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Introduction
Stroke is the leading cause of acquired disabilities 
in adults.1 Stroke-related impairments cause dras-
tic reductions in patients’ daily living activities and 
quality of life. To regain independence and quality 
of life after stroke, effective rehabilitation planning 
is essential. Recovery prediction can help clini-
cians design individually tailored rehabilitation 
plans, including realistic discharge planning and 
appropriate allocation of time and resources. In 
addition, it allows patients to set realistic goals.2

Neuroimaging-based brain connectivity analyses 
are already used in recovery prediction, and several 
predictors have been identified.3–7 Neurologic 

research has emphasized that the effects of neuro-
logical disorders are exerted over an entire network 
because the brain is organized in networks of con-
nections among many neurons.8–10 Damage caused 
by stroke can diffuse through the brain networks 
and influence the function of distant brain regions 
even when the damage to the brain structure is a 
focal lesion.9,11 Therefore, using a brain connectiv-
ity analysis for recovery prediction is an appropriate 
approach. However, prediction remains difficult 
because of inter-individual variability.

Previous clinical studies have used various predic-
tive markers. Among them, initial motor function 
is the most representative.2,12,13 However, it has 
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limitations in predicting motor recovery in 
patients with severe stroke.13 Furthermore, for 
clinical purposes, an accurate prediction model 
beyond initial motor function itself is needed. 
Our aim in this study was to use magnetic reso-
nance imaging (MRI) data and initial motor func-
tion in a brain connectivity analysis to propose a 
new predictor that can accurately predict recov-
ery from stroke.

Previous studies have demonstrated widespread 
remote changes in connectivity in regions in both 
hemispheres as the result of a focal lesion.8,14,15 
Also, motor learning after stroke is performed by 
widespread networks in the whole brain, without 
the need for a motor-related central region, and 
many regions in widespread networks compen-
sate for learning success.16 In this respect, an 
investigation of the overall connectivity in the 
whole brain and the indirect connectivity of the 
damaged area, beyond the direct connectivity of 
the damaged area, might be important for under-
standing recovery after stroke.

The second link-step connectivity of a lesion net-
work (the next link-step beyond a lesion’s direct con-
nectivity) was obtained from resting-state functional 
MRI (fMRI) and investigated using the following 
considerations: (a) second link-step connectivity is 
likely to be highly affected by a lesion because con-
nectivity is adjacently connected to a lesion when 
considering the spread of damage throughout the 
entire network; (b) the connectivity forms a wider 
brain network and broadly covers more brain regions 
than first link-step connectivity in terms of informa-
tion spreading within a network structure. Therefore, 
by quantifying second link-step connectivity, the 
impact of the focal lesion on the whole brain net-
work can be assessed according to points (a) and (b). 
Furthermore, this connectivity is expected to actively 
contribute to recovery after stroke onset because it 
does not suffer actual physical damage from the focal 
lesion. During the recovery period, a lesion with a 
low impact on connectivity enables cost-effective 
reorganization to allow recovery across the whole 
brain network, so second link-step connectivity 
might indicate the potential for functional recovery. 
Therefore, we hypothesized that patients whose 
lesions had a low impact on second link-step con-
nectivity would be more likely to recover from stroke 
damage, as reflected by better motor recovery, than 
patients whose lesions had high impacts on second 
link-step connectivity.

Materials and methods

Participants and experimental design
A total of 64 patients who had suffered ischemic 
stroke (36 men and 28 women, aged 
57.9 ± 12.6 years) underwent MRI data acquisi-
tion 2 weeks after stroke onset (T1), and their 
motor function was measured on the same day as 
MRI data acquisition. At 3 months after stroke 
onset (T2), motor function was measured again 
to assess functional improvement. The Fugl–
Meyer assessment (FMA)17 score was used as a 
measurement of motor function. The T1 FMA 
score was also used as a measure of initial motor 
function (baseline). These subjects were collected 
from the stroke database held by the Department 
of Physical and Rehabilitation Medicine at 
Samsung Medical Center, which has been col-
lecting MRI data from patients who had suffered 
strokes and healthy subjects since 2007. Inclusion 
criteria were first-onset unilateral ischemic stroke 
and age 19 years or older at the time of stroke 
onset. Patients were excluded if they exhibited 
any clinically significant or unstable medical con-
ditions, any neuropsychiatric comorbidity other 
than stroke, or any contraindication to MRI. The 
clinical information of participants is summarized 
in Table 1 and Supplemental Table 1. Resting-
state fMRI data from 64 healthy subjects (26 men 
and 38 women, aged 50.0 ± 16.5 years) who 
reported no history of psychiatric or neurological 
problems were also used in this study. This retro-
spective study was performed in accordance with 
relevant guidelines and the regulations of the 
Declaration of Helsinki. Ethical approval was 
obtained from the Institutional Review Board 
(IRB) of Samsung Medical Center, Seoul, 
Republic of Korea. We received an exemption 
from informed consent from the IRB because we 
used only previously collected data and did not 
exceed minimal risk.

Data acquisition
Participants were instructed to keep their eyes 
closed and remain motionless during the resting-
state fMRI scan. The fMRI data were acquired 
using a Philips ACHIEVA® MR scanner (Philips 
Medical Systems, Best, The Netherlands)  operating 
at 3 T. During each session, 100 whole-brain images 
were collected using a T2*-weighted, gradient echo-
planar imaging sequence with the following metrics: 
35 axial slices, slice thickness = 4 mm, no gap, 
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matrix size = 128 × 128, repetition time = 3000 ms,  
echo time = 35 ms, flip angle = 90°, and field of 
view = 220 × 220 mm. T1-weighted images were 
acquired with the following settings: 124 axial 
slices, slice thickness = 1.6 mm, no gap, matrix 
size = 512 × 512, repetition time = 13.9 ms, 
echo time = 6.89 ms, flip angle = 8°, and field 
of view = 240 × 240 mm for lesion segmenta-
tion and atlas transformation.

Data processing
Preprocessing was performed using the SPM8 
package (Welcome Trust Centre for Neuroimaging, 
University College London, London, UK). Functional 
images were processed as follows: (a) slice timing 
correction; (b) spatial realignment for head motion 
correction; (c) spatial normalization into the 
Montreal Neurological Institute (MNI) atlas space 
resampling to 2-mm isotropic voxels. Spatial 
smoothing of the normalized images was per-
formed using a 6-mm full-width half-maximum 
Gaussian kernel. For the connectivity analysis, sev-
eral nuisance sources were removed by linear 
regression of 22 nuisance parameters. Parameters 
were obtained from six head motion parameters 
and six first-order temporal derivatives of the 
motion parameters. Each of the five parameters 
was obtained from a principal component analysis 
of the temporal components of white matter and 
ventricle signals as nuisance regressors for effective 
noise correction.18 Band-pass filtering between 
0.009 and 0.08 Hz was performed to remove con-
stant offsets and linear trends. Nuisance regression 
and band-pass filtering were processed using 
MATLAB (MathWorks, Natick, MA, USA).

Connectivity was obtained by calculating the sta-
tistical dependencies between time courses using 
Pearson’s correlation coefficients. We examined 
positive correlation coefficients in this study. A  
voxel-wise connectivity analysis (seed-based approach) 
was used to extract the first link-step connectivity. 
The connectivity map had a threshold of p < 0.00005 
(uncorrected).19 A region-wise connectivity analy-
sis was used to extract second link-step connectiv-
ity. An automated anatomical labeling (AAL) 
template20 was used for the region-wise connectiv-
ity analysis. The AAL template was segmented 
into 116 regions (90 regions in the cerebrum and 
26 regions in the cerebellum) covering the whole 
brain. We averaged nine regions in the left and 
right cerebellum and eight regions in the vermis. 
The brainstem region was added by drawing it 
manually on the AAL atlas. The resulting modi-
fied AAL atlas, which contained 94 regions, was 
co-registered to the normalized fMRI data space 
using SPM8 and then analyzed.

Each patient lesion was segmented on a T1- 
weighted structural image with reference to appar-
ent hyper-intensities on a diffusion-weighted image 
that was acquired at the patient’s first neurology 
appointment. One medical doctor manually drew 
the lesion maps of all patients using MRIcro lesion 

Table 1. Patient demographics.

Age (years)  

 Mean ± SD 57.9 ± 12.6

Sex (n)

 Male 36

 Female 28

Side of lesion (n)

 Right 33

 Left 31

 Bilateral 0

Location of lesion (n)

 Supratentorial 45

 Infratentorial 19

Type of stroke (n)

 Hemorrhagic 0

 Ischemic 64

Initial severity (n)

 Mild and moderate (FMA >55) 19

 Severe (FMA ⩽55) 45

Time poststroke (days)

 T1, Mean ± SD 14.8 ± 6.9

 T2, Mean ± SD 97.4 ± 11.7

FMA scores

 T1, Mean ± SD 43.5 ± 23.3

 T2, Mean ± SD 67.5 ± 25.9

FMA, Fugl–Meyer Assessment; SD, standard deviation; T1, 
2 weeks poststroke; T2, 3 months poststroke.
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mapping software (https://www.mccauslandcenter 
.sc.edu/crnl/). Each lesion was normalized into the 
standard MNI space. The results were visualized 
using the xjView toolbox (http://www.alivelearn 
.net/xjview) (Figure 1). The lesion side of the map 
was flipped to the right side for visualization.

Second link-step functional connectivity from 
lesions
Recently, a lesion network mapping method 
has been used to investigate the expanding 
localization of symptoms from heterogeneous 
lesions.19,21 That method is based on lesion-
seeded, resting-state, functional connectivity. 
We based our extraction of a lesion’s second 
link-step connectivity on that lesion network 
mapping method. Our framework involved 
seven steps (Figure 2). (Step 1) The lesion 
image of a patient and the resting-state fMRI of 
a healthy subject were normalized into the 
standard MNI space. The normalized lesion 
was used as the first seed region in the seed-
based approach. (Step 2) A seed-voxel-based 
approach was performed using a mean time 
course of the lesion volume in resting-state 
fMRI of a healthy subject (first link-step, voxel-
wise connectivity, p < 0.00005). Extracting that 
first link-step connectivity of a lesion is similar 
to the previously published lesion network 
mapping method.19 (Step 3) The second seed 
was the volume of all the lesion-seeded con-
nected voxels (the first link-step connectivity of 
the lesion) in a region of the modified AAL 
atlas. Therefore, multiple second seeds were 
found because the first link-step connectivity 
covered multiple regions. (Step 4) The 

connectivity was calculated between the mean 
time course of the second seed and the mean 
time courses of all other AAL atlas regions 
except for the lesion-seeded connected voxels 
(second link-step, region-wise connectivity, 
p < 0.01). (Step 5) Step 4, region-wise connec-
tivity, was repeated for each second seed region, 
and an adjacency matrix was constructed by 
inserting the correlation values in rows corre-
sponding to the seed regions. (Step 6) The 
asymmetric adjacency matrix obtained from 
Step 5 was then made symmetric by adding the 
transpose matrix. For example, say that two 
regions in the modified AAL atlas (regions 1 
and 2) contain lesion-seeded connected voxels. 
The second seed in region 1 consists of all the 
lesion-seeded connected voxels in region 1, and 
the connectivity (W(1,2)) is calculated between 
the mean time course of the second seed in 
region 1 and the mean time course of all the 
voxels in region 2 except the lesion-seeded con-
nected voxels. Meanwhile, the second seed in 
region 2 contains the lesion-seeded connected 
voxels in region 2, and the connectivity (W(2,1)) 
is calculated between the mean time course of 
the second seed in region 2 and the mean time 
course of all the voxels in region 1 except the 
lesion-seeded connected voxels. We trans-
formed the asymmetric matrix into a symmetric 
matrix by adding the transpose matrix 
(W(1,2) + W(2,1)). If two regions include second 
seeds (lesion-seeded connected voxels), we 
wanted to reflect an aggravated effect between 
regions 1 and 2 to distinguish that situation 
from one in which only a single region has a 
second seed (W(1,2) or W(2,1)) to clarify the con-
trast of lesion impact. (Step 7) The adjacency 

Figure 1. Lesion maps. All masks of stroke lesions were flipped to the right hemisphere.
The colored bar indicates the number of patients.
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matrices corresponding to a lesion were repeat-
edly obtained from all healthy subjects 
(A A AP H P H P H1 1 1 2 1 3, , , ...)by following Step (1) 
through Step (6), and then all the matrices were 
averaged. The averaged matrix represents the 
second link-step connectivity of one lesion. 
Therefore, the second link-step connectivity 
matrix of a patient lesion (AP1 ) was defined as 
follows:

A
A

nP
i

n
P Hi

1
1 1

= =∑

where AP Hi1  is the second link-step connectivity 
matrix of the i-th healthy subject, and n is the 
number of healthy subjects. All matrices A AP P1 64−  
are illustrated in Supplemental Figure 1.

We quantitatively measured the impact of a lesion 
on the brain network by counting the number of 
unconnected and weaker connections compared 
with the reference connectivity matrix ( ref A_ )  
in the second link-step connectivity matrix (A 
matrix). The number of connections is our pre-
dictor in the study. The ref A_ was obtained by 
averaging the modified AAL connectivity matri-
ces of all healthy subjects. The  connectivity 
matrix does not mask any lesion area, and the 
lesion-seeded connected voxels and intrinsic con-
nectivity matrix are extracted.
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where Aij  is an element of the second link-step 
connectivity matrix of one patient, ref Aij_  is an 
element of the reference connectivity matrix, m is 
the number of regions, and Cij  is illustrated in 
Supplemental Figure 2. In this study, a connection 
with less than the reference connection strength 
was defined as a connection that was weakly 
impacted by the lesion. A connection with no 
strength was defined as a connection that was not 
indirectly impacted by the lesion. Therefore, our 
proposed predictor corresponds to the number of 
connections with weak and no lesion impacts.

Statistical analysis
We used linear regression to identify the relation-
ship between the improvement of motor function 
and the proposed predictor. A multiple regression 
was also used to establish the proposed prediction 
model using the proposed predictor and patient 

Figure 2. Framework to extract the second link-step connectivity of a lesion.
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characteristics. Leave-one-out cross-validation 
(LOOCV) and k-fold cross-validation were per-
formed to assess the performance of our proposed 
prediction model. These statistics were derived 
using the statistics toolbox of MATLAB R2014b.

Results

Univariate analysis
The second link-step connectivity of 64 lesions 
was extracted. The proposed predictor used the 
number of second link-step connections (the  number 
of connections in the adjacency matrix in Supple-
mental Figure 2). A linear regression model was 
used to investigate the relationships between the 
proposed predictor and motor function  recovery 
(∆FMA = FMA (T2) – FMA (T1)) (Figure 3(a)). 
The predictor did correlate with motor  function 
recovery (r = 0.470, p = 8.79e-05, R2  = 0.221). 
We also divided patients into groups based on 
whether their lesion was supratentorial or infraten-
torial, and again investigated the relationship 
between our predictor and improvements in motor 
function (Figure 3(b) and (c)). Our predictor was 
highly significant for patients with supratentorial 
lesions but not for patients with infratentorial 
lesions (supratentorial lesions, r = 0.588, p = 2.15e-
05, R2  = 0.346; infratentorial lesions, r = 0.295, 
p = 0.2217,  R2  = 0.087). When assessing the 
relationship between the clinical characteristics of 
patients and motor function recovery, we found 
that age and lesion volume correlated with motor 
function recovery (age, r = 0.335, p = 0.0068, 
R2  = 0.112; lesion volume, r = 0.257, p = 0.0403, 
R2  = 0.066) (Supplemental Figure 3).

Multivariate analysis for supratentorial lesions
We investigated the combined model between both 
variables (predictor + baseline) using a multiple 
linear regression model. The combined model dem-
onstrated high accuracy in predicting motor func-
tion after 3 months (FMA (T2)) (r = 0.868, 
p = 1.13e-14, R

2
 = 0.753, root mean square error 

(RMSE) = 12.97) (Figure 3(d)). A multivariate 
analysis considering patient characteristics at base-
line, age, and lesion volume as independent factors 
was performed. The best prediction model  
was FMA (T2) ~ 1 + Predictor + Baseline + Age + 
log(Lesion volume) (r = 0.888, p = 3.79e-16, 
R2  = 0.788, RMSE = 12.01) (Figure 3(e)). In the 
multivariate analysis (Table 2), the proposed pre-

dictor remained significant and contributed signifi-
cantly to the accuracy of the prediction.

A multivariate analysis of all variables except the 
proposed predictor was performed to investigate the 
proposed predictor’s worth in predicting motor 
function. This model was FMA (T2) ~ 
1 + Baseline + Age + log(Lesion volume) (r = 0.824, 
p = 3.14e-12, R2  = 0.679, RMSE = 14.77). R2

increased by more than 0.1 when our proposed pre-
dictor was added and RMSE decreased by more 
than 2.7. Our proposed predictor thus valuably 
enhanced the accuracy of the prediction. 
Furthermore, the proposed predictor was not cor-
related with other variables (lesion volume, 
p = 0.8264; age, p = 0.2004; baseline, p = 0.7127).

Cross-validation
The LOOCV results are shown in Figure 3(f), 
which shows the relationship between the pre-
dicted FMA score obtained from the model and 
the actual FMA score obtained from the test data 
at 3 months poststroke. Those results verify the 
performance of our model (r = 0.864, p = 2.08e-
14, R2  = 0.746, RMSE = 13.15). A 9-fold 
cross-validation (5 test datasets, 40 training data-
sets) was also performed, and the mean perfor-
mance (r = 0.863, p = 3.12e-14, R2  = 0.744, 
RMSE = 13.19) obtained after 30 trials was sim-
ilar to the LOOCV results.

Discussion

Second link-step connectivity as a recovery 
predictor
One of the main findings of this study was that the 
impact of a lesion on the second link-step connec-
tivity is related to improvement in motor function 
during the recovery period. This is distinct from 
previous studies that focused on connections 
directly damaged by a lesion. Several recent stud-
ies have demonstrated widespread remote changes 
in connectivity in regions between both hemi-
spheres due to a focal lesion.8,14,15 Furthermore, 
Beckman et al. showed that a focal lesion impacted 
brain connectivity in diverse networks,22 regard-
less of the location of the affected or unaffected 
side or the motor network.8,14,23 The terms ‘con-
nectional’ and ‘connectomal diaschisis’ have been 
coined recently.11 Based on these studies, we 
hypothesized that measuring the impact of a focal 
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lesion on large-scale networks might be valuable 
for designing rehabilitation plans and determining 
prognosis. We demonstrated that the less the 
impact of a lesion on second link-step connectivity 
in a whole brain network, the better the improve-
ment in motor function. In this study, age and 
lesion volume were also associated and negatively 
correlated with improved motor function, in 
agreement with previous studies.24–27

Recovery prediction using resting-state 
functional connectivity analysis
Resting-state functional connectivity (rs-FC) 
analysis has been used widely in neurologic 
research to investigate recovery patterns and to 
find recovery-related indicators. However, ana-
tomical or diffusion tensor imaging (DTI) data 
analysis has primarily been used in recovery pre-
diction studies.28 These analyses are useful for 

Figure 3. Relationships between variables (proposed predictor (a), proposed predictor for supratentorial 
lesions (b), and proposed predictor for infratentorial lesions (c)) and motor function recovery (∆FMA) in 
univariate analysis (all lesions, r = 0.470, p = 8.79e-05, R2  = 0.221; supratentorial lesions, r = 0.588, p = 2.15e-
05, R2  = 0.346; infratentorial lesions, r = 0.295, p = 0.2217, R2  = 0.087). (d) Relationship between the 
combined model (baseline + proposed predictor) and motor function at 3 months poststroke (FMA (T2)) 
(r = 0.868, p = 1.13e-14, R2  = 0.753). (e) Results from the multiple linear regression model [FMA (T2) ~ 
1 + Predictor + Baseline + Age + log(Lesion volume)] (r = 0.888, p = 3.79e-16, R2  = 0.788). (f) Validation 
results. Relationship between predicted motor function (predicted FMA (T2)) and actual motor function at 3 
months poststroke (FMA (T2)) (r = 0.864, p = 2.08e-14, R2  = 0.746, RMSE = 13.15).
FMA, Fugl–Meyer Assessment; RMSE, root-mean-square error; T2, 3 months poststroke.

Table 2. Multiple linear regression model.

FMA (T2) ~ 1 + Predictor + Baseline + Age + log(Lesion volume)

Variable Estimate SE t value p value

Predictor 0.3408 0.076 4.46 6.42e-05

Baseline 0.8087 0.077 10.46 5.21e-13

Age –0.1107 0.079 –1.40 0.1678

log(Lesion volume) –0.1446 0.076 –1.90 0.0646

FMA, Fugl–Meyer Assessment; SE, standard error; T2, 3 months poststroke.
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investigating the direct influences of a lesion loca-
tion, size, or damaged motor pathways. In this 
study, we focused on indirectly damaged connec-
tivity (second link-step connectivity) to predict 
functional recovery. rs-FC analysis is more flexi-
ble than anatomical or DTI analysis. In other 
words, rs-FC analysis has fewer technical limita-
tions than the other two techniques, which is why 
we chose it to validate our hypothesis. Stroke 
lesions include white matter structures. Typically, 
fMRI analysis is applied to investigate neural sig-
nals in gray matter structures. Several recent stud-
ies have investigated fMRI signals in white matter 
structures.29–33 In addition, convergence between 
anatomical connectivity obtained from DTI anal-
ysis and functional connectivity obtained from 
rs-FC analysis has been detected,34 and novel 
analyses such as lesion network mapping using 
fMRI signals obtained from white matter struc-
tures have been applied to study neurological dis-
orders.19,21,34 We validated the importance of 
indirectly damaged connectivity and confirmed 
the potential of our method for predicting recov-
ery using rs-FC analysis.

Advantages and limitations of the study
First link-step and second link-step connectivities 
from a lesion were obtained sequentially from 
healthy subjects. Many second link-step connec-
tivity matrices from all healthy subjects were aver-
aged to obtain the second link-step connectivity 
from each lesion. This improves the signal to noise 
ratio. We verified our model in a wide variety of 
initial impairment patients (from extremely severe 
to slightly severe patients). In a previous study, ini-
tial impairment showed relatively low prediction 
accuracy in patients with a severe initial deficit.35 
Our model demonstrated high predictive accuracy 
even though severe patients (FMA (T1) ⩽55) who 
showed high variability in recovery composed a 
large proportion of our test population.

This study also had several limitations. First, the 
proposed predictor was less valuable for infraten-
torial lesions than supratentorial lesions. Our 
method mainly assessed the global effect of lesions 
in cortical regions, and the functional connectiv-
ity of the pons or medulla is sparse in cortical 
regions.19,36 The brainstem regions also include 
physiological noise, such as cardiac and respira-
tory cycles, which should be removed through 
physiological monitoring.37,38 As a result, the 
 second link-step connectivity of infratentorial 

lesions in our study had relatively low strength 
and was indistinguishable among lesions 
(Supplemental Figure 4). Another limitation of 
this study is the period of recovery. In this study, 
FMA improvement scores from approximately 3 
months after stroke onset were used to quantify 
motor function recovery. Additional motor func-
tion can be recovered after a longer period of 
time. However, according to previous studies, 
most spontaneous recovery occurs within the first 
3 months after stroke onset.39 Lastly, information 
related to the spatial topography of the second 
link-step connectivity is not provided. That infor-
mation would provide insight for noninvasive 
brain stimulation protocols. Beyond the magni-
tude of the index, further study regarding that 
spatial topography is needed.

Conclusion
We measured lesion impacts on second link-step 
connectivity in the lesion network to develop a 
predictor of stroke recovery and proposed a pre-
diction model to predict motor function 3 months 
poststroke. The model, including a proposed pre-
dictor, initial motor function, lesion volume, and 
age, demonstrated high accuracy for predicting 
motor function at 3 months poststroke. This 
model can potentially be used in clinical practice 
to develop individually tailored rehabilitation 
programs for patients suffering from motor 
impairments after stroke.
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