells. The use of a model
of bone fracture without immobilization was chosen to observe the natural healing process
and the implication of mechanical activity.

The expression of musashi-1 in osteoarticular tissues was reported for the first time
in a model of induced arthritis. An intense nuclear expression of musashi-1 was demon-
strated in the presence of reparative processes in response to arthritic lesions that was
absent in healthy joints [7]. In order to further evaluate these findings, an in vitro study was
conducted to analyze the expression of musashi-1, periostin, and RUNX2 in mesenchymal
stromal cells obtained from different origins within the oral cavity and induced to differ-
entiate into osteogenic cells. A clear correlation between the expression of musashi-1 and
RUNX2 was found [24], which is similar to the results from the current study. Clinically,
a preliminary study demonstrated that musashi-1 was mainly detectable in regenerated
bone, particularly in osteoprogenitor mesenchymal cells of biopsies from previously grafted
bone. In contrast, musashi-1 was almost undetectable or with very low levels in native
non-regenerated bone within the same biopsy [25]. Furthermore, a higher expression
of musashi-1 has been observed in association with bone grafting biomaterials that also
induce higher presence of osteoblasts, osteocytes, osteoclasts, and osteoid lines in human
bone biopsies [26-29]. The results from the current study localize the intense expression of
musashi-1 in cells in the fibrocartilage compartment of the bone fracture callus (mesenchy-
mal cells and immature chondrocytes). Thus, taking all this evidence together, the potential
role of musashi-1 in bone repair can be proposed to be linked to the activity of mesenchymal
stromal cells with differentiation potential, particularly those in the osteolineage path. The
clinical relevance of these findings ranges from the use of musashi-1 as a marker of bone
healing to a more complex application as an inductor of bone healing. This latter potential
application is still in a very early stage and needs further investigation.

The current study also tries to put the expression of musashi-1 in the context of
different bone healing times and tissue compartments. Musashi-1 has been related with
the self-renewal capacities of MSCs and other cell types with high proliferative potential,
such as those from osteosarcoma [30]. The actions of musashi-1 take place both during
development and in the adult tissues [31]. In osteogenic progenitors, these actions are
oriented to inhibit three main targets: numb, leWAF —1 and the accumulation of $-catenin,
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which block the activities of the Wnt and Notch pathways [32]. The accumulation of
-catenin has also been suggested as one of the inductors of musashi-1 in MSCs during the
activation of a reparative process [33]. Thus, we could argue that the mechanisms that take
place in bone healing might be similar to those previously described in other tissues.

Two of the Wnt/$-catenin and Notch downstream targets are BMP2 and RUNX2,
probably the better described regulators of osteoblastic differentiation [8]. In this sense, the
expression of RUNX2 that we detected, particularly in the bone fracture callus [34], can be
explained by the previously described implication of RUNX2 in the transition from mature
chondrocytes to hypertrophic chondrocytes [35], and its induction of endochondral and
intramembranous ossification [36], in both cases dependent on the Wnt pathway. In these
differentiation pathways, osterix is also important in the cell-fate decision process that will
determine if mesenchymal stromal cells will become chondrocytes and osteoblasts or other
cell type [37]. Thus, our findings regarding the mRNA expression of Runx2 in the context
of bone fracture healing are within the previously described mechanisms. This, and the
positive correlation of the immunohistochemical expression of both RUNX2 and musashi-1,
in turn, offer an indirect confirmation of the importance of Musashi-1 the process as we
have described.

During bone healing, even before the differentiation of MSCs is induced, a competent
extracellular matrix is needed. Periostin is induced as a consequence of the activation of
latent extracellular TGF-31. The induced periostin interacts with tenascin-C, fibronectin,
and BMP1 to activate the lysyl-oxidase enzyme. This interaction increases collagen fib-
rillogenesis and cross-linking [20]. This is fundamental for bone strength. In addition,
periostin may directly reduce the expression of sclerostin [38]. In fact, periostin upregu-
lation has been observed in conjunction with an in vitro overexpression of RUNX2 [39].
Taken together, this evidence further supports our findings regarding the correlations
between the expression of RUNX2, musashi-1, and periostin. Other evidence from similar
experiments as the one performed in the current study also confirms the upregulation
of Postn mRNA in undifferentiated mesenchymal cells and pre-osteoblasts in the callus
compared to unfractured bone [40,41].

Our study also presents some limitations, the most important being that we have not
tested any mechanistic association between the molecules under analysis. Our findings
regarding the correlation between musashi-1, RUNX2, and periostin in bone healing over
time and in different areas of the bone callus suggests their importance in this context.
However, a confirmation of such interplay would come from more sophisticated studies
using knockout in vivo models and blocking of molecular pathways in vitro. Regardless,
the information presented here is worth as no previous information about musashi-1 in
the context of over time in vivo fracture bone healing has been published. Thus, the
information presented in this study and the context explained above allow us to propose a
very preliminary molecular model, as represented in Figure 11. Future studies will need to
confirm if the proposed interconnection truly occurs.
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Figure 11. Diagram representing the proposed actions of the three molecules under study on MSC
differentiation, collagen fibrillogenesis and, ultimately, bone healing. As shown in this manuscript,
there is a positive and statistically significant correlation between the expression of the three markers:
periostin, RUNX2, and musashi-1. MSC: mesenchymal stromal cell; p21WAF~1: cyclin-dependent
kinase inhibitor 1; TGFf1: transforming growth factor beta 1.

4. Materials and Methods
4.1. Preclinical Model

A total of 46 samples from adult (8-9 week old) male Wistar rats (unfractured control:
n = 23; fracture: n = 23), weighing 300-350 g, were used in this study. The animals
were housed in stable conditions of light with ad libitum access to water and food. All
experiments were performed after the approval of the Committee on Animal Research of
the University of Granada (CEEA 2014/357) and under the European Union and Spanish
regulations for ethics in animal research (EU Directive 63/2010 and Spanish RD 53/2013)
and reported following the ARRIVE guidelines.

4.2. Surgical Procedure

A model of bone fracture without osteosynthesis nor external immobilization was used
to observe endochondral and intramembranous repair [42]. Bone fractures were performed
on the femoral diaphysis of the right hind limbs. Briefly, the rats were anesthetized by
inhalation of ether followed by intraperitoneal injection of a solution containing ketamine
(I mL), diazepam (0.8 mL), and atropine (0.2 mL) at a dosage of 3 mL/kg. A blunt
guillotine was dropped on the hind limb to produce the bone fracture. Post-operative
analgesia was achieved by administration of 200 mg/kg of metamizole in the drinking
water and 50 mg/kg of ibuprofen subcutaneously every 12 h during 3 days.

The rats were euthanized by CO, overdose after 4, 7, and 14 days. Seven rats were
euthanized after each time period, all extra rats were euthanized after 14 days as well.
Secondary method of sacrifice consisted on the induction of pneumothorax.

4.3. Histomorphometric Study

The collected whole hind limbs were immediately fixed in a 10% formalin buffer after
removal of major soft tissues. After 48 h at 4 °C, samples were decalcified in Decalcifier I®
(Surgipath Europe Ltd., Peterborough, United Kingdom) for 1 week at 37 °C and embedded
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in paraffin. Sections of 4 um thickness were obtained along the major axis of the bone and
treated for hematoxylin-eosin, PAS, and Masson’s trichrome stainings.

Histomorphometric analysis was performed semiautomatically with the Image] soft-
ware on Masson’s stained sections by evaluating a total of 10 images captured randomly
from 3 sections of each fracture callus, adjacent tissues, and unfractured control bones.
Images were obtained with a BX51 microscope equipped with a DP70 digital camera
(Olympus Optical Company, Tokyo, Japan). Areas of connective tissue, cartilage, and new
bone tissue (identified morphologically as represented in Figure 12) were measured as well
as cells and vessels in each compartment.

Figure 12. Representative low magnification image of a bone callus showing the approximate areas of each tissue com-
partment. (A) Hematoxylin-eosin staining. (B) Masson’s trichrome staining. CB: cortical bone; SM: skeletal muscle; black
squares: different tissue compartments of bone callus (from left to right: connective tissue, cartilage, and new bone tissue).

4.4. Immunohistochemical Analyses

Paraffin-embedded sections were dewaxed, hydrated, and heat-treated in 1 mM
EDTA (pH 8) for antigenic unmasking in an antigen retrieval PT module (Thermo Fisher
Scientific Inc., Waltham, MA, USA) at 95 °C for 20 min. A total of three sections were
incubated with polyclonal antibodies against MSI1 (Sigma-Aldrich, Barcelona, Spain; 1:100
during 16 h at 4 °C), POSTN (Santa Cruz Biotechnology Inc., CA, USA; 1:50 during 1 h at
room temperature), and RUNX2 (Santa Cruz Biotechnology; 1:80 during 10 min. at room
temperature). The micropolymer-peroxidase-based method (Ultravision Quanto, Thermo
Fisher Scientific) was applied for the immunohistochemistry study with an automatic
immunostainer (Autostainer 480S, Thermo Fisher Scientific), followed by development with
diaminobenzidine. All antibodies and reagents were provided by Vitro-Master Diagndstica
S.A. (Granada, Spain). Appropriate positive and negative controls were run concurrently.
Hematoxylin was used for nuclear counterstaining. To evaluate the co-localization of the
expression of musashi-1 and RUNX2, consecutive sections were stained for each marker.

A millimeter scale in the eyepiece of a microscope (BH2, Olympus Optical Company)
with a 40x objective was used to count the number of positive cells per mm? in each
tissue compartment. Cell type was identified morphologically. Results were expressed
as numbers of positive cells/mm?/0.062 (correction value for 40x magnification). Extra-
cellular expression of periostin was evaluated by a categorical scale (0 = none; 1 = weak;
2 = moderate; 3 = intense).
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4.5. mRNA Evaluation

A group of animals were subjected to the same procedures with the purpose of obtain-
ing tissue for mRNA analyses. After euthanasia, bone fracture calluses and unfractured
control bone were collected without dissecting the periosteum. Tissues were immediately
submerged in Trizol reagent (TrizolTM Plus RNA Purification Kit, Invitrogen, Grand Island,
NY, USA) and homogenized with a tissue blender before RNA from each individual sample
was isolated. RT-PCR was performed using a thermal cycler (iCycler iQ™, Bio-Rad Labo-
ratories, S.A., Madrid, Spain) immediately after RNA isolation for a final volume of 30 pL
of cDNA with 1 pug of RNA using the PrimeScript™ RT Master Mix (Takara Bio Europe,
Saint-Germain-en-Laye, France). Table 5 shows the primers used in the quantitative PCR
using iQ-SYBR Green Supermix (Bio-Rad). Each plate contained triplicates of the cDNA
templates. The 2799Ct method was used to calculate gene expression levels relative to
Gapdh. Normalization was made to the unfractured controls at day 4.

Table 5. Primer sequences for the mRNA evaluation of the specified genes.

Gene Forward Reverse
Gapdh 5-GTGAAGCTCATTTCCTGGTATGAC-3 5-GCCTCTCTCTTGCTCTCAGTATC-3
Msil 5-ACGTTCGAGAGTGAGGACATC-3 5-CCTCCTTTGGCTGAGCTTTC-3
Postn 5-AACCCGGAGTCACCAACATC-3 5-GCGTCTCATTGACTCCTTTCAC-3
Runx2 5-AGTGATTTAGGGCGCATTCC-3 5-TCTGCCTGGGATCTGTAATCTG-3

4.6. Statistical Analysis

Results are expressed as mean (standard deviation) for continuous variables with
normal distribution and as frequencies for categorical variables. Statistical analyses were
performed by Chi-square (for categorical variables), Mann—-Whitney U (for continuous
variables) and Spearman correlation tests with IBM SPSS 20.0 (Armonk, NY, USA). Differ-
ences among and between groups and time points in mRNA expression were statistically
analyzed by a two-way ANOVA model with Sidak’s multiple comparison tests with Prism
7 (San Diego, CA, USA). In all cases, statistical significance was established at level of p
below 0.05.

5. Conclusions

Bone healing, in the context of the current experiment and within the limitations
already discussed, could be proposed to be a combination of the expression of periostin
to stabilize the extracellular matrix and the release of RUNX2 as a result of the activity of
previously well-described pathways that are also interconnected with the expression of
musashi-1. The increased expression over time of musashi-1 in cells compounding the bone
fracture callus, together with RUNX2 and periostin, suggests a potential role as putative
regulator in the bone healing process. This observation and its significance remain to be
solved with more detailed, mechanistic studies.
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