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Deep autoencoder for interpretable
tissue-adaptive deconvolution and
cell-type-specific gene analysis

Yanshuo Chen1,2,9, Yixuan Wang 1,3,9, Yuelong Chen4,5, Yuqi Cheng 6,
Yumeng Wei1, Yunxiang Li1, Jiuming Wang1, Yingying Wei7,
Ting-Fung Chan 4,5 & Yu Li 1,8

Single-cell RNA-sequencing has become a powerful tool to study biologically
significant characteristics at explicitly high resolution. However, its application
on emerging data is currently limited by its intrinsic techniques. Here, we
introduce Tissue-AdaPtive autoEncoder (TAPE), a deep learning method con-
necting bulk RNA-seq and single-cell RNA-seq to achieve precise deconvolu-
tion in a short time. By constructing an interpretable decoder and training
under a unique scheme, TAPE can predict cell-type fractions and cell-type-
specific gene expression tissue-adaptively. Compared with popular methods
on several datasets, TAPE has a better overall performance and comparable
accuracy at cell type level. Additionally, it is more robust among different cell
types, faster, and sensitive to provide biologically meaningful predictions.
Moreover, through the analysis of clinical data, TAPE shows its ability to pre-
dict cell-type-specific gene expression profiles with biological significance. We
believe that TAPE will enable and accelerate the precise analysis of high-
throughput clinical data in a wide range.

Bulk RNA sequencing (RNA-seq), a widely used high-throughput
sequencing technique, provides a powerful tool to investigate tran-
scriptome variation of biological events1. RNA-seq measures averaged
expression levels, which gives a macro atlas of large samples from
transcription levels without cell-specific information. However, it is
also important to study the cellular composition andproportion of the
sample in some cases, especially in a systemwith cellular development
and proliferation (e.g., cancer)2,3.

Recently, single-cell RNA sequencing (scRNA-seq) has given
unprecedented opportunities to identify and analyze the cell hetero-
geneity of complex tissues4. While scRNA-seq provides impressive
resolution in cell granularity, it is still costly and vulnerable to noise,

prohibiting sequencing the large-scale samples5,6. To overcome these
obstacles, we may combine the abundant bulk RNA-seq data with the
scRNA-seq data, performing cell-type deconvolution from the bulk
RNA-seq samples with reference to a small scRNA-seq dataset.

Many single-cell profile-assisted algorithms have sprung up to
dissect bulk RNA-seq data in recent years. The existingmethods can be
roughly divided into two categories: statistical learning-based and
deep learning-based methods. Based on traditional regression models
like non-negative least squares (NNLS) and support vector regression
(SVR), a series ofmethods like CIBERSORT (CS)7, MuSiC8, CIBERSORTx
(CSx)9, Bisque10, DWLS11, RNA-Sieve12, and BLADE13 have been devel-
oped. All these tools need a pre-selected cell-type-specific gene
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expression profile (GEP) or allocating different weights to different
genes based on statistic value (e.g., mean and variance). In contrast,
Scaden14, a deep learning method, utilizes simulated bulk data for
training without relying on a pre-defined GEP, and it can automatically
extract features fromGEP.Despite this progress, thesemethods ignore
the running time cost, especially regarding the growing demands of
dealing with big datasets. Moreover, except CSx, other methods, like
Scaden, cannot predict the crucial cell-type-specific gene expression.
This limitation leads to the poor interpretability of Scaden and other
methods. Even for CSx, it requires multiple samples (>15) to purify
expression9.

To overcome these limitations, we propose an accurate, efficient,
and interpretable deep-learning algorithm, Tissue-AdaPtive auto-
Encoder (TAPE), using deep neural networks (DNNs). The basic idea is
that the encoder can learn higher-order latent representations and
decoder can realize the interpretability of the output in the framework
of autoencoder.Moreover,we introducea new training schemenamed
adaptive training to optimize the GEP tissue-adaptively. Empirically,
our method could achieve a better overall performance than previous
state-of-the-art methods. When evaluated on cell-type level, TAPE has
the best performance of MAE, and comparable CCC with relatively
small variance on real datasets (Supplementary Table 8). To demon-
strate the clinical application of TAPE, we use three datasets to show
that TAPE is sensitive to biological changes. To be specific, TAPE is the
only method that predicts the increasing tendency of monocytes-to-
lymphocytes ratio (MLR) value which is suitable within the clinical
report (0.29–0.88)15 in the COVID-19 peripheral blood mononuclear
cells (PBMC) dataset. Furthermore, TAPE can predict cell-type-specific
GEP tissue-adaptively with the minimum input data size requirement,
inferring cell-type-specific GEP for only one sample. Thus, TAPE can
provide a valuable reference for biologists to more conveniently
investigate differentially expressed genes (DEGs). More importantly,
TAPE canpredictDEGs evenwhen these genes arenot signature genes,
whichwouldprobably fail with previousmethods.We further combine
TAPE with single-sample gene set enrichment analysis (ssGSEA)16 on
the virus-infected PBMC dataset to prove its capability of analyzing
cross-viral functional differences among cells.

In this work, we build TAPE to precisely predict cellular fractions
and cell-type-specific gene expression. The novelty lies in adopting the
architecture of autoencoder as well as introducing a new training
schemeat the adaptive stage. Comparedwith the state-of-artmethods,
TAPE shows a competitive performance and has almost the fastest
processing speed on benchmarking datasets. In addition, TAPE pre-
dicts the cell-type-specific gene expression tissue-adaptively, allowing
the dissection of bulk gene expression into different cell types and
discovering potential differential gene expressions among cell types.

Results
Method overview
As shown in Fig. 1, the basic architecture of ourmethod is a DNN-based
autoencoder (AE), taking bulk GEPs as input and outputting cell-type
proportions and cell-type-specificGEPs. Thereare three stagesofusing
TAPE. The first stage is to create training data through simulation.
Simulatedbulkdata is the sumof selected single-cell GEPswith thepre-
defined cell fractions and the total cell numbers, where the single-cell
profile and the real bulk profile should come from the same tissue. The
next is the training stage. We want to train the model to output the
proper cell fractions after the encoder and use the cell fractions to
reconstruct the bulk profile. More than only using the reconstruction
loss in the classic AE model, we try to minimize the mean absolute
error (MAE) between the ground truth and the predicted cell fractions
to make it supervised. When the model is required to predict the cell
fractions and the cell-type-specific GEPs on the real bulk data, it enters
the adaptive stage. In this process, inspired by the classic AE’s training
process, we only use real bulk data to train the model in an

unsupervised manner. More specifically, the model is iteratively
greedily optimized on the decoder and the encoder. That is, it would
not optimize the parameters of the encoder until it achieves the
temporally best parameters on the decoder (see Table 1). The intuition
is that training the encoder and decoder separately candirectly lead to
the adaption to the new coming bulk data. As for the decoder, we
require it to reconstruct the real bulk data and maintain the con-
cordance with itself, while the encoder is required to predict the
proper cell fractions,which should be similar to the primaryprediction
after the training stage. Since we require the decoder to output the
reconstructed bulk gene expression based on the cell fractions, the
parameters of the decoder are the cell-type-specific GEPs, so we could
directly output those parameters as the GEPs after the adaptive stage.
See more details in the Methods part.

Performance evaluation on pseudo-bulk data
Since a real bulk dataset with its corresponding cell type fractions
assessed by traditional experimental methods (e.g., flow cytometry) is
rare, and it is hard to analyze how the batch effect would affect
deconvolution performance, it is necessary to conduct a pseudo-bulk
test for an initial estimation. The pseudo-bulk data are generated in
silico from single-cell GEPs with ground truth (pre-defined cell type
proportions). That is, pseudo-bulk data are the summation of many
single-cell profiles. Tomake this pseudo-bulk test asdifficult as the real
bulk test instead of trivial linear regression task, we added Gaussian
noise17 (0.01 times random value generated from a Gaussian distribu-
tion with gene expression mean and variance for each gene) and ran-
domlymasked 20% genes for each pseudo-bulk sample. The single-cell
profiles are from Tabular Muris18, a cell atlas for mouse with two dif-
ferent sequencing techniques, 10X-seq (UMI-based method) and
Smart-seq (counts-basedmethod). This cell atlas is a good resource for
us to simulate the batch effect. Thus, in the following experiments, we
used one protocol’s single-cell data as the reference to predict another
protocol’s pseudo-bulk data. Here we only selected three tissues/
organs from Tabular Muris because they have the largest number of
shared cell types across different protocols in all the tissues/organs.
Specifically, “Limb Muscle” has 6 cell types, “Marrow” has 7 cell types,
and “Lung” has 9 cell types. To fully exploit the advantages of pseudo-
bulk data, we defined three deconvolution scenarios: “normal”, “rare”,
and “similar”. For the "normal" scenario, all the cell type proportions
are randomly generated, while in the “rare” scenario, some cell types’
fractions are set below 3%. To be specific, skeletalmuscle satellite cells
and endothelial cells are set to be rare cell types in “Limb Muscle”;
monocyte and hematopoietic precursor cells are set to be rare cell
types in “Marrow”; T cells, natural killer cells and ciliated columnar
cells of tracheobronchial trees are set to be rare cell types in “Lung”. In
the “similar” task, we only used “Marrow”because there are two similar
subtypes of B cell in it: “late-pro B cell” and “immature B cell”. Here, we
expect that if we delete one kind of B cell from the single-cell refer-
ence, the predicted fraction of the other type of B cell would still be
similar to the summation of the two kinds of B cell. That is, we expect
the method could correctly transfer the weight of one kind of B cell to
another. Performance was evaluated by MAE and Lin’s concordance
correlation coefficient (CCC)19 between the prediction and the ground
truth for eachcell type.More details of the simulation process, dataset,
and metrics for evaluation are in the Methods section.

In the “normal” scenario, we find that DWLS achieves the best
performance on both metrics (Fig. 2c), and TAPE is comparable to
DWLS. We also notice that deep learning methods like Scaden and
TAPE are more robust than statistical methods, which lead to the
smallest performance variance among all the cell types. In the “rare”
scenario, we only display the metrics for pre-defined rare cell types.
The results show that all the methods can not result in a satisfying
concordance between prediction and ground truth in this scenario
(Fig. 2c). Interestingly, although the CCC values are pretty low with
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those methods, their MAEs are comparable to those in the “normal”
scenario, which indicates that those methods can predict a value near
ground truth but are not correlated with each other. Though TAPE is
not the best algorithm in this scenario, its performance is comparable

toDWLS, which focuses on rare cell types. As for the “similar” scenario,
we investigate the performance on two kinds of B cells in the “normal”
scenario and what would happen if we delete one cell type from the
reference. The results show that TAPE is themost robust algorithmand

Fig. 1 | TAPE workflow and clarification of adaptive stage. a TAPE takes scRNA-
seq data from human or mouse and RNA-seq data from the homologous tissue as
input, then performs the deconvolution as well as the prediction of cell-type-
specific GEPs via a training stage and an adaptive stage. b Generation of the cell-
type-specific GEPs has two separate modes. The first is the “high-resolution”mode:

TAPE takes the RNA-seq data from one sample at a time as input and outputs the
adapted cell-type-specific signature matrix for each sample. The second is the
“overall” mode: TAPE takes all the RNA-seq data at one time as input and outputs
one signature matrix adapted to all samples. n is the number of samples, m is the
number of genes, k is the number of cell types.
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can distinguish cell subtypes when both kinds of the B cell are in the
reference (Fig. 2c, “similar distinguishment”). Moreover, TAPE can
transfer one B cell’s proportion to another if this kind of B cell is
missing from the reference (Fig. 2c, “similar transferring”). Meanwhile,
we find that deep learning methods are robust for the cross-protocol
prediction, while the performance of some statistical methods will
drop if the reference and pseudo-bulk data type (UMI to counts or
counts to UMI) are exchanged (Supplementary Figs. 1 and 2).When we
compare the performance among algorithms for each tissue/organ, we
find that TAPE outperforms the other methods for “Limb Muscle” and
“Marrow”. Nevertheless, we notice that the performances of deep
learning methods such as TAPE and Scaden drop for “Lung” as com-
pared to MuSiC and Bisque. One potential reason is that given a fixed
sample size, as traditional statistical methods requires fewer para-
meters, they perform better when the number of cell types increases
compared to deep learning methods.

Accurate and stable deconvolution on real bulk data
Since previous studies have shown that cell type proportions in single-
cell data are not concordant with bulk samples9, we further evaluated
TAPE and the other representative deconvolution methods on real
tissue expression datasets with the corresponding ground truth
obtained from traditional experimentalmethods (e.g. flow cytometry).
First, we assessed deconvolution performance on two human PBMC
bulk RNA-seq datasets, SDY6720 and the S13 cohort from Monaco
et al.21. Another PBMCmicroarray dataset was obtained from Newman
et al.7. All the ground truth of PBMC datasets was measured by flow
cytometry. Second, we deconvolved the ROSMAP human brain RNA-
seq dataset22 with both human brain single-cell RNA-seq and mouse
brain single-cell RNA-seq as references. Through immunohistochem-
istry analysis, the cell-type fractions of 41 samples of the ROSMAP
dataset were recently given23. Detailed deconvolution software com-
parison and settings are in the Methods.

Among all the real datasets considered, TAPE achieves the best
MAE and the smallest variance (Fig. 2d). For the CCC metric, although
other methods like CIBERSORTx and Scaden surpass TAPE, TAPE still
shows comparable performance with a relative small variance,

indicating that the prediction performanceof TAPE is similar for all the
cell types and hence robust. To be specific, for ROSMAP_human
dataset, the median CCC of TAPE is the best (0.140). While Scaden
achieves the best median CCC of 0.326 and 0.202 on SDY67 dataset
and ROSMAP_mouse dataset, and CIBERSORTx achieves the best
median CCC on Monaco’s PBMC dataset and microarray PBMC data-
set. Though TAPE’s median CCC on these four datasets is not the
highest, the values are comparable with the difference smaller than
0.07. Considering the interquartile range, we can see that the perfor-
mance of DWLS is close to the best on SDY67 dataset and ROSMAP_-
mouse dataset. Detailed comparison results are available in
Supplementary Table 8. In the benchmarking procedure, we also
considered different scenarios as the “similar” scenario, the “missing
cell types” scenario and the “unknown cell type” scenario. For the
“similar” scenario, we investigated TAPE’s performance on distin-
guishing similar cell types (CD4 T cell and CD8 T cell) in all the three
PBMC datasets (Supplementary Fig. 3). The results show that TAPE is
the best algorithm and can distinguish themwell. Moreover, we test all
the methods’ ability of deconvolving immune cell subtypes. With 13
defined cell subtypes (Supplementary Table 1), all themethods can not
achieve satisfying results (Supplementary Fig. 4, median CCC <0.1),
which clearly shows the common limitation of current methods. For
the “missing cell types” scenario, the ROSMAP dataset using mouse
brain as reference is a good demonstration. The single-cell dataset of
mouse brain has more cell types than the measured bulk ROSMAP
dataset (Fig. 2a). So, we directly filtered out extra cell types predicted
by these methods and re-scaled the predicted fraction to make the
summation is 1. For the “unknown” cell type, it is dependent on the
single-cell data. If researchers can not label some cells with proper cell
types, they can label them as “unknown” cell type, and then this
“unknown” fractionwill be considered accordinglywhen deconvolving
bulk data. See more details in the Methods part.

Furthermore, since TAPE and Scaden are both DNN-based meth-
ods, we made a head-to-head comparison between them using dif-
ferent random seeds to evaluate TAPE’s stability. In practice, the
original Scaden program provided by its authors has a very slow
simulation speed, sowe implemented a PyTorchversion of Scaden and

Table 1 | Adaptive training procedure
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used it to test how the random seeds affect deep methods. In Sup-
plementary Fig. 6, the two colors stand for the different methods, and
the two coordinates of each dot represent overall MAE and CCC for all
cell types respectively. As shown in the figure, the dots of TAPE occupy
the upper-right of the figureswith low variance, showing TAPE’s higher
accuracy and stability than Scaden.

Efficient deconvolution on large cohort RNA-seq data
Besides accuracy and stability, the methods’ scalability is also impor-
tant in practice. Therefore, we evaluated the time consumption of the
representative methods mentioned above on the same pseudo-bulk
samples from tabular-formed sequencing data to the prediction of cell
type fractions (including the step of constructing signature matrix or
training data if needed). We ran TAPE, Scaden, RNA-Sieve, DWLS,
MuSiC and Bisque on the sameworkstation with Intel(R) Xeon(R) Gold
6226 CPU @ 2.70GHz, CentOS Linux release 7.9.2009 (Core), Nvidia
3090 GPU. CSx was tested on the web-based application. Detailed
implementations are in the Methods.

Among all the methods tested (Fig. 2b), Bisque is the fastest
algorithm, and it can deconvolve 800 samples in 15 s. For TAPE, it takes
about 120 s in total to construct the training data and train the deep
learning model for 5000 iterations. But its inference speed is very fast

and its time complexity isO(n) with a very small coefficient due to the
inherent advantage of using deep learning. Thus, TAPE’s time con-
sumption would not increase markedly with a larger cohort size.
Besides the time complexity, TAPE only needs about 1900MB GPU
memory during the training stage. When deconvolving new bulk
samples, the memory consumption will increase along with the num-
ber of samples, but this increment is really small in practice. Compared
with Scaden, another deep learning method, TAPE is faster because of
its highly optimized training data simulation procedure and a smaller
model size. Of note, the deconvolution step of DWLS is not slow, but
the step of constructing signature matrix using MAST24 is really time-
and memory-consuming. As for CIBERSORTx, its slow prediction
speed is not justified because its speed is limited by theweb server.We
would expect a much better performance if users can acquire the
source program from the developers. Generally, within the test set-
tings, algorithms that do not require complicated preprocessing steps
(Bisque and MuSiC) achieve a better performance on speed.

Biologically significant deconvolution on clinical RNA-seq data
We further evaluated whether TAPE could predict cell-type propor-
tions consistent with prior clinical knowledge. Here, we selected three
datasets with clinical information or related prior knowledge: (1) the

Fig. 2 | Comparison of deconvolution algorithms on benchmark datasets.
aDeconvolution procedurediagram. Bulk RNA-seq data and single-cell data should
come from a homologous tissue. b Time complexity analysis of different methods
(including pre-processing steps). Time measured by seconds is scaled by LogðÞ to
show the differences more clearly. These tests are conducted on the simulated
data. The time limit is set to 2500 s. Any longer test was not conducted.
c Deconvolution results on simulated data. CCC represents the Lin’s concordance
correlation coefficient,measuring the concordancebetween the predicted fraction
and theground truth.MAErepresentsmeanabsolute error,measuring the accuracy
of prediction. Higher CCC and lower MAE are better. Each box contains metric

values for all the cell types considered in all the tissues. Different color refers to
different methods. Sample size in the four scenarios from left to right is 44, 12, 4,
and 4, respectively. Sample size of different method is the same. d Deconvolution
results on real data. The columns’ labels refer to the datasets. CCC and MAE are
used asmetrics. Sample size of eachmethod on each dataset consistently equals to
5. In c, d, the boxes represent interquartile range (IQR) while the solid line repre-
sents themedian. Thewhiskers extend to points that liewithin 1.5 IQRs of the lower
and upper quartile, and then observations that fall outside this range are displayed
as points independently. Source data are provided as a Source Data file.
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ROSMAP dataset25 that is obtained from patients with Alzheimer’s
Disease (AD); (2) the COVID-19 PBMC dataset26 containing clinical
information about different severity of COVID-19 (mild, moderate, and
serious) and different stages of patients (treatment stage, con-
valescence stage, and rehabilitation stage); (3) the cultured pancreatic
islet dataset27 which has RNA-seq data of islets from three different
conditions (normal, SARS-CoV-2 infected, and SARS-CoV-2 infected
tissue with Remdesivir treatment). Detailed information on those
datasets is in the Methods.

For the ROSMAP dataset, we used the human brain single-cell
profile from Darmanis et al.28 as a reference. As we know, neuron cell
loss is a significant symptom in patients with AD. In the ROSMAP
dataset, the Braak stage is given as a measurement of the severity of
AD29. So we expected neuron fraction would decrease with the
development of AD. Additionally, we investigated each sample’s
Braak stage to the estimated fraction of microglia whose proportion
will increase with AD severity and decrease at stage 6 as shown by
previous studies30,31. The results (Fig. 3a, b) show that TAPE can
predict the tendency of neuron loss and have an accurate prediction
of microglia activation and deactivation among 532 samples with
clinical information. Moreover, according to the immunohis-
tochemistry analysis of 41 AD patients from a previous study, the
proportion of neurons or microglia cells ranged from 0.32–0.55 and
0.06–0.12, respectively23. Impressively, if we accept the assumption
that the cell type proportions’ ranges of the 41 patients are the same
as those of the 532 patients, only TAPE could predict proportions in
this range, which shows the remarkable accuracy of TAPE’s
prediction.

Next, we used the PBMC data8k32 dataset as the reference to
deconvolve the COVID-19 PBMC dataset. According to existing clinical
observations and research, metrics like neutrophil-to-lymphocyte
ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) are closely
associated with the progression of the COVID-19, thus which are used
to indicate its severity clinically33,34. Inpractice, patientswith thehigher
NLRorMLR showamore serious symptomofCOVID-19. Since the data
we used are obtained from PBMC and do not contain neutrophils, we
only tested the correlation betweenMLR and the severity of COVID-19
patients. The MLR is calculated by the fraction of monocytes divided
by the sumof fractions of CD4T cell, CD8T cell and B cell.We used the
estimated MLR value predicted from different models to compare the
tendency between different severity (Fig. 3c). Although Scaden,
CIBERSORTx, DWLS and TAPE predict an increasing tendency cor-
rectly, after hypothesis tests, only TAPE predicts the increasing ten-
dency of MLR value with statistical significance, and the value range is
suitable for the clinical report (0.29–0.88)15.

To deconvolve the cultured islet dataset, we selected the endo-
crine cells (alpha, beta, gamma, delta, and epsilon cells) from Baron
et al.35 to generate the training data because pancreatic islet only
contains endocrine cells. Since the infection of SARS-CoV-2 usually
causesmetabolic dysregulation andMellitus27, we expected a decrease
in beta cell fraction in COVID-19 patients. Here, we used the sequen-
cing data of in vitro cultured islets to deconvolve and expected TAPE
to predict the decrease of beta cell proportion after infection. Fur-
thermore, the proportion of beta cell should restore after treatment
with Remdesivir, a very famous antiviral medication used to treat
COVID-19 (Fig. 3d). ThoughScaden andTAPE canpredict both beta cell
loss and restoration in this experiment among the three conditions,
after one-sided t-test, only TAPE’s predictions show a statistical sig-
nificance. The accurate deconvolution results of these controlled
experiments demonstrate that TAPE is sensitive to the biological
changes in the bulk RNA-seq data and can produce biologically sig-
nificant results, which are consistent with the previous research and
reports. All the clinical deconvolution results show that TAPE’s pre-
diction is stable, with potential clinical applications for disease early
screening and treatment outcome prediction.

Tissue-adaptive cell-type-specific gene expression prediction
More than only predicting cell fractions of bulk RNA-seq data like the
existing deep-learning method, TAPE could also predict the cell-type-
specific gene expression tissue-adaptively. That is, TAPE only needs
simulateddata fromhealthy samples to train, but it can alsopredict the
cell-type-specific gene expression in pathological conditions if the
corresponding bulk RNA-seq data is given. This feature enables TAPE
to dissect bulk gene expression into different cell types and discover
some potentially differentially expressed genes in different cell types.

We began with testing the correctness of the predicted cell-type-
specific GEPs. To test this, we measured the concordance between the
predicted gene expression value of each cell type and the original gene
expression value obtained from single-cell RNA-seq (Fig. 4a, b). Here,
the PBMC bulk data are fromMonoco et al.21, while the single-cell data
from the data8k dataset from the 10X website32. Since we transformed
the input RNA-seq data into 0–1 values using Log2 andMinMaxScaler()
in the training stage (see more in the Methods), the sums of gene
expression values grouped by cell types are also transformed in this
way to compare with the predicted relative gene expression value.
Note that only gene expression in monocytes does not have a good
concordance (Fig. 4b). After testing TAPE on a simulated dataset with a
single-cell profile as ground truth (Fig. 4a) and considering the good
concordance in other five cell types, we draw the conclusion that this
distortion is caused by the individual difference. The concordance
shown in the figures proves that TAPE predicts the signature matrix
correctly and establishes the base for further gene expression analysis.
In contrast, this disconcordance in monocytes also shows the adap-
tiveness of our method.

Besides the concordance, we also expect that TAPE can assign the
gene expression value in bulk data to different values at a cell-type
level. To test this, we used the ROSMAP RNA-seq dataset25 and human
brain single-cell profile28 to perform adaptive training in the “overall”
mode. The deconvolution result (Fig. 4d) of cell-type-specific GEPs
shows that TAPE indeedpredicted thedifferentially expressed genes in
different cell types. However, since TAPE takes single-cell gene
expression as input, these differencesmay be inherent from single-cell
data. So, we compared the original signature matrix from single-cell
data to the adapted signature matrix using the heatmap (Fig. 4c). We
further investigated whether TAPE just inherits the data distribution
from bulk RNA-seq data and whether the different distributions of
different cell types are randomly assigned.We selected theNRGN gene
to study it. Since the NRGN gene has been shown to be closely asso-
ciatedwith AD36, we expected it to have a high gene expression level in
neurons and other nerve cells. Interestingly, for the predicted values
(Fig. 4g, blue columns), the gene expression value in Endothelial is low
compared with the high-level gene expression values in ExNeurons,
InNeurons, and Astrocytes. In contrast, for the healthy single-cell
profiles (Fig. 4g, red columns), expression values ofNRGN in these four
cell types don’t have such big differences. Thus, TAPE can successfully
predict a high expression value of NRGN in neurons while a low
expression value of NRGN in endothelial cells. More specifically, this
shows that the prediction of cell-type-specificGEPs is a product of two-
sided information from both bulk and single-cell profiles, not ran-
domly assigned or guessed. In this test, we also used the “group”mode
of CIBERSORTx to predict the expression value of NRGN in different
cell types. The results show that although CIBERSORTx can predict a
high expression value of NRGN in InNeurons, it can not predict an
expected high value in ExNeurons.

Cell-type-specific differentially gene expression profiling at
high-resolution
Since TAPE has shown its ability to predict cell-type-specific GEPs
correctly and selectively given a group of bulk samples, we continued
to use TAPE to predict cell-type-specific GEP per sample at high-
resolution. To test TAPE’s capability under “high-resolution”mode, we
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synthesized a series of pseudo-bulk samples with known differentially
expressed genes (DEGs) (Fig. 4e). Following the settings in
CIBERSORTx9, we selected 100 cells across four cell types (CD8 T cell,
Natural Killer (NK) cell, B cell, and Monocyte) from PBMC single-cell

data and another 10 cells from human brain single-cell dataset as noise
to compose the pseudo-bulk data. Then we randomly selected 100
genes among 10,000 genes in CD8 T cells as up-regulated genes to
adjust their expression. Each pseudo-bulk dataset contains 50 pseudo-

Fig. 3 | Deconvolution benchmark on datasets with clinical information.
a Comparison of estimated neuron cell proportion on different Braak stages
between different models on the ROSMAP dataset. Neuron content is expected to
decrease along with the development of AD. b Microglia content estimated by
differentmethods on Braak stage. The fraction is expected to increase from stage 0
to 5 followed by a decrease from stage 5 to 6. In a,b, sample size of each stage from
0 to 6 is 7, 43, 47, 150, 174, 104, and 7, respectively. The boxes represent IQR while
the solid line represents the median. The whiskers extend to points that lie within
1.5 IQRs of the lower and upper quartile, and then observations that fall outside this
range are displayed as points independently. c Estimated MLR value calculated
from the estimated monocytes fraction divided by the sum of estimated propor-
tions of CD4+ T cell, CD8+ T cell, and B cell. We expect MLR value increases from

mild (n = 12) stage to moderate (n = 14) and serious (n = 12) stage. After one-sided
Wilcoxon signed-rank test, we find that MLR increasement from mild to serious
stage of TAPE has significance with p =0.0461. d Estimated beta cell fractions of
cultured islet in different conditions. The middle column represents samples
infectedwith SARS-CoV-2, and the right onemeans samples treatedwithRemdesivir
after infection. Sample size of each bar is 2. The model should predict the
restoration of beta cell content after being treated with medication. One-sided t-
test was used due to the small sample size. For TAPE’s prediction, the p value is
0.0475 and 0.0142 for normal versus infected and treated versus infected,
respectively. In c,d, these data are presented asmean values ± standard error of the
mean. p value with notation * means p <0.05, with notation ns means no sig-
nificance. Source data are provided as a Source Data file.
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bulk samples and half of them are composed of up-regulated CD8
T cells. The cell proportion of CD8 T cells in pseudo-bulk data ranges
from 5 to 30%, and the foldchange of up-regulated genes ranges from
1.5 to 5. In total, we created a series of pseudo-bulk datasets with
foldchange gradients and cell proportion gradients. After obtaining
the GEP of CD8 T cells, we used a two-sided t-test to detect DEGs
(p < 0.05). So, this task is essentially a binary classification task, and we

naturally chose area under receiver operating characteristic curve
(AUROC) as the criterion. The results show that (Fig. 4f), TAPE can
successfully predict cell-type-specific DEGs correctly (with good sen-
sitivity) and selectively (with good specificity) while CIBERSORTx
almost fails on this task. The overall trend is that algorithms can easily
recognize DEGs in one cell type if the proportion of this cell type or the
foldchange of DEGs is high. Interestingly, using DEGs in bulk as the
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reference,we can see thatTAPE can evenpredictDEGs not shownup in
bulk samples but in CD8 T cells (the maximum AUROC of TAPE is
higher than the maximum AUROC of bulk samples in Fig. 4e, f). In the
original article9, CIBERSORTx has also demonstrated its great ability in
DEGs prediction, the reason why it failed in this task is that CIBER-
SORTxusually focuses on signature geneswhich have bigger statistical
power and are easily detectable if they are differentially expressed, but
in this task, we randomly selected 100 genes which are probably not
signature genes; therefore, it is hard for CIBERSORTx to infer the 100
DEGs properly. In contrast, TAPE has shown its ability in predicting
DEGs evenwhen they are not signature genes, whichmeans TAPE has a
broader application potential than CIBERSORTx. Of note, the recently
published method, BLADE13, can do this task too, but we did not
benchmark BLADE in our experiments, considering its high time
complexity.

In addition to the normal scenario where there are only 100 ran-
domly selected DEGs with four non-similar cell types in simulated bulk
samples, we designed comprehensive tests with four scenarios to
benchmark TAPE andCIBERSORTx’s performances. The four scenarios
are: “randomly selected DEGs without similar cell type”, “randomly
selectedDEGswith similar cell type”, “signature genes asDEGs without
similar cell type”, and “signature genes as DEGs with similar cell type”.
In detail, we set up a series of simulated bulk data to detect DEGs aswe
mentioned before. However, we used similar cell types or changed the
number of randomly selected genes, or used signature genes as DEGs
in this test. Specifically, for the “similar” scenario, we used similar cell
types like CD4 T cells and CD8 T cells together with two other cell
types, namelymonocytes andNKcells. In the scenarioswhereDEGs are
randomly selected, the number of DEGs ranges from 100 to 5000. For
the “signature genes as DEGs” scenario, we up-regulated the signature
genes of CD8 T cells produced by CIBERSORTx in the simulated bulk
samples. From the results (Supplementary Fig. 10), we can have four
conclusions: (1) TAPE’s predictive power is better than CIBERSORTx
when the randomly selected DEGs are less than 1000; (2) both meth-
ods can achieve good performancewhen theDEGs are signature genes
and there are not any similar cell types; (3) both methods can not
distinguish DEGs fromCD8T cell rather thanCD4 T cell if the DEGs are
randomly selected; (4) CIBERSORTx is better thanTAPE if the DEGs are
signature genes and there exist similar cell types. Interestingly, from
points 2 and 4, it seems that TAPE can learn the signature genes
between distinguished cell types but not exactly enough to distinguish
similar cell types. In all, considering all the scenarios, we display that
each method has its own advantages and disadvantages and it can be
seen as a guide for researchers to decide which method to use.

To further evaluate each method’s “high-resolution” mode in the
real-life scenario, we take HIV infection as an example where the
researchers want to determine which cell type differentially express a
gene between twoconditions. In this case, HIV-infected patients can be
classified into two different classes based on the existence of broadly

neutralizing antibodies (BNab). Recently, a study about the develop-
ment mechanism of BNab in HIV patients used bulk RNA-seq and
population sorted RNA-seq to investigate the most differentially
expressed gene37. In this study, researchers initially found about 270
DEGs between two conditions using DESeq238. After filtering non-
related DEGs by controlling non-related information like age, sex,
country, and viral load, researchers made the conclusion that RAB11-
FIP5 is the only differentially expressed gene in bulk samples. Then
they used qPCR to find that RAB11FIP5 is differentially expressed in NK
cells rather than other cell types and leads to the development of
BNab. The steps they used to find the relation between RAB11FIP5 and
NK could be replaced with the cell-type-specific gene expression ana-
lysis in the “high-resolution”mode. So, weused TAPE andCIBERSORTx
to tissue-adaptively deconvolve the HIV PBMC data37. To avoid batch
effects and harmful effects caused by the low-quality single-cell data,
we combined data6k, data8k, and data10k PBMC single-cell data32,39,40

as the reference. After obtaining the predictedGEPs for each sample at
high resolution, we calculated the adjusted p value and foldchange for
each cell type (Fig. 4h). The results show that both TAPE and CIBER-
SORTx successfully predict thatRAB11FIP5 is differentially expressed in
NK cells. Considering that there are about 270 pseudo-DEGs in bulk
samples, we further validated whether TAPE can distinguish them as
pseudo-DEGs by checking the DEGs in each cell type. The results show
that TAPE only predicts NOP2 and RAB11FIP5 as DEGs in NK cell and no
DEGs for other cell types (Supplementary Fig. 8). We can see that the
prediction is not perfect, but ourmethod can correctly predict thatNK
cells have DEGs rather than other cell types and reduce the number of
possible DEGs (including pseudo-DEGs if there is not any filter) from
270 to 2. All the results displayed prove that our methods can be
applied to the real-life scenario and accelerate biological discoveries
by identifying which cell type has DEGs and reducing the number of
possible DEGs.

Functional investigation across various types of virus infection
To further prove the versatility of TAPE, we applied TAPE on the PBMC
RNA-seq data of three kinds of virus-infected samples, including the
SARS-CoV-2 infection, which is the severe acute respiratory syndrome
coronavirus 2 that has been sweeping the world, hepatitis C virus
(HCV) infection, which caused 290,000 death in 2019, and human
immunodeficiency virus (HIV) infection, which is the cause of acquired
immunodeficiency syndrome (AIDS). These three virus infections will
damage the host’s immune system but lead to different syndromes.
Knowing the specific function in specific cells could help us in both the
treatment and prevention of these infections.

Besides the differential expressed genes, we also investigated the
functions of each cell type by incorporating cell-specific GEPs and
ssGSEA16. Since the ssGSEA algorithm only needs the gene rank which
canbe provided by ourmethod.We couldpredict the activities of each
function pathway for each sample without positive or negative

Fig. 4 | Cell-type-specific gene expression analysis. a Concordance between the
predicted relative gene expression value in simulated bulk data and the relative
gene expression value in single-cell data. The relative gene expression value is the
original expression value after Log2 and MinMaxScaler() transformation.
b Concordance between the predicted relative gene expression value in real bulk
data and the relative gene expression value in single-cell data. c, d Estimated sig-
naturematrix after the adaptive stage in the “overall”mode. The gene expression is
normalized with Z-Score. The genes are selected by the differential expression in
different cell types after the adaptive stage. The differences between before and
after the adaptive stage indicate that TAPE could not only make the signature
matrix adapted to new data but also maintain concordance with the original one.
e Differentially expressed genes detected from bulk RNA-seq data. The color
indicates the AUROC value, red means better classification performance. Each row
corresponds to different up-regulated foldchanges of randomly selected genes in
CD8 T cells. Each column refers to CD8 T cell proportion in simulated bulk data.

fDifferentially expressed genes detected by CIBERSORTx and TAPE in different cell
types. DEGs should only be detected from CD8 T cell. g The relative gene expres-
sion value of NRGN from different sources. The dashed line represents the total
relativeNRGN expression value in the ADpatients' brain tissue. Themissing column
means the relative gene expression value of prediction or single-cell data is zero.
hBoxplots of the estimatedRAB11FIP5gene expression values in different cell types
by different methods. Both control group and BNab group have 46 samples in it.
The estimated RAB11FIP5 values by CIBERSORTx in other cell types are NaN (not
shown).p value is calculated from two-sided t-test. p value has been adjusted by the
false discovery rate. p value with notation * means p <0.05 (exact value for TAPE is
0.025), with notation ** means p <0.01 (exact value for CIBERSORTx is 0.00041).
The boxes represent IQR while the solid line represents the median. The whiskers
extend to points that lie within 1.5 IQRs of the lower and upper quartile, and then
observations that fall outside this range are displayed as points independently.
Source data are provided as a Source Data file.
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controls. Considering function pathways that is significantly (padj <
0.05) activated in at least one sample, we found the samples that were
infected by different viruses clustered (Pearson for distance, ward.D2
for cluster) together (Fig. 5a). Besides functional pathways that are
differently activated at the population level, there also existed a
diversity of activated functional pathways at the sample level, espe-
cially in dendritic cells (Fig. 5a).

Compared SARS-CoV-2 infected samples with the other two virus-
infected samples, functional pathways had more potential to activate
than inactivate . Also, the HIV-infected samples are similar to the HCV-
infected ones, showing the difference between the SARS-CoV-2 infec-
tion and other ones. Besides, subsets of samples within each virus-
infected sample could also be identified, presenting the hetero-
geneous samples within the same virus infection.

Even the activities of the significant function pathways show dif-
ferences among the three virus infections. The proportions of com-
mon significant enriched pathways were large in different cell types
(Fig. 5b–d). More significant enriched function pathways were
observed in SARS-CoV-2 infected samples, than in the other two virus-
infection samples. In the B cells, HIV-infected samples shared 99% of
significantly enriched pathways with HCV-indected samples, while
SARS-CoV-2 occupied more than 40% of the significantly enriched
pathways privately (Fig. 5b). These SARS-CoV-2 private enriched
pathways contributed to the identification of the subset sam-
ples (Fig. 5e).

Of note, Monocytes and NK cells contributed to distinguishing
these three kinds of virus-infected samples (Fig. 5f, g). We noticed that
the number of common enriched pathways in these two cell types is
much larger than the numbers of mono-enriched or di-enriched
pathways, indicating the activation differences, rather than functional
differences, make the various three virus-infection samples.

Combining with prior knowledge, some pathways we found are
highly relevant to these diseases. For instance, most of the commonly
activated pathwayswithin the three infections in the B cells are general
immune response pathways, including BIOCARTA_IL2_PATHWAY,
BIOCARTA_IL4_PATHWAY, BIOCARTA_IL6_PA- THWAY, and BIO-
CARTA_IL7_PATHWAY. Interestingly, out of these pathways, BIO-
CARTA_MAPK_PATHWAY, BIOCARTA_LONGEVITY_PATHWAY, and
BIOCARTA_CELLCYCLE_PATHWAY have already been linked to SARS-
CoV-2 infections. BIOCARTA_MAPK_PATHWAY (MAPKinase Signaling
Pathway) activation has been proved to cause an overwhelming
inflammatory response in SARS-CoV-2 infections41. The blockage of the
BIOCARTA_LONGEVITY_PATHWAY (The IGF-1 Receptor and Long-
evity) has also been reported to mitigate lung injury and decrease the
risk of death in patients with SARS-CoV-242. Recent studies also found
the coronavirus would induce the cell cycle arrest, which did not exist
in other kinds of virus infection, butwasdiscoveredbyour algorithm43.
Generally, these examples show that the combination of TAPE and
ssGSEA can indeed discover some significant pathways as clues for
further experimental validation.

Discussion
We develop TAPE as a deep-learning algorithm for digital tissue dis-
section. Key features distinguishing it from previous methods include
(1) highly accurate and sensitive deconvolution to capture the biolo-
gically significant changes in clinical data, and (2) tissue-adaptive cell-
type-specific gene expression profile prediction to identify potential
gene expression differences at the cell-type level. TAPE benefits from
the architecture of the autoencoder and the unique trainingmethod in
the adaptive stage. The encoder-decoder architecture enables an
interpretable decoder to answer why the encoder makes such pre-
dictions. More interestingly, the decoder is a natural cell-type-specific
signature matrix that can be learned after the training stage and then
adapted to the bulk data after the adaptive stage. Notice that the
special training process of TAPEmakes it fundamentally different from

other methods, which only predict cell fractions or need large cohort
bulk RNA-seq data to impute cell-type-specificGEPs or arehard to infer
insignificant gene expression in cell-type-specific GEPs. Another
advantage of TAPE is its super fast inference when deconvolving a
large number of samples. Running on a commonly-used graphics
processing unit (GPU), TAPE has comparable speed to the fastest sta-
tistical method and even faster than the previous deep-learning
method.

Although we have shown that TAPE’s deconvolution performance
is pretty good in many scenarios, we find that it would perform poorly
in the “rare” scenario since it shows a low CCC value. But, in the
benchmarking process (Fig. 2c), the results show that other tools’
performance also drops in the “rare” scenario. This phenomenon
indicates the “rare” scenario has not been solved well by current
methods and needs to be addressed in future works. In the scenario of
clinical data prediction, TAPE is capable of predicting the ratio change
for most cell types in clinical cases stably with statistical power, whose
results are consistent with the previous related clinical
studies15,27,30,31,33,34. During real-life usage, to make the study more
focused, we recommend that users select the cell types they want to
analyze further from the TAPE output based on the existing experi-
mental evidence.

As is previously highlighted, TAPE can predict cell-type-specific
GEPs tissue-adaptively. But admittedly, it can be improved further.
Firstly, when we study the correlation at the gene level using “overall”
mode (Supplementary Fig. 7), about 30% of the predicted genes have
the negative correlation. Althoughourmethod’s performance (median
CCC0.2127) is better thanCSx (median CCC0.0627), there is still large
room for improvement. Secondly, when we use it to predict DEGs, it is
hard for TAPE topredict aproper foldchange, this is partially causedby
the normalizationmethod since the gene value is normalized between
0 and 1. However, this phenomenon can also be observed in CIBER-
SORTx (Supplementary Fig. 8), which indicates the information loss
between bulk samples and inferred cell-type-specific GEP is hard to be
reconstructed. In our tests, considering the fact that the predicted
foldchange is not proper, we only uses t-test to findDEGswith p <0.05
andwe can obtain plausible DEG results from this criterion. Thirdly, we
notice that both CIBERSORTx and our method can not distinguish
DEGs from similar cell subtypes correctly if the DEGs are not signature
genes (Supplementary Fig. 9) which means that their resolution is still
limited. But CIBERSORTx has displayed its advantages in distinguish-
ing signatureDEGs fromsimilar cell types becauseof the incorporation
of the signature matrix (Supplementary Fig. 10). Though our method
cannot precisely predict DEGs from cell subtypes or have better per-
formance than CIBERSORTx if all signature genes are DEGs which
probably does not occur in the real world, it still reduces the potential
candidates by excluding irrelated cell types. So, our method is still
useful and can be applied in real-life scenarios to accelerate biological
research.

Benefited from the predicted cell-type-specific GEPs in the “high-
resolution” mode, we could identify specific activated functional
pathways in each cell type for each sample, which could be another
potential advantage of our algorithm. According to the results above,
we could identify cell types involved in the dysfunctional pathways.
Combining ssGSEA and TAPE could help identify the specific dys-
functional pathways in particular cell types using the bulk RNA-seq
data, which will essentially make use of previous population tran-
scriptome datasets.

In summary, TAPE represents a widely applicable framework for
deciphering the heterogeneity of tissues at a cell-type level, and pro-
vides a practical training scheme for supervised autoencoder to per-
form domain adaptation. Considering the fact that it can be integrated
with other tools seamlessly, we believe that TAPE will be helpful to
investigate the connection between the single-cell data and the
abundant bulk data.
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Fig. 5 | Functionenrichment of cell-specificGEP. aHeatmapof enrichment scores
for various cell types, including B cells, CD4 T cells, CD8 T cells, Dendritic cells,
Monocytes, and NK cells within different virus infection samples. The enrichment
scores havebeen scaledby theZ-score. The top rowannotation represents the virus
types of the infection. The left column annotation represents the corresponding

cell types of the enriched pathway. Significantly enriched pathway upset plots for
b B cells, cMonocytes, and dNK cells in three kinds of virus infection. Heatmaps of
enrichment scores for e B cells, f Monocytes, and g NK cells. Source data are
provided as a Source Data file.
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Methods
Datasets and preprocessing
In this work, we used several public single-cell RNA-seq datasets, bulk
RNA-seq datasets, and microarray datasets to perform our experi-
ments. In the pseudo-bulk test, a single-cell dataset of mouse atlas
from Tabular Muris18 was used. This dataset consists of 20 organs and
tissueswith cell type labels provided by the authors. Only three tissues’
(Limb_Muscle, Marrow and Lung) data in both protocols were used to
perform the pseudo-bulk test. Other data were not selected because
the shared cell types across protocols are very limited (less than four
cell types), which can not simulate the real-life scenario.

In the experiments of real bulk data with ground truth, we used
several real bulk datasets with the corresponding cell fractions. The
first PBMCdataset SDY67was created by Zimmermann et al., but it was
indirectly obtained from Scaden’s training data with unknown frac-
tions. The second PBMC dataset created by Monaco et al. could be
downloaded from the GEO database with accession number
GSE107011. The corresponding cell fractions data were provided as
supplementary information of the original paper. More specifically,
the unknown fraction was calculated by one minus the sum of known
proportions, and cell types of the same kindwere added together to fit
the cell types in training data. For example,monocytes C,monocytes I,
andmonocytes NC are different kinds of monocytes, so their fractions
will be added together as the total fraction of monocytes. When we
used it to test whether deconvolution methods can achieve good
performance with immune cell subtypes, we merged all 30 cell types
into 13 cell subtypes (Supplementary Table 1). The similar subtypes are
defined as “mDC” and “pDC”, “naive CD4 T cell” and “non-naive CD4 T
cell”, “naive CD8 T cell” and “non-naive CD8 T cell”, and “naive B cell”
and “memory B cell”. The third PBMC dataset was created by Newman
et al. Its expression data were downloaded from GEO with accession
number GSE65133 and its cell fractions were provided on the webpage
of CIBERSORT7. Next, the dataset we used to deconvolve human tissue
with Alzheimer’s Disease (AD) was obtained from a project called
Religious Orders Study and Memory and Aging Project (ROSMAP)25.
This dataset consists of about 600 samples of RNA-seq data from AD
patients, while 41 of them have cell-type proportion information
measured by immunohistochemistry in another study23. The gene
expressiondatawere obtained from the supplementary data of Scaden
rather than the original program of ROSMAP to maintain consistency
during the test. As for the single-cell datasets, 8k PBMC dataset from
healthy donors was downloaded from 10X Genomics32, mouse and
human brain datasets were obtained from the GEO database with
accession numbers GSE87544 and GSE67835 respectively28,44. All of
thesedatasetswerepreprocessed to generate cell-type labels using the
same procedure in Scaden. Notably, if the training data were available
in Scaden, like PBMC and mouse brain datasets, we just used the
training data provided by the authors of Scaden to assess
performance.

In the advanced analysis of realbulk datawith clinical information,
three different datasets were involved. Since the ROSMAP dataset has
been introduced above, here we only describe the other two datasets.
The first is the COVID-19 PBMC dataset26 from a longitudinal study of
patients with COVID-19. This dataset has 39 RNA-seq samples of PBMC
consisting of different stages (treatment stage, convalescence stage,
and rehabilitation stage) and different types (mild, moderate, and
serious) from 16 patients. The second is the COVID-19 islet dataset
which is from a study of the SARS-CoV-2 infected islets. This dataset
only has six samples which are divided into three groups: normal
cultured group, infected group, and Remdesivir treated group. The
single-cell dataset used as the reference is from Baron et al.35 (GEO
accession number: GSE84133) which has 14 labeled cell types in pan-
creas tissue. Instead of using all the cells in the dataset, we only
selected endocrine cells: alpha cell, beta-cell, delta cell, gamma cell,
and epsilon cell to constitute the reference dataset.

In the final analysis of tissue-adaptive GEPs, we introduced an HIV
PBMC dataset from the GEO database with accession number
GSE115449. This dataset has PBMCdata collected from92HIVpatients.
Half of them have developed BNab and the others do not have BNab.
Furthermore, when we used ssGSEA to analyze cellular function
changes in PBMC across different viruses’ infections, we used an HCV-
infected bulk RNA-seq dataset of PBMC (GEO database, accession
number: GSE119117). This dataset is also from a longitudinal study of
patients. RNA-seq data were collected from individuals before, during,
and after acute HCV infection. See more details on the GEO database.
Another virus-infected PBMC dataset is the COVID-19 PBMC dataset
which has been mentioned before.

Note that, the datasets involved in this study might use different
ways to represent genes. To maintain the concordance, we processed
all the different representations into gene names through BioMart45.

The TAPE framework
Simulation of pseudo-bulk data from a single-cell dataset. Usually,
deep learningmodels need a large amount of training data to optimize
its loss function and learn its parameters. So, it is crucial to generate
pseudo-bulk data from a single-cell dataset to train the model. Single-
cell expression data with cell type fractions are used to generate
pseudo-bulk data. By definition, pseudo-bulk expression data are the
sum of single-cell expression data from a subset of cells. So, to gen-
erate pseudo-bulk data, cells should be sampled with a given cell type
proportion (ground truth) and total cell number like the stratified
sampling.

Typically, cell-type fractions could be generated using dirichlet
distribution when users have some prior information about cell-type
fractions in a specific tissue. The cell-type fractions were first gener-
ated using the dirichlet() function from the numpy.random package46

and users could define the prior cell fractions by setting the para-
meters in the dirichlet() function. If they do not have prior knowledge,
the prior weight of each cell type will be the same (normal samples).
Following Scaden, half of the generated samples’ corresponding cell
type fractions contain zeros (sparse samples). Because, in our practice,
deconvolution performance will be improved by training with both
normal and sparse samples. Next, we multiply the total cell number
with the generated cell fractions for each sample to acquire the exact
sampling number for each cell type. After that, we use a stratified
sampling method to sample cells of each cell type with the given
number. Finally, the pseudo-bulk expression profile is created by
summing the expression values of the randomly selected single-cell
expression profiles for each sample.

Additionally, if users want to predict tissue-adaptive GEPs and
investigate the relative gene expression value (output GEP value is
between 0 and 1), they need to consider the data shift between dif-
ferent sequencing methods. For example, counts data from the 10X
sequencing platform represent the real expression value while counts
data from smart-seq47 need to be further normalized using a method
like TPMor FPKM to show the real expression value. Hereweprovide a
simple function counts2FPKM() (or TPM) to transform raw counts to
FPKM (or TPM). Due to the original information loss of the processed
single-cell expression profile, we only normalized raw counts of a
certain gene with its maximum transcripts length obtained from
BioMart45. So, we recommend users prepare a suitable single-cell
profile in advance to avoid information loss.

According to the previous study from Scaden14, different sam-
pling distributions and single-cell datasets with a heavy bias of differ-
ent cell types donot affect deconvolutionperformance notably. So, we
think the simulation procedure is reasonable in our settings.

Problem definition. To illustrate our model more clearly, it is neces-
sary todefine theproblem in advance. All of the symbols defined in this
section are consistent throughout the article. Intuitively, we expect
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GEPs from bulk RNA-seq would be a linear combination of each cell’s
GEPs from single-cell RNA-seq. Furthermore, if cells belonging to one
kind of cell type have the same gene expression pattern, we could use
the signature gene expression pattern and the number of cells for each
type to reconstruct the GEP of a bulk RNA-seq data. So, given the
number of k cell types,m genes, and n samples in bulk RNA-seq data,
an ideal mathematical model could be defined as:

X � S=B, ð1Þ

where B is an n ×m matrix representing GEPs of bulk RNA-seq; S is a
k ×m signature matrix; X is an n × k matrix representing cell-type
fractions in each sample.

Model set-up. Given the well-defined problem, we just need tomodify
the equation to accommodate deep learning:

f ϕðBÞ= ~X,

f ψð~XÞ= ~X � S,
f ψðf ϕðBÞÞ= ~B:

ð2Þ

Here, fϕ and fψ represent two coordinated deep neural networks,
symbols with tilde like ~B refers to the output of the model; and S refers
to the explicitmatrix formof fψ. Usually, fϕ and fψ are called encoder and
decoder respectively in the classical architecture of AE. fϕ is a regression
modelwhich is responsible formapping thehighdimensional bulk gene
expression data to a low dimensional representation of cell composi-
tions. In contrast, fψ is the inverse function of fϕ which is expected to
reconstruct bulk data based on the cell fractions. Obviously, fψ func-
tions like the signature matrix discussed in previous sections. There-
fore, we want to make it have an explicit matrix-form to enforce the
interpretability of fϕ. To achieve the progress in the interpretability of
deep model, fψ was designed without activation layers or biases, which
is only the regularized value of dot product of five weight matrices.
Thus, the signature matrix is visible in the deep model:

f ψ =S=ReLUðW1 �W2 �W3 �W4 �W5Þ, ð3Þ

where ReLUðxÞ= ðxÞ + = maxð0,xÞ. The reason to design such an equa-
tion to represent S rather than a single matrix is thatmore parameters
could enable the model to learn a good signaturematrix more quickly
and easily, and the ReLU(⋅) function is used to ensure the biological
meaning of the signature matrix. Of note, the decoder matrix is
expected to represent a meaningful signature matrix only after the
training with simulated data.

We need to stress that, it may seem that our model assumes that
cell proportions could be inferred from the bulk data directly through
the function fϕ without the signature matrix. However, if we consider
fψ, we will find that parameters of fϕ is affected by fψ during optimi-
zation. Just like other statistical methods computing the pseudo-
inverse of the signature matrix in the fitting process, we also use the
inverse relationship between fϕ and fψ in the training stage. Therefore,
compared with the previous machine learning methods using a single
function to predict fractions without regularization from the signature
matrix, this architecture makes more sense. More specifically,
although Variational AutoEncoder (VAE) has become a powerful tool
to model single-cell data recently48–50, we do not use VAE because the
encoded latent variable is probabilistic, not deterministic. This is the
reason why VAE is very suitable for generative tasks, while not suitable
for the cell-type deconvolution.

Input data preprocessing. Although the input datasets varied between
platforms and protocols, we utilized the same processing approach to
prepare them for deep-learning models and alleviate the effect of the
dimensionality curse. As for the bulk data (real or simulated), it is first

transformed to the Log2 spacewith a pre-added one to avoid null value.
Thenweneed to filter somegeneswith low variance both in the training
data and test data10,14. This step is very important, because TAPEwill fail
in predicting test bulk data proportions properly without proper fil-
tering (Supplementary Table 2 and Supplementary Fig. 11)14. In our
experiments, we control the filtering threshold to keep about 10,000
genes as reported by Scaden14. If the less variable genes are not filtered
out, TAPE can not predict a good result because of the noises (Sup-
plementary Table 2 and Supplementary Fig. 11). Further signature gene
selectionmethods24,51 may help TAPE improve its performance. Next, to
maintain the meaningful signature matrix, we decide to use the Min-
MaxScaler() function provided by scikit-learn52 to scale data into the
range between 0 and 1. This function is described below:

Bi,j =
Bi,j �minðBiÞ

maxðBiÞ �minðBiÞ
, j = 1,2,3, . . . ,m: ð4Þ

Trainingmethod. As previously stated, there are two stages of training
in TAPE. The first is the training stage, where we use about 5000
pseudo-bulk samples for training. we useMAE between prediction and
ground truth to optimize the parameters of encoder andMAEbetween
the reconstructed input and the original input to optimize both the
decoder and the encoder. The loss functions are defined as:

MAEðX,~XÞ=
P

i,j
∣Xi,j�~Xi,j ∣
n× k ,

MAEðB,~BÞ=
P

i,j
∣Bi,j�~Bi,j ∣
n× k ,

ð5Þ

where symbols with tilde represent learned/predicted data in the
training stage.

Usually, we found that MAEðX,~XÞ is stable after 5000 iterations
with batch size 128, so we stopped training to avoid overfitting.

In the adaptive stage, we aim to train the parameters to adapt to
new data rather than predicting cell fractions with the same para-
meters in all situations. To achieve this goal, we design a greedily
iterative optimizing method: step 1. optimize the decoder with loss
function MAEðB,~BÞ+MAEð~S,~S0Þ until MAEðB,~BÞ does not decrease;
step 2. optimize the encoder with loss functionMAEðB,~BÞ+MAEð~X,~X0Þ
until MAEðB,~BÞ does not decrease. Here, ~X0 and ~S0 refer to the results
of cell type fractions and cell-type-specific gene expression matrix
after initial training. The intuition is that we want the decoder (sig-
nature matrix) to adapt to the bulk data first because each new bulk
sample has a different signature matrix. Then we want the encoder to
adapt to the bulk data to predict a slightly different cell fraction. Since
this iterative method is not guaranteed to converge, we have to make
the adapted parameters as close as possible to the original parameters.
For the same reason, if we train both encoder and decoder simulta-
neously, it would be hard to guarantee the model could converge on
our expectation, so we train them separately to make more sense.
Usually, repeating step 1 and step 2 several times would make the
parameters of TAPE adapt to the new data. In our experiments, after
the adaptive stage, the prediction of cell fractions will improve a little,
and it always outputs an adaptive signature matrix. The adaptive
training stage is more like the fine-tuning step in deep learning rather
than being re-trained with new single-cell data. The adaptive-training
time is 3 s per sample with GPU acceleration.

Predict tissue-adaptive cell-type-specific GEP in different modes.
Generally, there are two different ways to analyze cell-type-specific
GEPs: (1) The “overall” mode: using all the samples at once to capture
an overall cell-type-specific GEPs in a certain condition. (2) The “high-
resolution” mode: predicting all the samples one by one to maintain
the differences between each sample. Certainly, the latter will con-
sume more time than the former one. Usually, it takes 3 s to decon-
volve cell-type-specific GEPs for each sample. The choice of different
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modes mainly depends on users’ demands. For example, if users want
to discover the differentially expressed genes at a cell-type level, they
should choose topredictGEPs in the “high-resolution”mode; thus they
could calculate the p value. On the other hand, if users only need to
investigate the highly expressed genes indifferent cell types or have an
overall look at the cell-type level, they should choose to predictGEPs in
the “overall” mode.

It is worth noting that, the value of the GEP predicted by TAPE is
between 0 and 1, which represents the relative expression value within
a single sample due to the Min–Max scaling. Using this GEP may
encounter some problems when users need to analyze the foldchange
of a certain gene due to the information loss induced by the nonlinear
scaling function.

Architecture and hyperparameters. TAPE’s encoder and decoder are
both made up of five fully connected layers with the same weight size
in the corresponding position. For example, the first layer of the
encoder and the last layer of the decoder each have 512 nodes. More
specifically, the number of nodes in each encoder layer is 512, 256, 128,
64, and the number of cell types is in sequential order. Before each of
the first four fully connected layers, there is a dropout function with a
probability of 0.5; after each layer, each has a nonlinear activation
function CELU(⋅), defined as CELUðxÞ= maxð0,xÞ+ minð0,ex�1Þ. Deco-
der, on theother hand, does not contain anybias in the fully connected
layers or nonlinear functions except the ReLU(⋅) function, as we have
mentioned before. During the training stage, we use Adam with a
learning rate of 1 × 10−4 to optimize parameters. Other parameters of
Adam are set as default in PyTorch. We train the network for 5000
iterations with batch size 128. These training hyperparameters are
succeeded fromScaden.While in the adaptive stage,weuseAdamwith
the same learning rate 1 × 10−4 to fine-tune the parameters on the new
data. We train both the encoder and the decoder for 300 steps within
each iteration. The max iteration number is flexible for users, and we
recommend users set it to at least 2 to make it output a well-adapted
signature matrix.

Model interpretation. This deep learning model is very similar to the
middle-size model in Scaden. The performance improvement of this
model is caused by the dropout layer, the decoder and the selection of
activation function.We add the dropout layer in front of the first linear
layer. This setting is rare in deep learning because it would be hard for
the model to learn if there is only half of the input features. This
empirical knowledge also works for TAPE, but we introduce the
decoder layer to avoid the performance drop. In contrast, since the
decoder could stabilize the encoder, the dropout layer in the encoder
could help the model recognize which set of features is crucial to the
result, and this dropout layer will enhance the performance. As for the
decoder, it is actually a single matrix with constraint (all elements ≥0).
The reason why we use dot product of five matrices is to improve the
speed of convergence. In practice, the results have shown that the
more parameters themodel has, the faster the convergence speed will
be. Moreover, we need to stress that the activation function will affect
the performance. Previous deep learning framework, Scaden, uses
Softmax() as the final activation function to guarantee the prediction is
meaningful. But its drawback is that the training process will be less
stable. Specifically, when the training data contain zero proportions
for some cell types, and the model is forced to predict a zero during
the training process, it would be really hard for a Softmax() function to
predict a zero, and the last layers’ features should be very negative
values which are harmful to the numerical stability. The similar pro-
blem is raised in the image classification task, and researchers usually
use label smoothing to avoid this problem53,54. However, since label
smoothing is not appropriate for the regression task, when predicting
cell fractions, we finally use ReLU() and a scale function to guarantee
the summation of cell fractions is 1.

Performance evaluation
Within the main text above, we combined mean absolute error (MAE)
with Lin’s concordance correlation coefficient (CCC)19 to evaluate dif-
ferent algorithms’ performance because it is hard to assess perfor-
mance reasonably in all situations with only one metric. For instance,
suppose there are only two kinds of cell types in tissue, and one type’s
fraction ranges from80–90% in the ground truth. If themodel predicts
this cell type fraction is 100%, then the CCC value may imply a satis-
fyingperformance, but theMAEvaluemay indicate theopposite. So, to
avoid the situation of discarding fractions of minor cell types, it is
necessary to combine MAE with CCC. Generally, a higher CCC value
and a lower MAE suggest a better deconvolution performance. These
metrics are defined as follows:

MAEðX,~XÞ=
P

i,j
∣Xi,j�~Xi,j ∣
n× k ,

CCCðx,~xÞ= 2× covðx,~xÞ
σ2
x + σ

2
~x
+ ðμx�μ~x Þ

,
ð6Þ

where covðx,~xÞ stands for the covariance between these two vectors.
Notably, these two metrics are applied to all data points of the

predicted matrix ~X and the ground truth matrix X. More specifically,
for the CCC value, we reshape the matrix into a vector and then cal-
culate the total CCC between two vectors. This calculation pattern
usually results in a higher CCC value than computing the average CCC
value for each cell type.

Statistics and reproducibility
Determining the sample size for the deconvolution problem is a
challenging problemwith no existingmethod, sowe chose the sample
size according to previously published datasets. Datasets were chosen
in order to show the functionality and performance of ourmethod. No
data were excluded from the analyses. Replication and randomization
are not applicable since we did not collect any experimental data.
Hypothesis testing methods are explained in each figure legend. Any
group allocations were determined by previously published dataset,
we did not modify the group information. To reproduce the results,
please find the Source Data file we provided.

Software comparison and settings
To evaluate the performance of TAPE compared with other methods,
we selected several representative methods for comparison. Except
for Scaden, other methods were tested following the instruction and
tutorials provided by each package.

For deconvolution performance on the pseudo-bulk and real bulk
data with ground truth, we benchmark Scaden, RNAsieve, CIBER-
SORTx, DWLS, MuSiC and Bisque8–12,14. We will describe the details of
the benchmarking procedure below. Hyperparameter tuning file is
available in Supplementary Tables 3–7.

For Scaden, we tested its performance in both platform: Keras-
based Scaden (provided by Scaden’s authors) and PyTorch-based
Scaden (implemented by ourselves). The training hyperparameters of
PyTorch-based Scaden were set following the instruction of the origi-
nal article and the sourcecode. Thoughwe tried our best tomake it the
same as the original Scaden, it still had some different behaviors, for
example, loss plot and deconvolution performance on the SDY67
dataset were different from reported data. These differences were
probably caused by the different deep learning backends (Keras or
PyTorch). In general, since the differences were not huge, the imple-
mentation of Scaden is acceptable. The results shown in the Results
part is mainly based on the Keras-based Scaden. Only the detailed
performance comparison with different random seeds is produced by
PyTorch-based Scaden.

For RNA-Sieve, it does not have a detailed documentation, so we
ran it following its example code. In practice, we canproduce the same
result as its example code but the results of RNA-Sieve in pseudo and
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real bulk test are not as good as previously reported.We first validated
its performance onpseudo-bulk data and the original data provided by
the authors. The results showed that it could perform well on the
simulated data but it could not reproduce the same results as they
reported on Newman’s dataset and Monaco’s dataset. The bench-
marking code is available in the supplementary file.

ForCIBERSORTx (CSx),weused theweb-based application to test.
We first used a single-cell profile to generate a signature matrix and
then we deconvolved the corresponding bulk data with S mode batch-
correction. Other settings were default. When we need to predict the
differentially expressed genes in different cell types for HIV PBMC
dataset, wefirst selected the signaturematrix and added theRAB11FIP5
gene to the list of genes of interest. Then we ran CSx to infer the gene
expression profiles at high-resolution mode. All the procedures are
following the tutorial given on the website

For DWLS, we used the core functions and packages written in R
programming language to generate signature matrices and therefore
deconvolving the targeted pseudo-bulk data and the real ones. To
guarantee the rationality of our implementation, we carefully followed
the example of the intestine stem cell provided by the manual of
DWLS. Since the deconvolution function provided by DWLS only
deconvolves one sample at a time, a for-loop is brought in because we
need to deal with some large samples. For a better performance of
DWLS, in the step of generating signature matrix, we used the Seurat
flavor for pseudo-bulk test and the MAST24

flavor for real bulk test.
Furthermore, to ensure the stability and usability for all the bulk
samples, we used support vector regression (nu-SVR) to obtain the
initial estimation instead of the ordinary least square regression.

For MuSiC, we installed the R package and ran it with default
settings following its tutorial. Of note, MuSiC claims it can take the
advantages of multi-subject single-cell profiles to improve deconvo-
lution performance. But in our pseudo-bulk test, we do not havemulti-
subject single-cell data, tomeet its requirement, we randomly assigned
one dataset to two virtually different source. In the real bulk test, we
first combined PBMC data6k and data8k as reference to deconvolve
PBMC bulk dataset, but MuSiC failed to predict them properly. The
CCC value was negative which has been reported by previous study9.
Then we only used PBMC data8k as reference and assigned it to two
virtually different datasets to deconvolve PBMC bulk data. With only
one source single-cell profile the CCC value was normal and this result
challenges the MuSiC’s claim. Thus, we only displayed the one-subject
single-cell reference results above.

For Bisque, we installed the R package BisqueRNA and ran it with
default settings following its example provided by the author. In the
default mode of the “Reference-based decomposition” mode, Bisque
filters out low variancegenes anduses genes left for decomposition, so
we input all the genes without specifying some marker genes.

To generate all the figures, we used the following python packa-
ges: matplotlib55, seaborn56, and pandas57. Additional packages such as
anndata and tqdm58 are used to build our method.

It should be pointed out that, for all statistical methods (RNA-
sieve, CSx, and DWLS), all PBMC datasets were deconvolved using a
signature matrix generated from PBMC data8k dataset, reference of
mouse brain dataset is generated from Chen et al.44, and signature
matrix of human brain dataset is generated from Darmanis et al.28

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets we used are listed in the Method part. Only the ROS-
MAP human brain dataset is not public, researchers need to download
it from Synapse (ID: syn3219045) with a request. For convenience, we
listed these datasets on the webpage: https://sctape.readthedocs.io/

datasets/. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Informa-
tion files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
The open source implementation of TAPE is available at https://github.
com/poseidonchan/TAPE59, and the experiments conducted to pro-
duce the main results of this article are also stored in this repository.
The documentation of TAPE is published at https://sctape.
readthedocs.io/.
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