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Abstract
The 5-year survival of non-small cell lung cancer patients can be as low as 1% in advanced

stages. For patients with resectable disease, the successful choice of preoperative chemo-

therapy is critical to eliminatemicrometastasis and improve operability. In silico experimen-

tations can suggest the optimal treatment protocol for each patient based on their own

multiscale data. A determinant for reliable predictions is the a priori estimation of the drugs’

cytotoxic efficacy on cancer cells for a given treatment. In the present work a mechanistic

model of cancer response to treatment is applied for the estimation of a plausible value

range of the cell killing efficacy of various cisplatin-based doublet regimens. Among others,

the model incorporates the cancer relatedmechanism of uncontrolled proliferation, popula-

tion heterogeneity, hypoxia and treatment resistance. The methodology is based on the

provision of tumor volumetric data at two time points, before and after or during treatment.

It takes into account the effect of tumormicroenvironment and cell repopulation on treat-

ment outcome. A thorough sensitivity analysis based on one-factor-at-a-time and latin

hypercube sampling/partial rank correlation coefficient approaches has established the

volume growth rate and the growth fraction at diagnosis as key features for more accurate

estimates. The methodology is applied on the retrospective data of thirteenpatients with

non-small cell lung cancer who received cisplatin in combination with gemcitabine, vinorel-

bine or docetaxel in the neoadjuvant context. The selection of model input values has been

guided by a comprehensive literature survey on cancer-specific proliferation kinetics. The

latin hypercube sampling has been recruited to compensate for patient-specific uncertain-

ties. Concluding, the present work provides a quantitative framework for the estimation

of the in-vivo cell-killing ability of various chemotherapies. Correlation studies of such
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estimates with the molecular profile of patients could serve as a basis for reliable personal-

ized predictions.

Author Summary

Less than 14% of medically treated patients with locally advanced and metastatic non-
small cell lung cancer are expected to be alive 5 years after diagnosis. Standard therapeutic
strategies include the administration of two drugs in combination, aiming at shrinking
the tumor before surgery and improving overall survival. Knowing the sensitivity profile
of each patient to different treatment strategies at diagnosis may help choose the most
appropriate ones. We develop a methodology for the quantitative estimation of the cyto-
toxic efficacy of cisplatin-based doublets on cancer cells by applying a simulation model
of cancer progression and response. The model incorporates the proliferation cycle, qui-
escence, differentiation and loss of tumor cells. We evaluate the effect of in vivomicroen-
vironment of real tumors, as expressed by measurable tumor proliferation kinetics, such
as how fast the tumor grows, the percentage of cells that are actively dividing, the resis-
tance of stem cells, etc. on treatment outcome so as to derive more accurate estimates. A
literature survey guides the selection of values. The methodology is applied to a real clini-
cal dataset of patients. Correlation studies between the derived cytotoxicities and the
patients’ molecular profile could lead to predictions of treatment response at the time of
diagnosis.

Introduction
Worldwide, lung cancer accounts for most cancer related deaths among both men and
women [1]. Non-small cell lung cancer (NSCLC) represents the most common type [1]. The
success of current treatment choices depends on the extent of the disease at diagnosis; how-
ever, overall prognosis remains poor. For locally advanced and metastatic NSCLC, accounting
for more than a half of NSCLC incidence [2], the 5-year survival rate ranges between 14% and
1% [1].

The use of cisplatin in combination with another agent remains the standard of care in
NSCLC [3]. For patients with resectable tumors, neoadjuvant chemotherapy can be proven
particular beneficial in terms of operability, event-free survival, time to distant recurrence and
overall survival [4]. However, if treatment fails, a considerable time will have passed during
which the tumor may have advanced or even become inoperable [4]. Treatment choices have
routinely been based on stage, tumor size, location, lymph node or distant metastasis and over-
all health status. The exploitation of the molecular profile of cancer cells as treatment selection
criteria in NSCLC has only been limited to the consideration of EGFR or ALKmutations as
therapeutic targets [5–6]. However, the consideration of the molecular landscape, not to men-
tion the complete genome sequencing, of cancer cells to guide treatment choice is a promising
new research area in the field of personalizedmedicine [7–8].

Mechanistic models that summarize our knowledge on cancer progression are potential
candidates to bridge the gap between the gene and molecular world and the prediction of
treatment failure or success. Simplified models summarizing cancer biology in few parame-
ters (e.g. growth rate) cannot grasp the great inter-patient and intra-tumor heterogeneity of
the disease. Personalized cancer treatment demands for more sophisticated approaches to
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better trace and understand the biology of cancer and overcome the barriers of current thera-
peutic practices. The success of such a model to predict the therapeutic outcome depends
greatly on the accuracy of the patient-specific estimates of its parameters at the time of
diagnosis.

In the present work a methodology for the estimation of in vivo cell killing ability of che-
motherapy based on data routinely measured in clinical practice has been developed. A
discrete event-discrete state, clinically oriented simulation model of tumor response to che-
motherapy is applied to translate tumor shrinkage after treatment to cytotoxic efficacy by
taking into account the effect of tumor kinetics on treatment outcome. Measure of the antitu-
mor efficacy is the ‘cell kill rate’ that expresses the fraction of treatment-induced cell losses,
i.e. the fraction of cancer cells that are lethally hit, after each drug administration. The model
addresses primary tumors during their clinical course of life, well beyond their initiation
phase. It has been designed to incorporate patient-specific data such as imaging-based, histo-
logical, molecular and treatment data. In our modelling approach the high complexity of
cancer is reduced to these essential mechanisms that prevail at cellular and super-cellular
length scales. Hypoxia due to an insufficient tumor neovasculature, reversible dormancy,
active proliferation and spontaneous, starvation-induced or treatment-induced cell loss are
among the biological processes considered. Intra-tumor heterogeneity has been implemented
via the cancer stem cell (CSC) hypothesis. Different resistance profiles of cancer cells have
been taken into account. An essential feature of the model is its capability to simulate differ-
ent proliferation patterns based on the assumed conditions of tumor microenvironment.
Eventually tumor progression is regulated by the interplay of the above considered biological
mechanisms.

The core simulation model of tumor cell multiplication stems from previous work of the In
Silico Oncology-In SilicoMedicine Group, ICCS, National Technical University of Athens [9–
12]. In the present work, several extensions and adaptations have been performed to account
for the modelling of the combination chemotherapy and the mechanism of action of the drugs
considered. Furthermore, by recruiting statistical sampling methods to overcome intrinsic
uncertainties in model parameter values, a methodological framework has been proposed that
enables the application of mechanistic simulation models on the retrospective analysis of accu-
mulated clinical data in a systemic way.

In order to facilitate the interpretation of histological subtypes to model parameters, a com-
prehensive literature survey on non-small cell lung cancer-specific proliferation kinetics has
guided the consideration of biologically-reasonable and cancer-specific value ranges for critical
proliferation features.

Moreover, in terms of better understanding cancer, the effect of key biological processes
that drive tumor progression on treatment response are studied and clinical implications are
discussed.More specifically, a thorough sensitivity analysis has been performed to decipher
which tumor features are determinant of the quantitative estimation of the drugs’ cell killing
ability. The tumor features under examination include tumor growth rate, cell cycle time,
growth fraction, cell loss and chemo-resistance. Means to improve the accuracy of our estima-
tions by exploiting measurable tumor proliferation kinetics are discussed.

Finally, a crucial advancement in relation to previous works is the use of real anonymized clini-
cal data. The methodology is applied and early validated in the case of neoadjuvant chemotherapy
treatment of NSCLCwith various combinations of the antineoplastic agent cisplatin with gemcita-
bine, vinorelbine, and docetaxel. A real clinical dataset of 13 patients with primaryNSCLC has
been recruited for the purposes of this study. The anonymized data originate from the Institute of
Pathology and the Clinical Cancer Registry, University Hospital of Saarland, Germany.
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Methods

Patients
Thirteen patients with newly diagnosedNSCLC are included in the study (Table 1). The
patients were treated at the Institute of Pathology of the University Hospital of Saarland
between 2006 and 2010. The patients were between 45 and 67 years of age. Nine of the patients
were diagnosedwith squamous cell carcinoma (SCC) and the rest four with adenocarcinoma
(ADC). None of the patients had previous cancer occurrence.All patients had stage III or IV

Table 1. Patient characteristics.

Characteristic n (%)

Number of cases 13

Age (Mean) 56

Sex

Male 11 (85)

Female 2 (15)

Histology

ADC 4 (31)

SCC 9 (69)

Differentiation grade

Well 1 (8)

Moderate 2 (15)

Poor 5 (38.5)

Unknown 5 (38.5)

T-classification

1 3 (23)

2 6 (46)

3 3 (23)

4 1 (8)

N-classification

0 4 (31)

1 2 (15)

2 7 (54)

M-classification

0 11 (85)

1 2 (15)

Stage

III 10 (77)

IV 3 (23)

EGFRmutations

Yes 1 (8)

No 12 (92)

KRASmutations

Yes 1 (8)

No 12 (92)

Treatment

Cisplatin & Gemcitabine 3 (23)

Cisplatin & Docetaxel 1 (8)

Cisplatin & Vinorelbine 9 (69)

doi:10.1371/journal.pcbi.1005093.t001

CancerModeling for Quantifying Treatment Efficacy

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005093 September 22, 2016 4 / 43



disease according to TNM Classification of Malignant Tumours, 7th ed. There were two
patients with distant metastases at the time of diagnosis. All patients received primary systemic
chemotherapy prior to surgery.

All data exploited by the present study have been provided, following anonymization,
through the security framework implemented within the Contra CancrumEuropean Commi-
sion-funded program [13] (Contra Cancrum:Clinically Oriented Translational CancerMulti-
level Modeling’, FP7-ICT-2007-2-223979, http://contracancrum.eu/). Pseudonomized data
from the patients and tumor tissue of the Contra Cancrumproject were used according to the
approval of the ethical committee Ethik-Kommission, Ärztekammer des Saarlandes, Faktor-
eistr. 4, 66111 Saarbrücken, Germany—approval number: 104/10. (This Committee is respon-
sible for any medical ethics decision in the state of Saarland including all affairs of the medical
faculty of the University of Saarland.) As the study has to focus on retrospective data e.g. tissue
data from stored tissue samples the ethical committee agreed that informed consent cannot be
gained in retrospective cases.

Treatment schedule
All patients were treated preoperatively with a cisplatin-based doublet regimen (Table 2): one
patient received a combination therapy with cisplatin (75 mg/m2) plus docetaxel (75 mg/m2),
three patients received cisplatin (80 mg/m2) plus gemcitabine (1250 mg/m2), and nine patients
were given cisplatin (80 mg/m2) plus vinorelbine (30 mg/m2). The cisplatin/gemcitabine and
cisplatin/vinorelbine doublet regimens were given as a three-week cycle, administered two or
three times. On day 1 of each cycle the patients received a short IV infusion (10-30min) of
gemcitabine (or vinorelbine), followed by a 1–2 h IV infusion of cisplatin, whereas on day 8
only gemcitabine (or vinorelbine) was administered. In the case of cisplatin/docetaxel doublet
regimen, both chemotherapeutic agents (1h IV infusion of docetaxel followed by 1h IV infu-
sion of cisplatin) were given on day 1 of a 21-day cycle, repeated three times. After systemic
chemotherapy, the patients underwent surgical resection of the primary tumor and/or the
regional lymph nodes.

CT image acquisition
The CTs were performed by positioning the patients in supine position with both arms above
the head. A spiral CT of the chest with intravenous contrast during mid–breath hold was
obtained (two-channel Elscint Twin Flash CT or four-channel MX 8000 [Philips Medical Sys-
tems, Best, The Netherlands]) if there were no contraindications. A pitch value of 1.2 was used.
Imaging data were reconstructed at 3mm slice thickness and 1.5mm reconstruction interval.
All images were evaluated by a board-certifiedradiologist for the presence or absence of patho-
logical lesions.

CT image processing and volumetricmethods
In order to be able to compare model predictions qualitatively or quantitatively with patient
3D CT images, the images taken at different time instances must be properly aligned (registra-
tion) and the tumor shape must be determined (segmentation).

Registration. The task to register lung CT images taken at different time points is not triv-
ial. The acquired CT images contain not only the tumor under investigation, but the whole
thorax or even the whole body. For the purpose of tumor growth modelling, however, the
alignment of these images is required to be accurate in a region around the tumor only,
whereas in other body regions a larger registration error can be accepted. Therefore we decided
to use a combination of a pre-computed fast global affine registration with an on-demand local

CancerModeling for Quantifying Treatment Efficacy

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005093 September 22, 2016 5 / 43

http://contracancrum.eu/


blockmatching to identify corresponding lesions [14]. The user marks a lesion in the base-line
CT image. The algorithm then finds the corresponding lesions in the follow-up scans automati-
cally by processing three basic steps: 1. fast multi-resolution affine registration (scaling, shift)
with cross-correlation as similarity measure [15], 2. blockmatching registration refinement of
local volumes of interest (VOI) around the corresponding lesion positions, and 3. additional
local lesion search in the corresponding PET scans in case of unsuccessful block matching [14].

Segmentation. The task to segment lung tumors in CT images in three dimensions is not
trivial as well. There are many papers and methods on automatic segmentation of small lung
nodules [14–16]. However, according to our experience these methods cannot be directly
applied to the segmentation of larger lung tumors, which often have a substantial connectivity
to other structures such as lung wall, hilum, or diaphragm. On the other hand, in model-based
approaches as suggested in [17] the high variability in shape and size of lung tumors makes it
difficult to define a general tumor surface model. Moreover, partial connectionwith the lung

Table 2. Summary of clinical data.

Case # Histologic
type*

Tumor volume
(mm3) at initial CT
acquisition

Tumor volume
(mm3) at second
CT acquisition

Relative volume
reduction (% of
initial volume)

Interval (days)
betweenCT
acquisitions

Interval (days)
between initial CT
and treatment
onset

Drug administrations
(day)‡

Cisplatin (80 mg/m2) & Gemcitabine (1250mg/m2)
1 SCC 100264 46776 53.35 47 5 GEM:1st, 8th, 22nd, 29th,

CIS:1st, 22nd

2 SCC 568264 168048 70.43 46 4 GEM:1st, 8th, 22nd, 29th,
CIS:1st, 22nd

3 SCC 101216 26336 73.98 45 4 GEM:1st, 8th, 22nd, 30th,
CIS:1st, 22nd

Cisplatin (75 mg/m2) & Docetaxel (75 mg/m2)
4 SCC 41376 18352 55.65 67 27 DOC: 1st, 22nd, CIS:1st,

22nd

Cisplatin (80 mg/m2) & Vinorelbine (30 mg/m2)
5 SCC 20760 5824 71.95 90 47 VIN: 1st, 8th, 22nd, 29th,

CIS:1st, 22nd

6 SCC 41056 23416 42.97 63 14 VIN: 1st, 8th, 22nd, 29th,
43rd, CIS:1st, 22nd, 43rd

7 SCC 39776 15840 60.18 42 -1 VIN: 1st, 22nd, 29th, CIS:
1st, 22nd

8 SCC 133864 29816 77.73 47 5 VIN: 1st, 8th, 22nd, 29th,
CIS:1st, 22nd

9 SCC 123016 131160 -6.62 83 27 VIN: 1st, 8th, 29th, 36th,
CIS: 1st, 29th

10 ADC 45160 8544 81.08 69 27 VIN: 1st, 8th, 22nd, 29th,
CIS: 1st, 22nd

11 ADC 63136 20632 67.32 46 0 VIN: 1st, 8th, 26th, 33rd,
CIS:1st, 26th

12 ADC 99872 51752 48.18 60 18 VIN: 1stt, 8th, 22nd, 29th,
CIS:1st, 22nd

13 ADC 111744 29264 73.81 104 21 VIN: 1st, 8th, 36th, 43rd,
64th, 71st, CIS: 1st, 36th,
64th

*SCC: Squamous cell carcinoma, ADC: Adenocarcinoma
‡ Day 1 is treatment onset. Only the drug administration time points in the interimbetween the two CT acquisitions are recorded.Only these time points have

been considered for the quantification of treatment efficacy.

doi:10.1371/journal.pcbi.1005093.t002
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wall often occurs with little or no contrast between tumor tissue and outer-lung regions. There-
fore we decided to apply a semi-automatic algorithm to segment the lung tumors, consisting of
two steps:

1. Interactive definition of initial tumor surface mesh: We have developed a new technique for
a fast, flexible, and intuitive 3D definition of initial tumor surface meshes. Points on the
boundary of the tumor are marked by mouse clicks. After each mouse click a sphere is com-
puted which best approximates the user-defined points. All points are projected onto this
sphere, and the distances to the sphere are computed. These distances are then interpolated
using radial basis functions, resulting in an interpolating deformed sphere through the user-
defined points. If the user is not satisfied with the result, additional surface points can be
defined, and the interpolation by radial basis functions is started again. Since the boundary
points are defined completely manually, this definition of the initial surface mesh does not
suffer from the drawbacks of existing automatic segmentationmethods.

2. Model adaptation: To improve the accuracy of the result from the previous step, model
based segmentationmethods [18, 19] are applied. The deformed sphere from the previous
step is converted into a triangularmesh. The adaption is an iterative process optimizing the
influence of shape constraints, given by a triangularmesh, and features of the grayscale
image in each step. These constraints are modeled by an energy term, forcing the mesh to
adapt to characteristic features of the underlying image while restricting the deformation of
the mesh.

Exploitable patient data
The patient specific data that have been exploited by the model are the applied chemotherapeu-
tic scheme (drugs, administration instants) and the 3D image of the tumor as segmented from
CT imaging data (Table 2). The image processing of the initial DICOM files was implemented
as described above. Interactive segmentation was performed at soft tissue window in the pres-
ent study. The sets of imaging data refer to the primary tumor and were provided for two time
instances before, and during or after the completion of the systemic treatment (prior to sur-
gery). The reconstructed images contain information only about the external boundary of the
tumor, whereas information concerning any distinct internal metabolic region is absent.
Accordingly, the virtual tumor implemented is assumed homogeneous with a shape compliant
to the segmented tumor shape.

Mathematicalmodel of treatment response
A detailed description of the model’s formulation can be found in [11–12]. The model is built
on the concept of a discrete time and space stochastic cellular automaton. In particular, the
anatomical region of interest is represented by a regular grid of voxels called “geometrical cells”
(GCs). Each GC that belongs to the tumor region is occupied by a cluster of tumor cells that
are distributed in various states, representing cell types and phases. The rules that govern the
transition of tumor cells between these states, in each GC, are described by the cell kinetic
model as presented below. A second set of rules regulate the movement of tumor cells between
GCs, aiming at a spatial evolution conformal to the initial shape of the tumor [12].

Tumor propagation is modeled based on the ‘cancer stem cell’ hypothesis and is regulated
by the balance between active cell cycle, quiescence, differentiation and death. The tumor pop-
ulation comprises the following five cancer cell categories: a. cancer stem cells, which possess
an unlimitedmitotic capacity, b. cells of limited mitotic potential (LIMP), c. terminally
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differentiated cells (DIFF) that have lost the ability to divide, d. cells that have died through
apoptosis and e. cells that have died through necrosis. In addition, stem and LIMP cells can be
either cycling, distributed in the four phases of the cell cycle (G1, S, G2, M), or quiescent (G0).
The rules that describe the transition between the various categories/phases of the cancer cells
are depicted in Fig 1. On the top of the developmental hierarchy lie the stem cells that have the
ability of self-renewal and differentiation. Two types of stem cell division are allowed: symmet-
ric that gives rise to two stem cells, with probability Psym, and asymmetric that gives rise to one
stem and one LIMP cell, with probability 1-Psym. LIMP cells follow a type of aberrant differenti-
ation pathway. AfterNLIMP divisions, LIMP cells are assumed to generate the population of
the DIFF cells. Cycling cells (stem or LIMP) require a time equal to TC in order to progress
throughout the active cell cycle. Cellular dormancy is considered to be due to both nutrient
deprivation (hypoxia) and lack of growth-promoting stimuli. Proliferating cells found under
either one of the aforementioned conditions are assumed to withdraw from the active cycle
into a common G0 state upon completion of mitosis, with a mean probability of Psleep. Under
conditions of insufficient nutrient supply and oxygenation, quiescent cells can survive for a
limited period. Subsequently, they die through necrosis unless the local metabolic conditions
stimulate the entry into the cell cycle. A mean residence time of cells in G0 phase equal to
TG0 is considered. After its expiration cells reenter cell cycle with a mean probability PG0toG1.
Cycling and quiescent cells may die through spontaneous apoptosis, with rate RA. Differenti-
ated cells may die through apoptosis (rate RADiff) or necrosis (rate RNDiff). Apoptotic and
necrotic cells are assumed to be present in the tumor bulk for a time length TA and TN respec-
tively, before their final elimination.

In our modelling approach, chemotherapy is assumed to affect only cancer cells with prolif-
erative capacity, either cycling or quiescent, depending on the cell cycle specificity of the drug.
The activation of apoptosis is regarded as the major mode of action of chemotherapeutic drugs
against cancer cells at clinical relevant doses. Chemotherapy-induced apoptosis is implemented
through the parameter ‘cell kill rate’ (CKR) that expresses the fraction of cancer cells that sus-
tain lethal damage by the drug(s) and are destined to die. These cells enter a rudimentary cell
cycle before the triggering of the apoptotic pathway. The exact time point within the cell cycle
when lethally hit cells enter the apoptotic compartment depends on the mechanism of action
of the specific drug.We assume that all lethal cell lesions induced by the drug take place instan-
taneously at the time of drug administration, and disregard any time delays due to the method
of administration or the specific pharmacokinetics and pharmacodynamics of the drug. The
consideration of such delays would postpone the permanent removal of lethally hit cells from
several hours to a few days (S1 Text). Given that the time interval between the last drug admin-
istration and the final tumor volumetric measurement is comparatively long enough (Table 2),
the bulk of lethally hit cells will have been removed and will not contribute to the final volume
of the simulated tumor, in all case scenarios (S1 Text), despite the aforementioned delays. Like-
wise, since the dosage interval is comparatively long, no drug accumulation is anticipated
between consecutive administrations of the drugs (S1 Text). Therefore, the consideration of
such delays is not expected to alter the results of the present study with respect to the estimated
CKR.

Lethal lesions are assumed to occur in all cell cycle phases, since the drug absorption or the
damage may take place in other phases too, besides the specific phase during which the final
toxicity is manifested. Indeed, for all of the drugs considered in the present study, their ability
to kill cells in all proliferative phases has been reported in literature (Table 3). As a first simpli-
fied approximation, for cell cycle specific drugs (gemcitabine, vinorelbine and docetaxel), the
same value of cell kill rate is assumed for all proliferative phases, corresponding to a mean frac-
tion of cells that will be lethally hit by the drug over the entire cell cycle. For cell cycle non-
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Fig 1. Generic cell kineticmodel for tumor response to chemotherapy. (A) Transition diagram between the five main cancer cell categories.
(B) Cell cycle of cancer cells with proliferative capacity, either stem or LIMP (C) Cell cycle of cancer cells with proliferative capacity that are lethally
hit by chemotherapy. Cells enter a rudimentary cell cycle that leads to apoptotic death from the phase dictated by the mechanism of action of the
chemotherapeutic drug. In the schema, lethally hit cells are assumed to die at the end of S phase. Parameter symbols are explained in Table 4.
Abbreviations: LIMP: LImitedMitotic Potential tumor cell (also called committed or restrictedprogenitor cell), DIFF: terminallyDIFFerentiated tumor
cell, G1: Gap 1 cell cycle phase, S: DNA synthesis phase, G2: Gap 2 phase. M: Mitosis phase, G0: dormant, resting phase.

doi:10.1371/journal.pcbi.1005093.g001
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Table 3. Mainmechanism of actionof cisplatin,gemcitabine, vinorelbineand docetaxel.

Mechanism of action Modeling approach

Cisplatin The cytotoxic effect of cisplatin (cis-DDP) on cancer cells has primarily
been attributed to the formation of cisplatin-gDNA adducts (mainly l,2-d
(GpG) and l,2-d(ApG) intrastrand cross-links) [56–58]. In an attempt to
remove these adducts and restoreDNA lesions, the cells undergo a
transient S arrest and a more persistentG2/M arrest [59]. Failure of DNA
repair mechanisms, in case of extended damage, activates a number of
signal transduction pathways (e.g. p53 involved pathways, c-Abl- and
p73-dependent cascade, mitogen-activated protein kinase pathways,
protein kinase C pathway, regulation of Bcl-2 family proteins, calcium
signaling, death receptor signaling,mitochondrial pathways and
caspaces cascade) that lead to programmed cell death or apoptosis
[56–58, 60–62]. Accumulating evidence, derived from various cancer
cell lines including NSCLC, has linked the initiation of apoptotic pathway
with the activity of mismatch repair proteins and the G2/M checkpoint
[56–58, 63]. Lethally damaged cells seem to stay trapped, but viable, at
G2/M phase for a few days and then proceed to death [63]; in addition,
entrance to mitosis and realization of a final aberrantmitosis prior to
death has been observed [64]. Even though, depending on dose,
cellular status or the molecular profile of the cell, nonapoptotic cell death
pathways, have been reportedas well (e.g. a defective apoptotic
program, necrosis [65] or mitotic catastrophe followed by necrosis [66]),
apoptosis is accepted to be the dominant cell death mechanism induced
by cisplatin [62]. cis-DDP is considered cell cycle nonspecific [67, 68].

Equally affects cycling (regardless of phase) and quiescent
tumor cells. Lethally-hit tumor cells enter the apoptotic pathway
at the end of G2 phase.

Gemcitabine Studies with a wide spectrumof cell lines [69–72] have evinced
apoptosis as the method of cell death induced by gemcitabine (dFdC).
Inside the cell, dFdC undergoes a series of phosphorylations resulting in
its active diphosphate (dFdC-DP) and triphosphate (dFdC-TP) forms.
dFdC-induced apoptosis is primarily related with the incorporation of the
triphosphate form into the DNA strand during replication, acting
competitively with the normalmucleoside deoxycytidine triphosphate-
dCTP [69, 72, 73]. The inhibition of chain elongation and the inability of
proofreading polymerases to recognize and remove the erroneous
nucleoside (mask chain termination), impair DNA synthesis and induce
apoptosis [72, 73]. The above effect is self-potentiated by the function of
dFdC-DP that inhibits ribonucleotide reductase, causing depletion of
dCTP pool, and, hence, favors both dFdC phosphorylation and
incorporation into DNA. Notably, in solid tumors, the cytotoxic effect of
dFdC is not limited in the S-phase cells and the drug kill cells in all
proliferative phases [71, 74]. Apoptosis is initiated several hours after
exposure [71]. Moreover, the drug causes a G0/G1 and S phase arrest
[71, 75]. dFdC is considered cell cycle specific [67, 68].

Affects only cycling tumor cells (regardless of phase). Lethally-hit
tumor cells enter the apoptotic pathway at the end of S phase.

Vinorelbine Vinorelbine, a member of the Vinca alkaloid class, is a microtubule-
targeting agent. Microtubules are polymers involved in the formation of
the mitotic spindle that pulls apart the sister chromatids during cell
division. At relatively low, but clinically relevant, concentrations,
vinorelbine can suppressmicrotubule dynamics (dynamic instability and
treadmilling,) [76–78], whereas at higher concentrations it can prevent
the polymerization of tubulin into microtubules, cause microtubule
depolymerizationor induce formation of tubulin paracrystals [76, 79]. In
all cases, the subsequent disruptionof mitotic splinde formation and
function and, thus, the inhibition of chromosomal segregation leads to a
prolonged arrest duringmitosis [77, 79–81], and, eventually, apoptosis
through the intrinsicmitochondrial apoptotic pathway [77, 78, 81, 82].
Even though vinorelbine is thought to act specifically during the M
phase, its ability to induce cell death in all cell cycle phases,
independently of mitotic arrest, has been demonstrated [83]. Vinorelbine
is considered cell cycle specific [67, 68].

Affects only cycling tumor cells (regardless of phase). Lethally-hit
tumor cells enter the apoptotic pathway at the end of M phase.

(Continued)
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specific drugs (cisplatin) the same value of cell kill rate is assumed for cell cycle and G0 phases.
When drugs are used in combination, their effects are considered additive, i.e. the total number
of cells that are lethally hit in each proliferative phase is determined by the sum of the cell kill
rates of the drugs. The additive action is applicable only for the proliferative phases (G1, S, G2,
M), since cisplatin is the only drug that acts out of the active cell cycle, i.e. during G0 phase.
Table 3 summarizes the actionmechanisms and the modeling approach for the drugs consid-
ered in the present study.

In order to study the effect of stem cell-resistance to chemotherapy, the model allows the
independent handling of stem and LIMP cell categories. More specifically, the resistance to
chemotherapy can be adjusted separately for stem or LIMP cell categories, through the cell kill
factor (CKF) parameter. In the current work we have assumed that the CKF of LIMP cells is
always equal to 1, i.e. the number of LIMP cells that are lethally hit by chemo is defined by
CKR solely. Furthermore, the cell cycle and the cell cycle phase durations can be defined sepa-
rately for the stem and the LIMP cells.

Table 4 presents the input parameters of the simulation model and their range of values
according to the conducted literature survey or based on logical assumptions supported by
basic science or clinical experience.

Sensitivity analysis
The effect of the proliferation kinetics of the tumor cells on the estimation of CKR has been
explored. Measures of the kinetics of cell proliferation are the relevant parameter space of the
model (Table 4) and the derived proliferation features of the simulated tumor, i.e. volume
growth rate and tumor cell population constitution. The methodologies applied are based on
the one-factor-at-a-time (OFAT) approach [20] and the Latin Hypercube Sampling/Partial
Rank Correlation Coefficient (LHS/PRCC) sensitivity analysis [20, 21].

OFAT approach. Plots by varying one input parameter, while keeping the others at a base-
line value, have been produced. The method has been applied for all model input parameters
(Table 4). The output measure considered has been the value of the cell kill rate of cisplatin,
CKRcis-DDP, plus a predefined constant value standing for the CKR of the second drug,CKRB, a

Table 3. (Continued)

Mechanism of action Modeling approach

Docetaxel Docetaxel is a second generation taxane. It binds to β- tubulin and,
similar to Vinca alkaloids, it impairsmicrotubule dynamics; however, it
does so by enhancingmicrotubulin assembly and, thus, by stabilizing
microtubules against depolymerization [67]. As a consequence, cell
cycle is arrested duringmitosis and the cell dies. Even though various
mechanisms of cell death in response to docetaxel have been reported
in literature, e.g. mitotic catastrophe, aberrantmitosis, treatment-induced
senescence, and lytic necrosis [84, 85], apoptosis is accepted to be the
predominant mode of cell death induced by docetaxel at clinically
relevant (relatively high) doses [86–88]. Two scenarios of taxane-
induced apoptosis have been described, either directly frommitosis,
after mitotic arrest, or following mitotic exit to G1 without division at a
tetraploid state (mitotic slippage) [85, 88–91]. The lethal effect of
docetaxel during interphase,maximal against S-phase cells and minimal
against G1 cells, implies that the drug can cause damage to structures
essential for the completion of division at various phases prior to mitosis
[92]. The apoptosis pathway induced by docetaxel seems to be related
to the phosphorylationand, hence, inactivation, of bcl-2 [93]. Docetaxel
is considered cell cycle specific [67, 68].

Affects only cycling tumor cells (regardless of phase). Lethally-hit
tumor cells enter the apoptotic pathway at the end of M phase.

doi:10.1371/journal.pcbi.1005093.t003
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sum that results in the target tumor volume reduction following chemotherapy treatment. The
CKRcis-DDP is determined using the optimization procedure described below.

The one-factor-at-a-time sensitivity measure (SM) utilized to quantitatively rank the
strength of the relationship between the output measure and the model parameters is the 10%
increase and decrease of inputs (±10%) [20]. Each input parameter is perturbedby 10% above
and below its considered baseline value and the corresponding percentage change in the calcu-
lated CKR is recorded. The rest of the model parameters are kept at their baseline values. It
should be noted that, for integer parameters, the rounding to the nearest integer may result to a
small deviation from the ±10% variation of the input. Furthermore, for input parameters with
considerably strong influence on output, for which the ±10% variation results in tumors
beyond the boundary of biological relevant behavior in terms of sustainability of growth, a
±5%metric has been considered. All percentage changes in the output are then expressed in
relation to ±1% variation of the input, by dividing with the percentage change of the input,

Table 4. Model Parameters Related to Tumor Free Growth and Therapy.

Parameter symbol Description Units Value range** References

CELL PHASE DURATIONS

TC[class*] Cell cycle duration hours 18–134 [94–103]

TG0[class*] G0 (dormantphase) duration i.e. time interval before a dormant cell re-enters
cell cycle or dies through necrosis

hours 90–1200 extension of [29]

TA[region
‡] Time needed for both apoptosis to be completed and its products to be

removed from the tumor
hours 1–25 [32–34]

TN[region
‡] Time needed for both necrosis to be completed and its products to be

removed from the tumor
hours 1–200 [35], estimation

CELL CATEGORY/PHASE TRANSITION RATES AND FRACTIONS¦

RA Apoptosis rate of living stem and LIMP cells, i.e. fraction of stem and LIMP
cells dying through apoptosis per hour

hours-1 0–0.001 estimation

RADiff Apoptosis rate of differentiated cells, i.e. fraction of differentiated cells dying
through apoptosis per hour

hours-1 0.0001–0.02 extension of [36–39]

RNDiff Necrosis rate of differentiated cells, i.e. fraction of differentiated cells dying
through necrosis per hour

hours-1 0–0.02 estimation

Psym[region
‡] Fraction of stem cells at mitosis that perform symmetric division - 0–0.4 estimation based on

[30, 31]

Psleep[region
‡] Fraction of stem and LIMP cells entering the G0 phase following mitosis - 0–1 -

PG0toG1[class*]
[region‡]

Fraction of dormant (stem and LIMP) cells that re-enter cell cycle - 0–1 -

MISCELLANEOUSPARAMETERS

NLIMP Number of mitoses performedby LIMP cells before becoming differentiated - 8–24 estimation

CHEMOTHERAPY PARAMETERS

T chemo, adm [n]
[drug†]

Time point of nth drug administration, n = 1,. . . days - clinical data

CKR[drug†] Cell kill rate i.e. fraction of stem and LIMP cells lethally hit by the drug at each
administration

- 0–1 -

CKF[class*] Cell kill factor i.e. factor adapting cell kill rate to stem or LIMP cells - 0–1 for stem, 1 for
LIMP

-

*Defined separately for stem and LIMP cells (class: {stem, LIMP})
‡Defined separately for proliferating and necrotic region (region: {proliferating, necrotic})
†Defined separately for each drug administered
¦The parameters included under this termexpress fractions and, therefore, can theoretically take any value between zero and unity. Whenever possible this

range has been narrowed based on logical assumptions supportedby literature or basic science.

**Used for LHS/PRCC sensitivity analysis

doi:10.1371/journal.pcbi.1005093.t004
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according to the formulas:

SMþ% ¼
ðCKRbaseþ% � CKRbaseÞ=CKRbase
ðpi;baseþ% � pi;baseÞ=pi;base

ð1Þ

SM� % ¼
ðCKRbase� % � CKRbaseÞ=CKRbase
ðpi;base� % � pi;baseÞ=pi;base

ð2Þ

where pi,base: the baseline value of the i-th parameter, pi,base+(-)%: the value of the i-th parameter
10% or 5% above (or below) its baseline value, CKRbase: the calculated CKR with all parameters
set at their baseline values, CKRbase+(-)%: the calculated CKR with the i-th parameter, only, set
at 10% or 5% above (or below) its baseline value. A positive correlation between an input
parameter and the CKR is translated to a positive SM+% and a negative SM-%. On the other
hand, a negative correlation between an input parameter and the CKR is translated to a nega-
tive SM+% and a positive SM-%. The highest the absolute value of SM, the strongest the correla-
tion and, hence, the influence of the input parameter on the calculated CKR. This type of
sensitivity analysis is considered as ‘local’, since it addresses sensitivity around individual val-
ues of model parameters.

It should be commented that due to the discrete,monte carlo nature of the simulation
model, a small deviation in the output is observed,between runs with the same input parameter
values. The choice of the ±10%metric (compared to the ±5%) ensures that the output change
is higher than the aforementioned variation even for model parameters with a small effect on
output.

An intrinsic shortcoming of the aforementioned sensitivity measure is that it does not con-
sider the impact of parameter variability on the output. To overcome this, the sensitivity mea-
sure of each input parameter is weighted by a normalizedmeasure of its variability. The
measure of variability chosen here is the value range of the input parameter divided by its
mean [22]. Due to absence of relevant data, the mean is calculated assuming a uniform distri-
bution. A mean sensitivity score (SC) is derived by weighting the average of the sensitivity mea-
sures SM+% and SM-%, according to the formula:

SC ¼
SMþ% � SM� %

2

�
�
�
�

�
�
�
��

pi;max � pi;min

pi;mean

 !

ð3Þ

where pi,max, pi,min, and pi,mean: the maximum, minimum and mean value of the i-th parameter
respectively.

LHS/PRCC analysis. OFAT is the most straightforward approach to determine parameter
sensitivity, understand the relation between input and output and identify the more or less crit-
ical parameters of a model. However, this approach does not take into account the presence of
correlations between inputs and cannot catch the effect on output of simultaneously varying
more than one parameter. Sampling-based approaches are considered to be more appropriate
for the study of models with a multidimensional input space. The Latin Hypercube Sampling
method is considered to be an efficient tool used to generate a set of well distributed combina-
tions of model parameter values [21]. It provides the best compromise between efficient cover-
age of input parameter space and realistic assessment of the combined effect of inputs on
output, with a relatively small sample size.

LHS is run to produceN combinations of parameter values. Due to unavailability of relevant
data, a uniform distribution over the value range considered, for all of the model parameters,
has been assumed. However, in the absence of constraint conditions between the input
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parameters, a considerable large subset of theN combinations, gives biological non-relevant
tumors that cannot sustain growth and shrink on their own. These combinations are excluded
from the subsequent analysis. A further refinement then takes place by considering only those
parameter combinations that give tumors with proliferation kinetics within the value range as
defined by the literature survey. For this subset of N’ combinations the CKR of cis-DDP that
results in the desired volume reduction is determined using the optimization procedure
describedbelow. For each model parameter, a scatter plot displaying theN’ values for the
parameter under examination against CKR is produced. A uniform distribution of dots sug-
gests no correlation between input and output. On the other hand, the closer the dots cluster to
form shapes with negative or positive slopes, the stronger the relation between input parameter
and output measure.

A partial rank correlation analysis of the Latin hypercube sample is subsequently performed
in order to quantify and rank the correlation between inputs and output. A rank transforma-
tion has been applied to account for the effect of nonlinear but monotonic relationships
between the inputs and output. Specifically, the values of inputs/output data are replaced by
their ranks and the partial correlation coefficients, i.e. the correlation coefficients between each
input and the output after controlling for the effect of the remaining inputs, are calculated on
the rank transformed data. P< .01 has been assumed as statistically significant. The partial
rank correlation analysis is considered a sampling-based global sensitivity method [21],
because it takes into consideration the whole value distribution of model parameters via a gen-
erated sample.

The analysis has been performed using the Matlab toolbox. The built-in function ‘lhsdesign’
has been chosen to produce a latin hypercube sample, with values ranging between 0 and 1.
For input parameters bounded in any range [ap, bp] other than [0, 1], the ‘lhsdesign’ output has
been rescaled by applying the formula:

ap þ ðbp � apÞ � xp ð4Þ

where xp the vector of theN returned values for parameter p. For integer input parameters the
rescaled values are rounded to the nearest integer. The rank transformation and the estimation
of the partial correlation coefficients have been implemented by using the built-in functions
‘tiedrank’ and ‘partialcorr’ respectively.

Definition of baseline parameter values used in OFAT sensitivity
analysis
The aim is to define a set of model parameter values that corresponds to a cancer representative
proliferation pattern in terms of volume doubling time, Td, growth fraction (GF), apoptotic cell
fraction (AF), expressed as the apoptotic cell population out of total cells, necrotic cell fraction
(NF), expressed as the necrotic cell population out of total cells, and stem cell fraction (SF),
expressed as the stem cell population out of living cells. We consider the fraction of newborn
cells that enter the G0 phase, Psleep, the necrosis rate of differentiated cells, RNDiff, the duration
of apoptosis, TA, the duration of necrosis, TN, and the number of mitotic divisions performed
by LIMP cells before becoming terminally differentiated,NLIMP, as the dependent parameters
of this multi-constrained problem. The independent variables comprise the rest of the model
parameters that regulate tumor proliferation pattern, i.e. cell cycle time, TC, the duration of
G0 phase, TG0, the apoptosis rate of stem and LIMP cells, RA, the apoptosis rate of differenti-
ated cells, RADiff, and the symmetric division fraction,Psym, and the above mentioned tumor
proliferation features: GF, Td, AF, NF and SF. Initially, biologically representative values, deter-
mined based on the cancer-specific cell kinetics and logical assumptions, are assigned to the
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independent input parameters TC, TG0, RA, RADiff and Psym. Following, the Psleep value is com-
puted so as to achieve the given Td:

Psleep ¼
1 � eðaþRAÞTc=ð1þ PsymÞ

1 �
PG0toG1

TG0
= aþ RA þ 1

TG0

� � ð5Þ

(derived from Eq (7) in [12])
RNDiff, is calculated in order to achieve the given GF:

RNDiff ¼
1 � Psym

1

A
1

GF � 1
� �

� B
� a � RADiff ð6Þ

(derived from Eq (47) in S2 Text)
where

A ¼
aþ RA

eðaþRAÞTC � 1
ð7Þ

B ¼
1þ Psym

aþ RA þ 1

TG0

Psleep ð8Þ

By taking into account that the ratio of apoptotic,NA, to proliferating,Np, population is
given by:

NA
NP
¼
AF
GF

1

Living=Total
¼
AF
GF

1

1 � AF � NF
ð9Þ

ΤA, can been calculated based on Eq (13) in S2 Text:

TA ¼
RA
NA
NP

þ
RA
NA
NP

ð1þ PsymÞPsleep
A

aþ RA þ 1

TG0

þ
RADiff
NA
NP

ð1 � PsymÞ
A

aþ RADiff þ RNDiff
� a

 !� 1

ð10Þ

Finally, ΤN has been determined for the given NF based on Eq (17) in S2 Text:

NN
NP
¼
NF
GF

1

1 � AF � NF
ð11Þ

TN ¼
ð1� PG0toG1Þ

TG0

NN
NP

ð1þ PsymÞPsleep
A

aþ RA þ 1

TG0

þ
RNDiff
NN
NP

ð1 � PsymÞ
A

aþ RADiff þ RNDiff
� a

 !� 1

ð12Þ

The value of NLIMP can be estimated based on Eq (46) in S2 Text:

XNLIMP � 1

n¼0

2n

ð1þ PsymÞ
nþ1
¼

1

ð1 � PsymÞ
NS
NL

ð13Þ
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The ratio of stem to LIMP cells in Eq (13) can be derived based on SF, GF and ratio of dor-
mant to proliferating cells given by Eq (5) in S2 Text:

NS
NL
¼

SF

1þ
NG0

NP

� �
GF � SF

ð14Þ

NS
NL
¼

SF

1þ ð1þ PsymÞPsleep
aþRA

aþRAþ 1
TG0

� � 1

ðeðaþRAÞTc � 1Þ

0

@

1

AGF � SF

ð15Þ

The above methodology is applied for each NSCLC subtype considered, i.e. ADC and SCC.
The derived two value sets of model parameters consist the two sets of baseline values used in
the OFAT sensitivity analysis.

Generation of a NSCLC subtype-specific LHS sample of parameter
values used for CKR estimation
The Latin Hypercube Sampling method is used to generate a plausible collection of model
parameter values that corresponds to virtual tumors having a common proliferation pattern in
terms of Td, GF, AF and NF. We consider the fraction of newborn cells that enter the G0 phase,
Psleep, the necrosis rate of differentiated cells,RNDiff, the duration of apoptosis, TA, and the dura-
tion of necrosis, TN, as the dependent parameters of this multi-constrained problem. The
‘lhsdesign’ function is run to produceN combinations of the independent model parameters:
TC, TG0, RA, RADiff, PG0toG1, Psym,NLIMP, and CKF of stem cells. LHS output is modified in the
case of parameters with value range other than [0, 1] and parameters of integer type, as previ-
ously described. For each combination of parameter values, parameters Psleep, RNDiff, TA and
TN, are derived from Eqs (5), (6), (10) and (12) as describedpreviously, so as to achieve the
given Td, GF, AF and NF. The above methodology is applied for each NSCLC subtype consid-
ered, i.e. ADC and SCC. The derived two LHS samples of parameter values are used for the
estimation of the cell killing ability of the various cisplatin-based doublet regimens.

CKR estimation
The cell kill rate of cisplatin, CKRcis-DDP, is adapted to the observed, in the case of clinical
tumors, or assumed, in the case of sensitivity analysis, tumor size reduction. The adaptation of
CKRcis-DDP has been performed automatically using an optimization procedure (the built-in
function ‘fzero’ of Matlab), that returns the value of the CKRcis-DDP for which the difference
between the observedor given volume reduction and the simulation outcome is zero. During
this optimization procedure the rest of the model parameters, including the CKR of the second
drug, are kept constant.

Results
The structure of the ‘Results’ section is as follows. In the first subsection, the adequacy of the
simulation model, in terms of a realistic representation of tumor dynamics, is presented. The
second subsection investigates the sensitivity of CKR estimation with respect to simulation
model parameters and various tumor proliferation features variations. The last subsections are
dedicated to the estimation of treatment efficacy in terms of CKR for the 13 clinical cases and
the early validation of the methodology. The proliferation features of NSCLC are described in
S3 Text based on the findings of the literate survey. These findings have guided the selection of
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model parameter values for the sensitivity analysis and the CKR estimation of the real clinical
cases.

Pattern of tumor growth and response to treatment
The model supports the division of tumor volume into regions of distinct metabolic activity
(i.e. necrotic, quiescent and proliferative). However, due to the lack of relevant info in the seg-
mented tumor images, only a single metabolic region is considered. This implies that all model
parameters affecting tumor cell kinetics have the same value throughout a tumor’s volume.
Furthermore, the kinetics of tumor cell proliferation (i.e. phase durations and transition rates
or fractions) are assumed constant throughout simulation, reflecting the mean values over the
simulation time window. Such an approximation is considered applicable for a relatively short
time interval compared to the tumor’s lifetime. Finally, the model aims at simulating fully
developed, clinical tumors, well beyond their initiation phase. For such a biological system it is
rational to assume that a state of population equilibrium and of balanced growth has been
achieved. The methodologydeveloped for the initialization of tumor cell populations [11–12]
ensures conditions of balanced growth at the beginning of the simulation.

A tumor characterized by space and time invariant growth kinetics parameters and popula-
tion equilibriumwould demonstrate a grossly exponential growth pattern [12]. Even though it
is generally accepted [23] that tumors grow in a Gompertzianmanner during their lifetime, i.e.
growth progressively slows down as the tumor enlarges, tumors that follow exponential law
have been reported frequently in literature. Indeed, several lung cancer cases reported in litera-
ture exhibit fairly constant growth rates on the logarithmic scale [24–27] over prolonged peri-
ods of time, ranging frommonths to years. It has been argued that these tumors were probably
still in the exponential phase of Gompertzian curve at the time of diagnosis and clinical surveil-
lance [26].

Fig 2A and 2B show the simulated time course of a macroscopically homogeneous tumor
under free growth or treatment conditions respectively. In the case of treatment a typical
scheme for NSCLC has been assumed that is based on the combination of two chemotherapy
drugs i.e. cisplatin and gemcitabine. The doublet regimen is administered three times as a
three-weeks cycle. On the first day of treatment cycle the patient is given both gemcitabine and
cisplatin. On the same day of the following week (day eight) only gemcitabine is administered.
Qualitatively a fairly expected and reasonable tumor dynamics behavior can be easily noticed.
An exponential pattern of growth in the absence of treatment and tumor regression followed
by repopulation after each chemotherapeutic session in the case of treatment are successfully
demonstrated.

Effect of cellular proliferation kinetics on CKR evaluation: OFAT analysis
results
Due to the lack of clinical data related to the presence of internal regions of distinct metabolic
activity (necrotic, quiescent, proliferating), the analysis has focused on macroscopically homo-
geneous tumors, in the sense that all model parameters affecting tumor cell kinetics are spa-
tially invariant throughout tumor volume. Moreover, the tumor is assumed to have a spherical
shape of 925 mm3 initial volume (approximately 12mm initial diameter). A typical scheme has
been considered that is based on the combination of two chemotherapy drugs i.e. cisplatin and
gemcitabine. The doublet regimen is administered three times as a three-week cycle. On the
first day of treatment cycle the patient is given both gemcitabine and cisplatin. On the same
day of the following week (day eight) only gemcitabine is administered. The virtual tumor is
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allowed to grow for one week prior to treatment. A 72% treatment-induced shrinkage (final
tumor equal to 258 mm3) is assumed on simulation day 49.

ADC and SCC baseline values. For the OFAT analysis two sets of baseline values have
been specified, each one corresponding to a representative ADC and a representative SCC
growth pattern (Table 5). The value sets have been obtained by adapting the model parameters
to mean values of GF, Td, and fraction of stem, apoptotic and necrotic cells derived from litera-
ture (seeMaterial and Methods). More specifically, the following assumptions/constraints
were imposed:

1. A Td equal to 225d for ADC and 109d for SCC corresponding to the average of median val-
ues reported in the reviewed literature for the two subtypes (Table A in S3 Text).

2. A GF equal to 0.18 for ADC and 0.36 for SCC corresponding to the average of median val-
ues reported in the reviewed literature for the two subtypes (Table B in S3 Text).

3. A cell cycle time within the range of the values reported in the reviewed literature (Table C
in S3 Text).

4. A fraction of apoptotic cells (out of total cells) equal to 0.01 for both ADC and SCC corre-
sponding to the average of median values reported in the reviewed literature (Table D in S3
Text).

5. A fraction of necrotic cells (out of total cells) equal to 0.02 for ADC and 0.20 for SCC—
residing within the range of all values reported in the reviewed literature (Table E in S3
Text).

6. A fraction of stem cells (out of living cells) equal to 0.00005 for ADC and 0.0002 for SCC
corresponding approximately to the average of frequencies reported in [28], for highly per-
missive xenotransplantation conditions (Table F in S3 Text).

For the derivation of ADC and SCC baseline values, the same kinetics have been assumed
for both stem and LIMP cell categories.

Fig 2. Simulated time course of selectedcancer cell populations. (A) Various tumor cell populations as a function of time in the case of
free tumor growth. A homogeneous spherical tumor of 10mmdiameter is considered. The values of code input parameters that regulate
tumor growth kinetics are given in Table 5 (Squamous Cell Carcinoma—SCC representative case). (B) Various tumor cell populations as a
function of time in the case of treatment response. A homogeneous spherical tumor of 10mmdiameter is considered. A cell cycle specific
(gemcitabine)and a cell cycle non-specific (cisplatin) drug are administeredas a three-week cycle. Gemcitabine is given on days 7, 14, 28,
35, 49, 56. Cisplatin is administered on days 7, 28 and 49. After each chemotherapeutic session a drop in the various tumor cell populations
is observed, followed by tumor repopulation. The values of code input parameters are given in Table 5 (Squamous Cell Carcinoma—SCC
representative case). Abbreviations: DIFF: terminallyDIFFerentiated tumor cell, G0: dormant, resting phase.

doi:10.1371/journal.pcbi.1005093.g002
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Cell cycle. As the cell cycle time of stem cells, TC,stem, increases, the estimated CKR
decreases (Fig 3A). The magnitude of the effect is pronounced for short cell cycle times and
depends on the values assigned to the rest of the models parameters. TC,stem is related to the
tumor growth rate [12]. Long cell cycle times indicate a slow population regrowth following
chemotherapy administrations and, hence, require lower CKRs to achieve the target reduction
in tumor size. It is noted that for the ADC representative case, values of TC,stem above 80h are
biological non-relevant as they result in a negative growth rate, namely, the tumor shrinks over
time by itself. Similarly, when the cell cycle time of LIMP cells TC,LIMP, increases the estimated
CKR decreases (Fig 3B). However, the parameter has no effect on the tumor growth rate (S1
Fig). Instead, increasing TC,LIMP results in a notable increase in the GF (S2 Fig). As chemother-
apy directly targets the cancer cells with proliferative capacity, a higher GF implies a higher
amount of treatment-related cell losses. Therefore, a lower CKR is needed to achieve the target
tumor shrinkage. For prolonged durations, the effect of TC,LIMP is negligible. The combined
effect when varying simultaneously the cell cycle time of both stem and LIMP cells is depicted
in Fig 3C. Due to the analogous effect of TC,stem and TC,LIMP a similar overall pattern is
observedof increased, however, magnitude for short cell cycle times.

The increase of dormant phase duration of stem cells, TG0,stem, leads to a decrease in the esti-
mated CKR (Fig 3D), since higher values of the parameter are associated with lower growth

Table 5. BaselineValues of Model Parameters Used in OFAT Sensitivity Analysis.

ADC representative case SCC representative case

Model Parameter Values

TC (h) 42 60

TG0 (h) 382 242

TN (h) 23 79

TA (h) 4 7

NLIMP 18 22

RA (h
-1) 0.0003 0.0001

RADiff (h
-1) 0.008 0.017

RNDiff (h
-1) 0.0009 0.01

PG0toG1 0.5 0.1

Psleep 0.265733 0.27960

Psym 0.2 0.37

CKF of stem cells 0.5 0.5

CKRdFdC 0.2 0.2

Resultingproliferation kinetics of the simulated tumor*

Doubling Time (d) 226.3 108.7d

Fraction of stem cells‡ 0.000061 0.00021

Fraction of LIMP cells‡ 0.62 0.86

Growth fraction‡ 0.18 0.36

Fraction of dormant cells ‡ 0.44 0.50

Fraction of DIFF cells‡ 0.38 0.14

Fraction of apoptotic cells† 0.0093 0.012

Fraction of necrotic cells† 0.020 0.20

*Fractions rounded to two significant figures
‡out of living cells
†out of total cells

doi:10.1371/journal.pcbi.1005093.t005
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Fig 3. Results of theOne-Factor-At-a-Time (OFAT) studies. The effect of model input parameters on the estimation of sum of cisplatin
and gemcitabine cell kill rates is studied by varying one input parameter at a time, while keeping the others at a baseline value. Two sets
of baseline values have been considered (Table 5), corresponding to a SCC and an ADC representative case. Themodel parameters
investigated are: (A) duration of cell cycle of stem cells, (B) duration of cell cycle of LIMP cells, (C) duration of cell cycle, when considered
equal for both stem and LIMP cells, (D) residence time of stem cells in G0 phase, (E) residence time of LIMP cells in G0 phase, (F)
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rates. The effect is significant for the value combination of the ADC representative case; how-
ever, it is negligible for the SCC case. It is noted that for the ADC representative case, values of
TG0,stem above 650h result in negative growth rates. In contrast, increase of the residence time
of LIMP cells in dormant phase, TG0,LIMP, leads to an increase in the estimated CKR (Fig 3E).
The parameter affects the population composition of the tumor. Long-lived dormant cells indi-
cate a higher proportion of G0 cells in tumor bulk at the expense of other populations includ-
ing actively proliferating cells. Moreover, in our modelling approach we assume that G0 cells
lethally hit by cisplatin need to re-enter cell cycle in order to die. However, for prolonged dura-
tions, few lethally hit G0 cells will eventually be removed during the simulation time.When
both TG0,stem and TG0,LIMP are varied simultaneously, the effect of TG0,stem prevails for the ADC
representative case and the effect of TG0,LIMP prevails for the SCC case (Fig 3F).

We observe a considerable increase in the estimated CKR when increasing the symmetric
division fraction of stem cells, Psym (Fig 3G). The parameter primarily regulates the rate of
tumor growth [12], with high values indicating fast growing tumors and rapid repopulation of
tumor cells during therapy. Therefore, a higher cytotoxic efficacy of the drug(s) is required to
achieve the target reduction in tumor size. It is noted that low values of the parameter result in
negative growth rates, whereas for high values the repopulation is so rapid that chemotherapy
cannot achieve the target tumor shrinkage even when the sum of CKRs is 1. It is worth noting
that a sum of CKRs equal to 1 does not imply that all cells with proliferative potential will die,
since stem cells are assumed chemo-resistant and only a fraction determined by the product
CKF�CKR will be lethally hit. Moreover, dormant cells are assumed to be affected only by cis-
platin and not by gemcitabine.

An increase in the fraction of newborn cells that enter a quiescent state followingmitosis,
Psleep, leads to a considerable decrease in the estimated CKR (Fig 3H). A high Psleep is associated
with slow cancer cell repopulation in between chemotherapy intervals, due to the small number
of newborn cells that begin a new cycle. Hence, a lower CKR is required to reduce tumor size.
In contrast to parameter Psym, high values of the parameter result in negative growth rates,
whereas for very low values, below 0.02, the target tumor shrinkage cannot be achieve due to
the rapid tumor regrowth.

High values of the fraction of stem G0 cells that re-enter cell cycle, PG0toG1,stem, result in
faster tumor repopulation in between chemotherapy intervals, as the number of dividing stem
cells becomes higher. Hence, the estimated CKRsum increases (Fig 3I). A less profound increase
in the CKRsum, with the increase of the fraction of LIMP G0 cells that re-enter cell cycle,
PG0toG1,LIMP, is observed (Fig 3I). This increase is insignificant in the case of ADC. The parame-
ter does not affect the rate of cancer cell repopulation, but rather, it has a moderate effect on
the proportion of cells with proliferative capacity. Higher values of PG0toG1,LIMP indicate fewer
cancer cells with proliferating capacity, therefore fewer cells will die following chemotherapy.

residence time of cells in a G0 phase, when considered equal for both stem and LIMP cells, (G) fraction of stem cells that undergo
symmetric division, (H) fraction of newborn cells that enter a quiescent state following mitosis, (I) fraction of stem cells that re-enter cell
cycle from a quiescent state, fraction of LIMP cells that re-enter cell cycle from a quiescent state, fraction of cells that re-enter cell cycle
from a quiescent state, the latter considered equal for both stem and LIMP cells, (J) number of mitoses performed by LIMP cells before
becoming terminally differentiated, (K) number of stem and LIMP cells that enter the apoptotic pathway per hour, (L) number of DIFF cells
that enter the necrotic pathway per hour, (M) number of DIFF cells that enter the apoptotic pathway per hour, (N) time between the onset
of apoptosis and the removal of the apoptotic bodies, (O) time between the onset of necrosis and the removal of its products, (P)
resistance of stem cells to chemotherapy, expressed as the ratio of the stem cell kill rate to the estimated drug cell kill rate and (R)
assumed cell kill rate of gemcitabine. In (Q) the effect of the assumed cell kill rate of gemcitabine on the estimation of cisplatin’s cell kill
rate is depicted. Abbreviations: ADC: Adenocarcinoma, SCC: Squamous cell carcinoma, cis-DDP: cisplatin, dFdC: gemcitabine, LIMP:
LImitedMitotic Potential tumor cell (also called committed or restrictedprogenitor cell), DIFF: terminallyDIFFerentiated tumor cell. G0:
dormant, resting phase.

doi:10.1371/journal.pcbi.1005093.g003
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When both PG0toG1,stem and PG0toG1,LIMP are varied simultaneously, the effect of PG0toG1,stem pre-
vails (Fig 3I).

The number of mitoses between stem cells and terminally differentiated cells,NLIMP, regu-
lates the relative populations of stem and LIMP cells [12]. The decrease of NLIMP leads to an
increase in the percentage of stem cells. When therapy is considered to equally affect stem
and LIMP cells, the parameter has no effect on CKR estimation (S3 Fig). However, when stem
cells are assumedmore resistant than LIMP cells, low values of NLIMP require higher CKRs to
achieve the target reduction in tumor size (Fig 3J). For very low numbers of mitoses, e.g. 1 or 2
(corresponding to more than 22% and 40% stem cells out of living cells for ADC and SCC rep-
resentative cases, respectively), the target treatment-induced reduction in tumor size cannot be
achieved for the value of CSC resistance considered.

Cell loss. Apoptosis rate, RA, has been considered the same for both stem and LIMP cells.
As RA increases, a decrease in the estimated CKR is observed (Fig 3K). By increasing RA, fewer
cells reach mitosis and divide, thereby resulting in a slower tumor regrowth. There exists an
upper limit on the value of RA, above which tumor growth cannot be sustained.

For the parameter value combinations of both ADC and SCC representative cases, the CKR
estimate is not sensitive to the necrosis rate of terminally differentiated cells, RNDiff (Fig 3L).
Similarly, the effect of spontaneous apoptosis rate of terminally differentiated cells on CKR
estimation is negligible for the SCC case and the corresponding value combination of model
parameters (Fig 3M). However, a different behavior is observed for the ADC case. For values of
RADiff close to zero, increase in the parameter value results in a sharp drop in the estimated
CKR, whereas, for higher values, variation of the parameter has no effect. Low values of RADiff
are associated with long-lived differentiated cells, thereby resulting in a high proportion of the
population in the tumor bulk. Notably, when RADiff is close to 0, the proportion of differenti-
ated cells can be as high as 80%. In the present study, chemotherapy is assumed to act by
directly killing only tumor cells with proliferative potential. When the lifespan of the differenti-
ated cell category is long, the effect of therapy on differentiated cells appears with considerable
delay and their population declines at a lower extend during the simulation period.On the
other hand, when the lifespan is small enough compared to the observation period, the effect
of the above parameter on therapeutic outcome is negligible. The total absence of output varia-
tion for values of RADiff close to 0 in the case of SCC is caused by the high baseline value of
RNDiff (= 0.01h-1). Therefore, even when RADiff becomes 0, the overall elimination rate of differ-
entiated cells remains high (corresponds to an overall lifespan of 100h).

Apoptosis duration seems to have no effect on the estimation of the CKRs of the drugs (Fig
3N), due to the rapid nature of the mechanism, and, consequently, the very low proportion of
the apoptotic cells/debris in the tumor.

Increase in necrosis duration results in an increase in the estimated sum of CKRs (Fig 3O).
However, the effect is significant only for prolonged durations of the order of several days,
which are associated with slow elimination rates and high proportions of necrotic cells. On the
contrary, for tumors characterized by relatively short necrosis duration and, consequently, low
proportion of necrotic cells, TN has a trivial effect in the estimation of CKRs.

Chemo-resistanceof stem cells. Due to the very low frequency of stem cells considered in
the present study, the resistance of stem cells seems to have a negligible effect, at least, on the
short term treatment-induced reduction in tumor size and, subsequently, the CKR estimation,
for both ADC and SCC representative cases (Fig 3P).

Cell killing efficacyof dFdC. We studied the effect of the CKR of gemcitabine, CKRdFdC,
on both the estimated CKR of cisplatin, CKRcis-DDP (Fig 3Q) and the sum of cell kill rates,
CKRsum (Fig 3R). As anticipated, an increase in the cytotoxic efficacy of gemcitabine results in
a decrease in the CKRcis-DDP. We can observe that the plot intercepts the axis of CKRdFdC at
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different points for ADC and SCC representative cases (Fig 3Q). In our modelling approach
gemcitabine can cause lethal damage only to actively cycling cells and not to dormant cells.
When only gemcitabine is administered (CKRcis-DDP = 0), a higher CKR is required when GF is
low, i.e. for the ADC representative case. Interestingly, the CKRsum increases with the increase
of CKRdFdC for the ADC case, whereas the opposite behavior is observed for the SCC case.

OFAT sensitivitymeasures. In addition to the qualitative study based on the OFAT plots,
a quantitative sorting of the sensitivity of the model parameters is attempted in this paragraph.
The results of the local sensitivity analysis, examining one parameter at a time, are presented in
Fig 4. The percentage change in the estimated sum of CKRs, resulting from a ±1% change in
each of the model parameters around its baseline value for the ADC and SCC representative
cases are depicted in Fig 4A. We observe that the percentage change in the output is asymmet-
ric for changes above and below the baseline value of the parameters. The local sensitivity
highly depends on both the baseline value of the parameter under investigation and the value
combination of the remaining model parameters. However, for all cases considered, the analy-
sis shows that CKR estimation is most sensitive to the fraction of stem cells that perform sym-
metric divisions, Psym, and the fraction of newborn cells that withdraw from the active cycle to
a dormant phase, Psleep. Variation in the aforementioned parameters may cause substantial
changes in the estimated CKRsum by a factor of 1 to 3, with the SCC representative case exhibit-
ing a higher sensitivity. The remaining model parameters cause a variation in the CKRsum that
is always lower than the percentage variation of the input. More specifically, the model is rela-
tively more sensitive to the fraction of stem G0 cells that re-enter cell cycle, PG0toG1,stem, with
sensitivities ~0.8% and ~0.3% for the ADC and SCC cases, respectively. The 1% variation of
the cell cycle time of stem, TC,stem, or LIMP, TC,LIMP, cells causes a moderate variation in the
estimated CKRsum, in the range ~0.1%—~0.2%. The effect is more prevailing when both
parameters are varied at once. For the ADC case the estimation of CKRsum is more sensitive to
TC,LIMP, whereas quite the opposite stands for the SCC case. The estimation of CKRsum is fairly
sensitive to the number of mitoses between stem and terminally differentiated cells,NLIMP,
with sensitivities not exceeding ~0.17%. A low sensitivity is observed for the apoptosis rate of
stem and LIMP cells, RA, approximately 0.17% and 0.07% for the ADC and the SCC cases,
respectively. The model also exhibits a low sensitivity to the considered cytotoxicity of the sec-
ond drug,CKRdFdC, with sensitivities of ~0.07% and ~0.13% per 1% variation of the parameter.
The lower sensitivity is observed for ADC case. The model is relatively insensitive to the resi-
dence time of stem, TG0,stem, or LIMP cells, TG0,LIMP, in dormant phase with sensitivities of the
order of ~0.1%. The model seems rather robust to the remaining model parameters, for both
ADC and SCC representative cases, with sensitivities in the range ~0.003% to ~0.04% per 1%
percentage change in the input.

A range sensitivity analysis has been realized (S4 Text) with the aim to evaluate the effect of
the non-linear relationships between the model parameters and the estimated sum of CKRs on
sensitivity. The method is a variation of the aforementioned local sensitivity measures. The
parameters are now allowed to vary over the anticipated value range, instead of a small pertur-
bation around their baseline values. Despite the non-linearity, the results of the local and the
range methods are pretty consistent (S4 Text).

The consideration of parameters variability is expected to be an improvement over the local
sensitivity measures. For example, a parameter with a high local sensitivity, but a narrow value
range, may eventually be less influential than initially indicated. Fig 4B presents the overall sensi-
tivity score for each parameter after taking into account parameters variability, for ADC and SCC
representative cases respectively. The sensitivity score shows, as before, the Psleep, Psym, PG0toG1,stem
and TC,LIMP to be the most influential parameters (with descending order). The analysis yields a
moderate sensitivity score for RA, indicating a higher rank than before. A relatively low sensitivity
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is still indicated for TC,stem, CKRdFdC and TG0,LIMP, whereas the model is rather insensitive to
TG0,stem, PG0toG1,LIMP,NLIMP and CKF. It should be noted that the sensitivity score ranks the
parameterNLIMP considerably lower than the sensitivity measure. Finally, the parameters TN,
RADiff, RNDiff and TA seem to have no effect on the estimation of the sum of CKRs, as before.

Fig 4. Results of the local sensitivityanalysis.Each input parameter has been varied by ±10%, with the
exception of Psym and Psleep that have been varied by ±5%. Following, the corresponding percentage change
in the estimated sum of cisplatin and gemcitabine cell kill rates is recorded. The rest of themodel parameters
are kept at their baseline value (Table 5). Two sets of baseline values have been considered (Table 5),
corresponding to a SquamousCell Carcinoma (SCC) and an Adenocarcinoma (ADC) representative case.
(A) Sensitivitymeasures for each input parameter defined as the% change in estimated sum of cell kill rates
per +1% or -1% change in the input parameter, for ADC and SCC cases respectively. (B) Overall sensitivity
score for each input parameter defined as the average of the sensitivitymeasures for ADC and SCC cases
respectively, weighted by a normalizedmeasure of input variability (the latter being the value range divided
by themean) (see Eq (3)). The value ranges considered are reported in S4 Text. Parameter symbols are
explained in Table 4.

doi:10.1371/journal.pcbi.1005093.g004
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Effect of cellular proliferation kinetics on CKR evaluation: LHS/PRCC
analysis results
The LHS/PRCCmethod has been chosen to investigate the effect of the model input parame-
ters as well as of selectedmacroscopical proliferation features of the tumor, i.e. volume growth
rate and tumor cell population constitution, on the estimation precision of CKRsum, by taking
into account the presence of correlations between the inputs.

Model parameters value ranges. The definition of appropriate value ranges for the input
parameters is determinant for the results of the present analysis. Table 4 lists the value ranges
considered. In our modelling approach hypoxic cells are assumed to be in a G0 state. The dura-
tion of G0 phase reflects the ‘average’ lifetime of cells found in G0 either due to hypoxia or due
to lack of growth signals.We assume that shortly lived G0 cells are primarily associated with
hypoxia. Based on literature, we consider approximately four days [29] to be the lower limit of
TG0, corresponding to a tumor with a high hypoxic fraction of G0 cells. However, TG0 of few
days is not consistent with tumors characterized by a low GF and a high fraction of quiescent
cells and thus relatively prolonged TG0 should be considered. For study purposes we take 50
days to be the upper extreme value for TG0 for both stem and LIMP cells.

The ability of CD133+ lung cancer cells, to reconstitute the parental population within only
a few doublings, indicates that asymmetric CSC divisions are favored over symmetric self-
renewals [30]. Moreover, in [31] the CSC symmetric division frequency in sphere cultures of
murine lung cancer cell lines was estimated below 0.2 (per day). The value range of Psym and
NLIMP has been defined based on the above observations as well as the constraint for a rare
CSC population (Table F in S3 Text). Assuming that the fraction of CSC in NSCLC cannot
exceed 0.001 and that stem cells tend to divide asymmetrically, we have varied Psym between 0
and 0.4 and NLIMP between 8 and 24. When NLIMP is lower than 8, the upper boundary for
CSC fraction is exceeded for all of the parameter value combinations tested (S4 Fig). Further-
more, high values of Psym, besides implying a tendency towards symmetric self-renewals, are
associatedwith high fractions of stem cells, and would require notably higher numbers of mito-
ses between stem cells and terminally differentiated cells,NLIMP, to be regarded.

Apoptosis, from initiation to phagocytic removal of apoptotic bodies, is a rapid process
completed within hours. Here, we have considered that apoptosis time, TA, ranges between 1
and 25 hours [32–34]. In contrast, the elimination of necrosis products is a time consuming
process [35]. A value range of necrosis time, TN, between 1 and 200 hours ensures that the per-
cent of necrosis, despite its considerably wide range, is kept below 30% in the majority of vir-
tual tumor implementations, in line with literature observations (Table E in S3 Text).

Taking into consideration that cancer cells have developedmechanisms to escape apoptosis,
the rate of spontaneous apoptosis of stem and LIMP cells, RA, has been allowed to vary between
0 and 0.001 per hour. It is noted that apoptosis rate of stem cells is one of the model parameters
that regulate tumor growth rate [12]. For a given set of parameter values, an upper limit exists,
that correspond to a balance between proliferation and apoptosis, above which tumor growth
cannot longer be sustained and growth rate becomes negative [12]. For the value range of RA
considered, value combinations of the rest of the model parameters that correspond to positive
growth rates always exist for all values of RA considered (see S5 Text).

Most normal epithelial cells of the lung are believed to have a lifespan of about four months;
however, estimates span from 8 days to more than 17 months, depending on cell type and loca-
tion [36–39]. The apoptosis rate of NSCLC terminally differentiated cells, RADiff, corresponds
to the reciprocal of their lifespan. Due to the lack of relevant data, as a first approximation, we
allow RADiff to take values between 0.0001 h-1–0.02h-1, a value range that also includes the life-
spans of the normal bronchial epithelium. Finally, for study purposes, we have allowed the rate
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at which terminally differentiated cells die due to inadequate oxygenation through necrosis,
RNDiff, to vary between 0 and 0.02 per hour. It is noted that based on the results of the OFAT
analysis (see below), the model is not sensitive to this parameter for values greater than the
upper limit considered.

The parameter CKRdFdC has been assumed to be equal to 0.2.
LHS scatterplots. LHS has been run to produce 8000 combinations of parameter values.

After excluding combinations that result in biologically non relevant tumors, i.e. negative
growth rates, or in tumors with NSCLC non relevant proliferation dynamics, i.e. Td below 26
days and/or stem cell fractions higher than 1‰ (based on SoA results), a subset of 554 combi-
nations has been finally considered for the subsequent analysis. For each of the 554 sets the
CKRcis-DDP, and therefore CKRsum, that results in the targeted volume reduction is estimated.
Furthermore, for each combination, the Td and the distribution of the total population in the
various cell types of the virtual tumor (denoted as tumor proliferation features) are recorded.
Scatter plots of CKRsum against the 554 values of each input parameter and tumor prolifera-
tion feature are then produced. Fig 5 displays the scatter plots for selected input parameters
and cell proliferation features. Based on a visual inspection of these scatter plots, the variables
that seem to have the strongest correlation with CKRsum are TC,LIMP, Psym, Psleep, Td, GF and
G0/living.

Partial rank correlation coefficients. PRCC analysis is suitable only when the outcome
measure is monotonically related to the input parameters. The OFAT plots (Fig 3) verify the
monotonic, and nonlinear, relationship between the CKRsum and the model parameters and
justify the eligibility of the method. The analysis attempts to assess the correlation between
each input parameter and the output measure (CKRsum), while removing the effect of the

Fig 5. Partial Rank CorrelationCoefficient (PRCC) scatterplots of indicativemodel parameters and tumor proliferation features.All
model parameters are varied simultaneously. The ordinate represents the sum of cisplatin and gemcitabine cell kill rates. The sample has a
size of N = 553. It originates from a Latin HypercubeSampling run of 8000 combinations of parameter values after excluding the ones with
negative growth rates, Td below 26 days and stem cell fractions higher than 1‰. The PRCC value and the corresponding p-value are
displayed in each plot. The scatterplotsare displayed for the following model parameters and proliferation features: (A) duration of cell cycle of
LIMP cells, (B) number of stem and LIMP cells that enter the apoptotic pathway per hour, (C) fraction of stem cells that undergo symmetric
division, (D) fraction of newborn cells that enter a quiescent state following mitosis, (E) proportionof living tumor cells that are actively
proliferating and (F) doubling time of tumor volume. Abbreviations: cis-DDP: cisplatin, dFdC: gemcitabine, LIMP: LImitedMitotic Potential
tumor cell (also called committedor restrictedprogenitor cell), G0: dormant, resting phase.

doi:10.1371/journal.pcbi.1005093.g005
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remaining input parameters. The calculated PRCC values between each input model parameter
and the estimated CKRsum are given in Table 6. Values of PRCC close to ±1 and low p-values
suggest a strong influence of the input parameter on output, whereas PRCC values close to 0 or
high p-values suggest no correlation. The negative sign indicates an inverse proportionality
between the input parameter and the outcome measure. For the parameter ranges considered,
the analysis shows that parameters Psym, TC,LIMP and RA have the highest impact (with
descending order) on the estimation of CKRsum, with a correlation coefficient that varies
between 0.57 and 0.46 (absolute value). A less strong correlation, with coefficients approxi-
mately between 0.38 and 0.35, is observed in the cases of (with descending order) PG0toG1 of
stem cells, TC of stem cells, Psleep and TG0 of LIMP cells. For the parameters TG0 of stem cells,
CKF of stem cells and NLIMP, the coefficients do not exceed 0.25 (absolute value) indicating a
relatively week correlation. The analysis did not reveal any correlation for the remaining input
parameters.

A second PRCC study has also been performed attempting to assess the correlation between
various tumor proliferation features and the output measure, while controlling for the effect of
the rest of the proliferation features considered. The proliferation features under investigation
are the Td, the fraction of stem cells (SF) out of living cells, the fraction of LIMP cells (LF) out
of living cells, the GF, the fraction of quiescent G0 cells (QF) out of living cells, the fraction of
necrotic cells (NF) out of total cells and the fraction of apoptotic cells (AF) out of total cells.
They all refer to the time at diagnosis prior treatment onset. They do not constitute input
model parameters but are modulated based on the values attributed to the model parameters.
The scatterplots of Fig 5 indicate a monotonic relationship between the above features and the
CKRsum. Based on Table 6 the most prominent cell proliferation feature for the estimation of
CKRsum is the Td, with a PRCC value of -0.8. A strong correlation is also observed in the case of
GF (PRCC value: -0.49). For SF, LF and NF, a week influence on CKR estimation is indicated,
whereas no correlation is observed for QF and AF.

Table 6. PRCC results.

1st analysis 2nd analysis

PRCC p-value PRCC p-value

TC,stem -0.362 4.30*10−185 SF 0.126 3.14*10−3

TC,LIMP -0.528 4.67*10−40 LF 0.129 2.56*10−3

TG0,stem -0.245 8.53*10−9 GF -0.490 2.33*10−34

TG0,LIMP 0.346 1.31*10−16 QF -0.0859 0.0446

TN 0.0606 0.164 AF 0.0182 0.672

TA -0.0212 0.613 NF 0.120 4.89*10−3

RA -0.464 3.92*10−30 Td -0.813 2.16*10−130

RADiff -0.064 0.138

RNDiff -0.0244 0.584

PG0toG1,stem 0.381 4.14*10−20

PG0toG1,LIMP 0.0633 0.142

Psym 0.568 2.63*10−47

Psleep -0.354 2.46*10−17

NLIMP -0.194 5.47*10−6

CKF -0.205 1.55*10−6

Values rounded to three significant figures

doi:10.1371/journal.pcbi.1005093.t006
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Additionally, we have examined the sensitivity of the ratios of stem cells to LIMP cells (SLF)
and stem cells to DIFF cells (SDF). These ratios are strongly correlated with the SF. Since the
PRCCmethodmay underestimate the sensitivity in the case of inputs with very high correla-
tions among them [40], two additional PRCC studies have been performed similar to the sec-
ond one, but with the ratios SLF and SDF considered in the place of SF, respectively (S1 Table).
A weak correlation with the estimated CKR is indicated, for both cases, and of the same magni-
tude as in the case of SF.

CKR estimates
The histology, treatment and response data of 13 lung cancer clinical cases have been retro-
spectively analyzed in order to evaluate the in vivo efficacy of three different cisplatin-based
doublet regimens: cisplatin plus gemcitabine, ciplatin plus docetaxel and ciplatin plus vinorel-
bine. The tumor proliferation features used for the OFAT sensitivity analysis have been also
considered here. More specifically, for the clinical cases classified as ADC the assumptions are
as follows: (a) Td = 225d, (b) GF = 0.18, (c) AF = 0.01, (d) NF = 0.02 and (e) SF<0.001. For the
clinical cases classified as SCCwe have considered: (a) Td = 109d, (b) GF = 0.36, (c) AF = 0.01,
(d) NF = 0.20 and (e) SF<0.001. Furthermore, the ranges of the model parameters are the ones
considered for the LHS/PRCC analysis, identical for both ADC and SCC subtypes, and are
given in Table 4. LHS has been run to generate 2000 combinations of parameter values that ful-
fill the above requirements, as described in Material and Methods. After excluding combina-
tions that result in biologically non-relevant tumors, i.e. negative cell class transition rates Psleep
and RNDiff, or in tumors with non-relevant proliferation dynamics, i.e. Td beyond ±10% of the
above assumptions and/or stem cell fractions higher than 1‰ (based on SoA results) and/or
TA>24h and/or TN>200h and/or RNDiff>0.02h-1, a subset of N = 146 and 175 combinations
has been finally considered for the SCC and ADC cases respectively.

For each clinical case and for each of the N sets, the CKRcis-DDP, and therefore CKRsum, that
results in the observedvolume reduction is estimated. The cell kill rate of the second drug,
CKRB, has been assumed equal to 0.2 with the exception of clinical case 9 for which a value
equal to 0.1 has been assumed. This selection of CKRB value has beenmade with the criterion
to have a solution for CKRcis-DDP for all the N LHS combinations considered. Fig 6 shows the
median (dot), 10th and 90th percentile (lower and upper boundary of solid line) and minimum
and maximum (lower and upper boundary of dashed line) of the N CKRsum estimates for each
clinical case. Even though the estimated values of CKRsum vary considerably for all clinical
cases, the vast majority of the values (80%) is confined in a much smaller range, not exceeding,
with the exception of one case, an average of 0.1 units around the median value. We observe
that the treatment efficacy is very low in 2 cases (15.4% of the total cases) with a median
CKRsum below 0.3, low in 2 cases (15.4% of the total cases) with a medianCKRsum approxi-
mately 0.38, moderate in 6 cases (46.1% of the total cases) with a median CKRsum between 0.47
and 0.57, high in 2 cases (15.4% of the total cases) with a median CKRsum approximately 0.61
and very high in 1 case (7.7% of the total cases) with a medianCKRsum approximately 0.71.
The efficacy of the three cisplatin-doublet regimens seems comparable; however, the sample
size is too small, especially for cisplatin/docetaxel and cisplatin/gemcitabine regimens, to draw
statistically significant conclusions.

In Fig 7 the scatterplots of the N CKRsum values for one SCC and one ADC clinical case are
shown versus indicative model parameters and the proportion of dormant and terminally dif-
ferentiated cells. We observe that for both ADC and SCC cases, the highest values of CKRsum
are associated with short cell cycle durations (Fig 7A and 7J), shortly lived terminal differenti-
ated cells (or equivalent removal rate of DIFF cells above 0.01h-1) (Fig 7B and 7K) and resistant
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stem cells by a factor of 2 or above (or equivalent CKF of stem cells<0.5) (Fig 7G and 7P). For
the SCC case the highest values of CKRsum are found for low Psym (Fig 7C) and low Psleep (Fig
7D). Furthermore, tumors with higher fractions of dormant cells, at the expense of terminally
differentiated cells (GF is constant), tend to require a higher CKRsum to achieve the same vol-
ume reduction (Fig 7H, 7I, 7Q and 7R).

Model validation
The three mutually perpendiculardimensions of the surgically resected tumor has been pro-
vided for the 12 out of the 13 patients (Table 7). An early validation of the proposedmodel/
methodology is attempted here, by comparing the post-surgical excision measurements with
the simulated tumor size at the time of surgery. It should be noted that the size of the resected
tumor has not been considered for the estimation of CKRcis-DDP in the previous section; how-
ever, it is exploited here for validation purposes. In particular, for each clinical case and for
each of the N parameter sets with correspondingCKRcis-DDP derived in the previous section, an
extended simulation has been performed starting from the first CT acquisition until the date of
surgery. The extra time interval simulated for each clinical case is reported in Table 7. For three
clinical cases, additional drug administrations have taken place during this interval and have
beenmodelled assuming the estimated values of CKRcis-DDP.

Fig 8A depicts the boxplots of the N predicted tumor sizes for each clinical case in compari-
son with the real ones. Since it is customary in clinical practice to assess the size of a solid
tumor by measuring its maximum dimension(s), tumor size is expressed by means of an equiv-
alent diameter. The predicted tumor volume, V, is translated to the equivalent diameter, d,
assuming that the tumor is approximated by a sphere of the same volume:

d ¼ 2�

ffiffiffiffiffiffi
3V
4p

3

r

ð16Þ

The equivalent diameter of the surgically resected tumor is calculated as before. The volume
of the resected specimen is determined by its three mutually perpendiculardimensions, after

Fig 6. Drug cytotoxicity results for the clinical cases.The estimated sum of cell kill rates,CKRsum for the cisplatin-
based doublet regimen given to each clinical case (denoted by its ID number) is displayed. Latin Hypercube Sampling has
been run to produce two sets of value combinations of model parameters, one for the Adenocarcinoma (ADC) and one for
the SquamousCell Carcinoma (SCC) clinical cases. For each value combination theCKRsum that results in the clinically
observed volume reduction is determined. At any given case the dot denotes the median (50th percentile) of the N
estimated values, the lower and upper boundariesof the solid line denote the 10th and 90th percentile, whereas the
dashed line extends to the two extreme values of the estimatedCKRsum.

doi:10.1371/journal.pcbi.1005093.g006
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Fig 7. Scatterplots of the cell kill rate estimates vs. indicativemodel parameters and tumor proliferation features for the clinical
cases 3 (Squamous Cell Carcinoma—SCC) and 12 (Adenocarcinoma—ADC).All model parameters are varied simultaneously. The
ordinate represents the sum of cisplatin and gemcitabine cell kill rates for case #3 (panels (A)-(I)) and cisplatin and vinorelbine cell kill rates for
case #12 (panels (J)-(R)).The samples have a size of 146 and 175 for the SCC (#3) and ADC (#12) cases, respectively. They originate from
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assuming that its shape is approximated by a triaxial ellipsoid [41] (Table 7). In Fig 8B the pre-
dicted volume reduction is compared with the real one. Despite the large deviation observed
between the minimum and the maximum values in both equivalent diameter and volume
reduction graphs, the majority of the predictions are in fact confined around the median value.
To that respect, the first, second (median) and third quartiles are considered for the validation
of our predictions.

A good agreement between the prediction and the actual data is observed for the six out of
twelve cases. In particular, the equivalent diameter of the resected tumor and, hence, the
observedvolume reduction, falls between the first and third quartiles of the predicted ones in
three cases (# 2, 9, 13). Moreover, a deviation less than 10% (corresponding to less than 4mm
difference) between the predictedmedian diameter and the one of the resected tumor is
observed for three cases (# 1, 6 and 7). However, due to the small size of the initial tumor, a
somewhat larger deviation is observed in the case of volume reduction for cases # 1 and 6. It is
noteworthy that the cases # 2 and 6 received additional therapy during the extra simulation
period.

A slightly higher deviation (12% to 20%) between the equivalent diameters of the median of
the predicted values and the resected specimen is observed for the cases 5, 8 and 11. An even
lower deviation that does not exceed 14% exists for volume reduction in the same cases. It is
worth mentioning that for these cases the surgery takes place shortly after the second CT

two Latin HypercubeSampling runs of 2000 combinations of parameter values after excluding the ones with negative cell proliferation kinetics
or cell proliferation kinetics that fall beyond the reference values for non-small cell lung cancer in general and SCC and ADC representative
cases specifically (see Results section). The scatterplotsare displayed for the following model parameters and proliferation features: (A) and
(J) duration of cell cycle, when considered equal for both stem and LIMP cells, (B) and (K) removal rate of DIFF cells defined as the number of
cells that enter the apoptotic or necrotic pathway per hour, (C) and (L) fraction of stem cells that undergo symmetric division, (D) and (M)
fraction of newborn cells that enter a quiescent state following mitosis, (E) and (N) fraction of cells that re-enter cell cycle from a quiescent
state, when considered equal for both stem and LIMP cells, (F) and (O) number of mitoses performedby LIMP cells before becoming
terminally differentiated, (G) and (P) resistance of stem cells to chemotherapy, expressed as the ratio of the stem cell kill rate to the estimated
drug cell kill rate, (H) and (Q) the proportionof living tumor cells that are in a quiescent state, (I) and (R) the proportionof living tumor cells that
are terminally differentiated. Abbreviations: ADC: Adenocarcinoma, SCC: Squamous cell carcinoma, LIMP: LImitedMitotic Potential tumor
cell (also called committedor restrictedprogenitor cell), DIFF: terminally DIFFerentiated tumor cell. G0: dormant, resting phase.

doi:10.1371/journal.pcbi.1005093.g007

Table 7. Clinical data for model validation.

Case # Interval between
secondCT and
surgery (days)

Tumor maximum
diameter a (cm)

Tumor maximum
diameter b (cm)

Tumor maximum
diameter c (cm)

Volume
(ml)*

Equivalent tumor
diameter (cm)*

Additional drug
administrations (day)‡

1 20 6 4.5 3 42.41 4.33 none

2 21 6 5.5 4 69.12 5.09 GEM: 43rd, 50th, CIS:
43rd

3 18 2.5 1.6 1.6 3.35 1.86 none

4 36 3 2 1.5 4.71 2.08 DOC: 44th, CIS: 44th

5 5 2.5 1.8 1.5 3.53 1.89 none

6 39 4 3.7 3 23.25 3.54 VIN: 50th

7 7 3.5 3.3 2.5 15.12 3.07 none

8 3 3.5 3.5 3.3 21.17 3.43 none

9 28 8 7.5 5.5 172.79 6.91 none

10 20 2.1 1.9 1.3 2.72 1.73 none

11 6 4 3.5 2 14.66 3.04 none

13 22 4.7 4 3.1 30.52 3.88 none

*Values rounded to two decimal places.
‡ Day 1 is treatment onset. Only the drug administration time points in the interimbetween the second CT and the surgery are recorded.

doi:10.1371/journal.pcbi.1005093.t007
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Fig 8. Box-and-whisker plots ofmodel predictions at the time of surgery for the clinical cases.Each box and whisker plot corresponds to N
(146 and 175 for the squamous cell carcinoma and the adenocarcinoma cases respectively) independent predictions. Each prediction results from
an extended model simulation starting from the first CT examination till the time of surgery. The simulations have assumed the estimated sum of cell
kill rates,CKRsum of Fig 6. At any given case the horizontal line between the green and the red boxes denotes the median (50th percentile) of the N
predictions, the lower boundaryof the red box and the upper boundaryof the green box denote the first (Q1) and third (Q3) quartiles, whereas the
predictionsmore than 1.5 interquartile(IQR) distance from the end of the boxes are denoted as outliers (depicted as circles). The whiskers extend
from the lowest to the highest prediction that falls within 1.5 IQR from the outer edge of the boxes. The predictions correspond to (A) the equivalent
diameter of the tumor at the time of surgery, defined as the diameter of a spherewith the same tumor volume as the predicted one and (B) the
absolute value of the volume change of the tumor, expressed as a percentageof the initial volume. For the clinical case # 9 the volume change
corresponds to an increase, whereas for rest cases to a reduction. The corresponding values derived by themeasurements of the surgical resected
tumor are denoted as a filled rhomb.

doi:10.1371/journal.pcbi.1005093.g008
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acquisition (Table 7), corresponding to a limited (after the second CT acquisition) simulated
period; therefore, it is possible that any uncertainties in estimating the true tumor volume by
both the imaging techniques and the post-surgical excision measurements may be comparable
to the change in tumor sizes and play a role in the observeddeviations. For example, volume
estimation errors of 10 to 20% are typically expected (more prominent for small lesions) [15],
whereas based on our simulation results the volumetric change in a period of only a few days is
less than 10%.

The less agreement is observed for cases # 3, 4 and 10. The model seems to underestimate
the cell killing efficacy of treatment and predicts a tumor at surgery that deviates from the
resected tumor around 1cm for # 4 and #10 and 2cm for #3. However, for #10 the median vol-
ume reduction differs only 15% from the real one. The tumor proliferation profile considered
may be a possible source of the observeddiscrepancies. Our literature study (S3 Text) has
revealed a considerable intra-patient variability in the macroscopic characteristics of NSCLC.
It is therefore expected our assumptions to deviate from reality for some of the cases. For more
accurate results, the clinical data should contain information about the proliferation profile per
patient as well.

By taking into account the existence of uncertainties in estimating the true tumor volume as
described above, the limited number of data sets available for the estimation of CKR and the
consideration of a single proliferation profile differentiated only on the grounds of the two his-
tological subtypes of the available clinical cases, the gross agreement between the predicted
tumor values and the prost-surgerymeasured ones indicate that the proposedmethodology/
model has a clear clinical potential. Additional adaptation and validation work has been
planned in order to further adapt and validate both the model and the methodology.

Discussion
Cancer is a highly complex phenomenon. Prediction of treatment failure and selection of the
optimal therapeutic strategy can be greatly potentiated by the use of mechanistic models that
summarize our knowledge on cancer progression and response to treatment. However, up to
now, the adaptation, validation and establishment of mechanistic models in predictive medicine
has been hindered by the limited availability of data directly linked to the input parameters.
Needless to say, in several occasions, no establishedmethod exists for the direct measurement of
model parameters.

Determinant for the personalized prediction of cancer response is the resistance/sensitivity
profile of tumor cells to the specific anti-tumor regimen [11, 42, 43]. In-vitro experiments for
the evaluation of drug cytotoxicity on cancer cell lines have been proven only indicative, as
they cannot reproduce the conditions of tumor microenvironment [44]. On the other hand,
mechanistic models may provide means to estimate in vivo drug efficacy.

In the present paper, a range of plausible values of the cell killing efficacy of chemotherapy
has been estimated for NSCLC treated with various cisplatin-based doublet regimens by using
a mechanistic model of cancer response to treatment. The cell killing efficacy of chemotherapy
is expressed as the sum of cell kill rates, CKRsum, of the two drugs considered. Our modelling
methodology takes into account cell re-population between drug administrations. Parameteri-
zation has been driven by principal mechanisms characterizing cancer biology, namely uncon-
trolled cell proliferation, reversible dormancy, clonal heterogeneity, hypoxia and attenuated
apoptosis.

Two types of tumor cell growth have been considered, corresponding to the ADC and SCC
histological subtypes, respectively. A comprehensive literature survey has guided the selection
of the most appropriate values of characteristic proliferation kinetics for the two histological
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subtypes. The more aggressive nature of SCC in respect to ADC has been reflected on the
higher Td, the higher proliferation, i.e. GF and stem cell frequency, and the greater extend of
necrosis. As a first approximation, inter-patient variation in tumor grade has not been taken
into account, and a single differentiation profile has been assumed for each histological sub-
type. Since, in the patient cohort considered, most cancers are moderately to poorly differenti-
ated, terminally differentiated cells have been assumed to comprise the minority of non-
dividing cells, with a lifespan of only a few days. As a consequence, the majority of non-divid-
ing cells are found at a reversible dormancy. It is noteworthy that long-lived differentiated
cells, with a lifespan of a fewmonths, similar to the normal bronchial epithelium, would most
probably be associated with well-differentiated tumors.

A number of sensitivity analyses have been performed in order to investigate the effect of
model parameters and cancer proliferation kinetics on the estimation of CKR.OFAT analysis
has been chosen as an essential first step in order to gain insight into the mechanisms, verify
the biological relevance, validate the assumptions and reveal non-linear patterns or extreme
behaviors of individual parameters. In particular, OFAT plots and local sensitivity studies for
each model parameter and for each histological subtype have been presented. Subsequently,
the OFAT analysis has been supplemented by a number of global sensitivity studies performed
by applying the partial rank correlation coefficient (PRCC) method on a latin hypercube sam-
ple (LHS) either of the input parameters of the model or of characteristic cancer proliferation
kinetics. For the global analyses no distinction betweenADC or SCC subtypes has been consid-
ered. Although all input parameters are conceptually independent, the fact that the tumor as a
whole should satisfy certainmacroscopic characteristics (such as volume doubling time, typical
fraction of stem cells etc.) dictates numerical correlations among the input parameters. The
PRCCmethod, which by definition estimates parameters’ sensitivity, after controlling for the
effects of the remaining parameters, is suitable for models with correlated inputs. A thorough
investigation of input correlations is out of the scope of the present work. However, we intend
to address it in subsequent publications. The local sensitivity analysis has demonstrated that
from the regulating proliferation kinetics those with the highest influence on the estimation of
drug efficacy are the fraction of stem cells that perform symmetric divisions and the fraction of
newborn cells that withdraw from the active cycle to a dormant phase. Overall, the ADC repre-
sentative case seems to be less sensitive to all model parameters.

The global sensitivity analysis have revealed that the parameters related to the proliferation
kinetics of stem and LIMP cells are the most important determinants of the accuracy of CKR
estimates. However, these parameters seem to be reduced to primarily two variables, the Td

and the GF at the time of diagnosis. In other words, what is of importance is not only the value
of the parameters itself but also the value combination of the parameters that regulate Td and
GF. Therefore uncertainties in the value of the model parameters could be compensated for by
an estimation of Td and GF at diagnosis.

More specifically, the global sensitivity analysis has demonstrated that the rate that a tumor
grows in the absence of treatment, expressed by Td, has the strongest effect on the estimation of
drug efficacy. This variable reflects the rate at which the tumor replenishes its treatment-
induced losses. The estimation of Td would involve at least two volumetric measurements of
the tumor prior to treatment. The use of CT imaging, and especially high-resolution CT, is
necessary to derive more accurate estimations that take into consideration the usually asym-
metrical growth rate of the tumor in the three dimensions [45]. The interval betweenCTmea-
surements should be chosen with caution. Yankelevitz et al [46] has suggested that a minimum
of 12% increase in the cross-sectional area between successive CT examinations is required
for the reliable estimation of Td. For moderate to slow growing tumors an interval of 25
days would be required [45]. Shorter intervals would be needed for fast growing tumors. For
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example, based on the formula used in [45], a tumor with Td = 26 days would require a time
interval of 6 days between successive CTs. Such waiting periods are common in the case of
lung cancer. For half of our patient cohort, the time elapsed between diagnosis and treatment
onset is on the order of 20 days and more, so the acquisition of two volumetric measurements
prior to treatment might have been feasible.

The GF at diagnosis seems to be the second factor of importance for the estimation of drug
efficacy. GF estimations based on Ki-67 protein are routinely performed in clinical practice. In
general, a deviation of Ki-67 expression levels between biopsies and surgical samples for the
same patients has been observed,which has been attributed to differences in sampling, recruit-
ment and Ki-67 staining procedures [47]. Additionally, since a tumor may include areas of low
or high proliferation activity, a single small biopsy may not be accurate. However, a significant
correlation for this marker between biopsies and resected tumors has been demonstrated [47,
48]. Another method that has been used in literature for the estimation of GF is the proliferat-
ing cell nuclear antigen (PCNA). However, the latter systematically gives higher values than
Ki-67 and is considered less reliable [49].

Based on the results of the sensitivity analyses and Fig 7, the duration of cell cycle, TC, seems
to have a relatively significant effect on the estimation of treatment efficacy. Many techniques
have been reported in literature, either in vivo or in vitro, for the measurement of cell cycle
time, TC, and time-dependent indices in general; however, none has been established and rou-
tinely used in clinical practice, mainly due to their slow or laborious nature [23, 50]. The best
proposed in vivo technique is based on in vivo pulse labelling with a thymidine analogue, either
bromodeoxyuridine (BrdUrd), or iododeoxyuridine(IdUrd), followed by flow cytometry anal-
ysis and application of relative movement (RM) method [23, 50, 51]. It requires just a single
biopsy, taken a few hours, e.g. 6–8 hours [23], after BrdUrd (or IdUrd) administration. The
method allows for the estimation of the duration of DNA synthesis, TS, and the labelling index,
LI, which corresponds to the proportion of cells in S-phase. As a first approximation, TC can be
calculated based on the equation TC = (TS/LI)�GF, on the condition that the GF is known.
More elaborate relationships can be used that take into consideration the non-uniform distri-
bution of an exponentially growing cell population through the cell cycle. In [52] a method to
estimate TC and GF from flow cytometric analysis of a single tumor sample after BrdUrd label-
ling is proposed.

Apoptosis is the main cell death mechanism triggered by chemotherapy. However, the
global and local sensitivity analyses indicate that both the kinetics of apoptosis and the measure
of apoptotic index at diagnosis have no effect on the estimation of CKR. The model’s robust-
ness to the kinetics of apoptosis can be explained based on the rapid nature of the phenome-
non. Since apoptosis is a process completed within a few hours, it is characterized by a time
scale that it is more than one order of magnitude lower than the kinetics of the rest of the cell
populations (days to weeks) and the simulation time window, i.e. the time interval between
tumor volume measurements (month(s)) or the time interval between the last drug administra-
tion and the last volume measurement (week).

The model seems also rather robust to the kinetics of necrosis and the extent of necrosis at
diagnosis. It is noted that the results of the local and global sensitivity analyses correspond to
relatively fast necrosis kinetics, with TN not exceeding ten days, and a low to medium extent of
necrosis. Furthermore, the importance of CSC resistance in short-term treatment response
seems to be moderate due to the very low frequency of cancer stem cells. Finally, for the value
range considered, both the local and the global sensitivity analyses demonstrate that the kinet-
ics of terminally differentiated cells have a trivial effect on the CKR estimation. However, as
indicated by Fig 3M, a significant sensitivity is expected in the case of long-lived tumor termi-
nally differentiated cells with a lifespan of the order of months. Even though statin has been
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suggested as a marker of differentiated, non-proliferating cells [53], currently there is no estab-
lished standard to distinguish terminally differentiated from quiescent cells and, hence, quan-
tify them or measure their kinetics.

Finally, this paper attempted an estimation of cell killing efficacy of cisplatin-based doublet
regimen by adapting the model to 13 real clinical cases of NSCLC. The purpose of this process
has been the determination of set(s) of values of the input parameters of the model that corre-
spond to the clinical case under test (type of cancer, patient, treatment). CKR estimation can
be viewed as a two-step adaptation process. The first step aims at adapting the growth kinetic
parameters of the model (Table 4). As the modelling approach provides the ground to simulate
tumors of diverse growth kinetic characteristics, by assigning the proper values to the model
parameters, narrowing the vast number of possible value combinations, ideally to one, for a
specific clinical case is a critical first step. In this context, the exploitation of measurable prolif-
eration indices, such as Ki-67, or data that could allow the precise estimation of the tumor
growth rate, such as at least two imaging data before therapy, is decisive. However, due to non-
availability of patient-specific tumor cell kinetics data, a literature review survey has provided
biologically reasonable values for critical proliferation features.

The second step involves the adaptation of pharmacokinetic and pharmacodynamic param-
eters of the model in the case of chemotherapy. The driver in this process is the achievement of
volumetric match between the clinical data, i.e. the observed shrinkage in volume, and the
result of the simulation, after applying the treatment regimen that was administered in the clin-
ical case under test. The pharmacokinetic and pharmacodynamic properties of the agents con-
sidered were summarized under the umbrella of one parameter, the apparent CKR. The
purpose of the adaptation process was to evaluate a range of CKR values of the above parame-
ter for the clinical case under test (treatment regimen, dose, patient) based on the results of the
adjustment of the first step and the recorded change in tumor size due to the treatment.

Since the regimen administered consists of two chemotherapeutic agents, it is not possible
to accurately determine the CKR of each drug from the data provided, even in the ideal case of
the availability of all required proliferation indices and tumor free growth kinetic features that
would enable an excellent fitting of the model parameters to the clinical case examined. In the
study presented here an ‘apparent’ combination of the CKR of the drugs involved, for the vir-
tual tumor implementations considered, is determined, by assuming an arbitrary value for one
of the drugs. In the clinical data set considered, the majority of the patients (6/13) appeared to
have a moderate CKRsum, whereas 2/13 patients had a very low CKRsum and one had a very
high CKRsum. Based on the results, the cell killing efficacy of treatment varies considerably
among the patients, a fact that verifies the importance of a timely estimation of treatment
response through in silico simulations.

The accuracy of the conclusions on the treatment effect that was attempted in this paper
was subject to the uncertainties with respect to the tumor kinetics. As the number of available
data was the minimum required for the model adaptation, averages or ranges that were
encountered in the literature were used.More specifically, the data were limited to the assess-
ment of the tumor size in two time points (one before and the other after or during treatment)
and to information about the treatment, whereas the data regarding the proliferation features
of the tumor was absent. It is noteworthy that the provision of additional tumor size measure-
ments, during the course of therapy, could allow for more accurate estimates. Furthermore,
any errors in the estimation of the tumor size were not taken into account, as it is estimated
that the uncertainty that they can introduce is much smaller than the lack of knowledge of the
characteristics of free tumor growth.

Despite the aforementioned sources of uncertainties, the short-term predictive potential of
our model has been clearly demonstrated (Fig 8). The gross agreement between the tumor size
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predicted based on our CKR estimates and the real post-surgerymeasured one (Fig 8), substan-
tiates the potential utility of the proposed cancer model/methodologyfor personalized predic-
tions of treatment response at diagnosis. Studies between in vivo CKR estimates, as attempted
in the present work, and the molecular profile of a patient, hold great potential for the identifi-
cation of resistance and sensitivity profiles. For that purpose, statistical learning techniques,
either classification or regression ones, can be recruited to distinguish among drug sensitivity
phenotypes and to quantify tumor cell response to treatment, based on whole genome analysis
data, gene expression profiles and transcriptomic or proteomic signatures. In vivo CKR esti-
mates can be utilized together with the molecular data to train these machine learningmodels.
Eventually, such studies could allow for the prediction of treatment outcome based on the
molecular or genetic data of a newly diagnosed patient and will constitute a future step of our
work. Our preliminary efforts in this direction [54, 55], attempting to correlate prednisone
CKR estimates with the pathway gene expression data in paediatric acute lymphoblastic leukae-
mia, have shown promising first results.

Supporting Information
S1 Text. Discussion on delays in treatment-inducedapoptosis due to pharmacokinetics
and pharmacodynamics.
(PDF)

S2 Text. Estimation of initial tumor cell composition (at balanced exponential growth).
(PDF)

S3 Text. Literature Survey:Proliferation features of non-small cell lung cancer (NSCLC).
(PDF)

S4 Text. Range sensitivity analysis.
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S5 Text. Value range of spontaneous apoptosis rate.
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S1 Fig. Effect of the cell cycle time of stem and LIMP cells on the tumor doubling time. The
values assigned to the rest of the model input parameters correspond to the baseline values of
SCC (Table 5). Abbreviations: LIMP: LImited Mitotic Potential tumor cell (also called commit-
ted or restricted progenitor cell), SCC: Squamous Cell Carcinoma.
(TIF)

S2 Fig. Effect of the cell cycle time of stem and LIMP cells on the initial growth fraction.
The values assigned to the rest of the model input parameters correspond to the baseline values
of SCC (Table 5). Abbreviations: LIMP: LImited Mitotic Potential tumor cell (also called com-
mitted or restricted progenitor cell), SCC: Squamous Cell Carcinoma.
(TIF)

S3 Fig. Effect of the number of mitoses between stem and terminally differentiated cells on
the estimation of the sum of cisplatin and gemcitabine cell kill rates.The rest of the model
parameters are kept constant at a baseline value. Stem and LIMP cells are assumed to be equally
sensitive to treatment, i.e. the cell kill factor of stem cells, CKF, is set equal to unity. Two sets of
baseline values have been considered for the rest of the model input parameters, corresponding
to a SCC and an ADC representative case (Table 5). Abbreviations: LIMP: LImitedMitotic
Potential tumor cell (also called committed or restricted progenitor cell), ADC:Adenocarcinoma,
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SCC: Squamous Cell Carcinoma.
(TIF)

S4 Fig. Scatterplot of the fraction of stem cells vs. the number of mitoses between stem and
terminally differentiated cells (NLIMP). Latin Hypercube Sampling has run to produce two
sets of 8000 combinations of model parameters (Table 4), with the given value ranges (cases A
and B respectively). Combinations with negative cell proliferation kinetics have been excluded.
The red line corresponds to the upper limit of 0.001 considered in the present study for the
cancer stem cell fraction.We observe that for values of NLIMP lower than 8, this limit is always
exceeded. Abbreviations: LIMP: LImited Mitotic Potential tumor cell (also called committed or
restricted progenitor cell).
(TIF)

S1 Table. Supplemental PRCC analyses.
(PDF)

S1 File. Image files.
(ZIP)
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