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Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based
motor critical for cell division. Dynein is essential for the formation and positioning of the
mitotic spindle as well as the transport of various cargos in the cell. A striking feature of
dynein is that, despite having a wide variety of functions, the catalytic subunit is coded
in a single gene. To perform various cellular activities, there seem to be different types
of dynein that share a common catalytic subunit. In this review, we will refer to the
different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms
underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple
dyneins generated through the multi-layered regulations interact with each other to
form a network of dyneins. These dynein networks may be responsible for the accurate
regulation of cellular activities, including cell division. How these networks function inside
a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos,
is discussed, as well as future directions for the integration of our understanding of
molecular layering to understand the totality of dynein’s function in living cells.
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INTRODUCTION

Cell division is a dynamic process in which sister chromosomes are separated into two daughter
cells, and the cytoplasm is partitioned into two. In eukaryotic cells, microtubules are a major
component of the cytoskeleton responsible for chromosome separation, whereas the actin
cytoskeleton is mainly responsible for cytokinesis. Microtubules also play critical roles in various
spatiotemporal dynamics inside the cell, together with a variety of associated proteins, including
polymerization regulating factors, crosslinkers, and molecular motors (Mimori-Kiyosue, 2011; de
Forges et al., 2012; Bodakuntla et al., 2019). Dynein and kinesin are two classes of molecular
motor that move along microtubules (Vale, 2003). In many eukaryotic cells, cytoplasmic dynein is
responsible for most of the minus-end directed motion inside the cell (Pfister et al., 2006; Wickstead
and Gull, 2007; Kardon and Vale, 2009; Roberts et al., 2013), whereas kinesin is mainly responsible
for plus-end directed motion. Cytoplasmic dynein-1 transports several types of cargos, such as
vesicles, membranous organelles, mRNA, and viruses (Dodding and Way, 2011; Reck-Peterson
et al., 2018), whereas cytoplasmic dynein-2 is responsible for retrograde transport in the cilia
and flagella (Hou and Witman, 2015; Roberts, 2018). A striking feature of cytoplasmic dynein-
1 is that, despite the wide variety of its function, the heavy chain polypeptide (catalytic subunit)
of cytoplasmic dynein-1 is coded in a single gene (Pfister et al., 2006). In contrast, kinesin has
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many isoforms that perform different functions (Hirokawa
et al., 2009, 2010). Kinesin isoforms are differentially expressed
according to the cell cycle, whereas a single heavy chain of dynein
is responsible for a variety of cellular processes throughout
the cell cycle (Kobayashi and Murayama, 2009). An increasing
understanding of cytoplasmic dynein-1 suggests the existence of
various kinds of dynein with different molecular compositions
and functions share a common catalytic subunit (heavy chain) to
achieve various cellular activities (Cianfrocco et al., 2015; Reck-
Peterson et al., 2018; Roberts, 2018; Olenick and Holzbaur, 2019).
In this review, we refer to the various kinds of cytoplasmic
dynein-1 as “dyneins.” While some dyneins transport cargos,
others act as an anchor of microtubules to achieve the proper
positioning of Golgi, centrosomes, and nucleus (Corthesy-
Theulaz et al., 1992; Lele et al., 2018). In addition, some dyneins
have a role in organizing higher-order microtubule structures,
such as the spindle (Heald et al., 1996; Merdes et al., 1996, 2000;
Mitchison et al., 2013).

In this review, we attempted to classify the mechanisms
underlying the emergence of multiple dyneins into several layers.
The layers of regulation are summarized as follows: layer 1,
intra-molecular regulations within the catalytic subunit; layer 2,
the control of subunit composition and integrity as a protein
complex; layer 3, the regulation by accessory proteins modulating
the catalytic activity, processivity, and/or cellular localizations.
In addition, in layer 4, we would like to discuss the regulations
mediated by forces applied to dyneins.

Inside a cell, multiple dyneins are generated through the
multi-layered regulations, interacting with each other to form a
network of dyneins. Interactions between dyneins are mediated
by microtubules, cargo associated with different dyneins, and
indirect hydrodynamic interactions. Dynein networks may be
responsible for the precise regulation of cellular activities,
including cell division. We will now discuss how dynein networks
function inside a cell, with a focus on early embryogenesis in
Caenorhabditis elegans.

LAYERS

Layer 1: Molecular Composition and
Intramolecular Regulation of Dynein
Dynein is a multi-subunit protein complex composed of heavy,
intermediate, light intermediate, and light chains (Pfister et al.,
2006). Among the subunits, the heavy chain is responsible for
the catalytic activity needed for force production. The heavy
chain of dynein consists of an N-terminal tail region and a
C-terminal motor region. The heavy chain belongs to the AAA+
superfamily of ATPases, and the six AAA domains form a ring-
structured motor domain (Figure 1A; Vale, 2003). The six AAA
domains have different functions. Four of the six AAA domains
(AAA1-4) can bind/hydrolyze ATP (Gibbons et al., 1991; Kon
et al., 2004, 2012; Carter et al., 2011; Schmidt et al., 2012),
whereas AAA5 and AAA6 are only structural (Kon et al., 2012;
Schmidt et al., 2012). ATP hydrolysis at AAA1 plays a major
role in the motility of dynein (Gibbons et al., 1987; Silvanovich
et al., 2003; Kon et al., 2004, 2005; Cho et al., 2008). ATP

hydrolysis at AAA1 and the associated conformational changes
of the AAA ring, induces helix sliding in the coiled-coil stalk,
which extends from AAA4 (Kon et al., 2012; Schmidt et al.,
2012). The helix sliding results in changes in the affinity of the
microtubule-binding domain located at the tip of stalk (Kon
et al., 2009; Niekamp et al., 2019). Mutagenic studies have
revealed that AAA3 is involved in the ATP-mediated release of
the microtubule-binding domain from microtubules, which is
essential for cyclic stepping of dynein (Silvanovich et al., 2003;
DeWitt et al., 2015; Nicholas et al., 2015a).

Another important domain in the C-terminal region is the
“C-sequence,” which is conserved in many eukaryotic cells
(Numata et al., 2011; Nicholas et al., 2015b). The C-sequence
exists downstream of AAA6 and interacts with the AAA1, AAA5,
and AAA6 domains (Numata et al., 2011; Kon et al., 2012;
Nicholas et al., 2015b). Dynein of Saccharomyces cerevisiae,
which generates a higher stall force than mammalian dyneins
(5∼7 pN for yeast and 1–2 pN for mammalian), lacks this
C-sequence. A study using an artificial dimer of mouse dynein,
which contains only motor domains and linkers, reported that
the deletion of the C-sequence induced the generation of a strong
stall force comparable to that of yeast dynein (Nicholas et al.,
2015b). However, the deletion of C-sequence had little effect
on the velocity, and instead reduced the levels of microtubule-
stimulated ATPase activity. These results suggest that force
generation and velocity may be the controlled separately,
however, a further examination of the effect of C-sequence
deletion on the full-length dynein complex is needed.

The N-terminal region of the heavy chain provides a platform
for interaction with other subunits of the dynein complex, which
is discussed in the next section (Layer 2). Between the C-terminal
motor region and the N-terminal tail region, a linker region
exists. The conformational change of the linker coupled with the
ATP hydrolysis cycle is required for the stepping of dynein (Kon
et al., 2005; Mogami et al., 2007; Roberts et al., 2009, 2012).

Layer 2: Subunit Composition and
Integrity of Dynein Complex
The other subunits of the dynein complex, namely the
intermediate, light intermediate, and three types of the light
chain subunits bind directly or indirectly to the heavy chain
subunit through the N-terminal tail region of the heavy
chain (Figure 1B; Pfister et al., 2006; Chowdhury et al.,
2015; Zhang et al., 2017). The structural core of the complex
consists of a dimer of two heavy chains. These chains form
a dimer through a dimerization domain in the N-terminal
region (Urnavicius et al., 2015; Zhang et al., 2017). The
dimerized heavy chains bind to the light intermediate chains
and intermediate chains. The light chains are incorporated to
the dynein complex by binding to the N-terminal region of
the intermediate chains (Lo et al., 2001; Mok et al., 2001;
Makokha et al., 2002; Susalka et al., 2002; Hall et al., 2010).
All of the five non-motor subunits are each encoded by two
genes in the vertebrate, whose cell-type specific expression
pattern generates the specific composition of the dynein complex
(Pfister et al., 2006; Pfister and Lo, 2011; Pfister, 2015). The
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FIGURE 1 | Multi-layered regulatory mechanism of cytoplasmic dynein-1. (A) Layer 1: distinct regions of the C-terminal motor domain of dynein heavy chain subunit
are shown with different colors. The number shows distinct AAA motifs. “C” indicates the C-sequence. The stalk and microtubule binding domain extending from
AAA4 are shown in yellow. The linker connected to AAA1 is depicted as a purple bar. (B) Layer 2: distinct subunits of dynein complex are shown with different colors.
Red represents the dimerization domain of the heavy chain. (C) Layer 3: Through the interaction with adaptor proteins, the localization and activity of dynein is
regulated. A single complex of dynein that forms a phi-particle is auto-inhibited and diffuses along the microtubule (left). In contrast, dynein associated with dynactin
and adaptor protein moves unidirectionally (right). (D) Layer 4: Dynein activity is also regulated by forces. When dynein is pulled toward the plus-end of microtubules,
it binds more strongly to microtubules compared to dynein without force or pulled toward the minus-end (1). Additionally, the dynein dissociation rate decreases in
the presence of high loads (2).

composition of the dynein complex and its post-translational
modifications are believed to determine the specificity of
the cargos subsequently transported by the dynein complex
(Tai et al., 2001; Pfister and Lo, 2011; Pfister, 2015). This
regulation is carried out by specific interactors of the dynein
complex, which will be discussed in detail in the section
on layer 3. The dynactin complex, an essential regulator of
dynein, binds to dynein through the N-terminal region of the

intermediate chains (Karki and Holzbaur, 1995; King et al., 2003;
Siglin et al., 2013).

Another important role of the non-motor subunits is the
induction of the formation of a stable dimer complex of
dynein. An in vitro reconstitution study showed that the
heavy chain alone forms aggregation but not stable dimers
(Trokter et al., 2012), although the heavy chain has an intrinsic
dimerization domain in its N-terminus (Urnavicius et al., 2015;

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 January 2020 | Volume 8 | Article 22

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00022 January 29, 2020 Time: 19:29 # 4

Torisawa and Kimura Network of Dyneins

Zhang et al., 2017). The light intermediate chain induces the
formation of a partially stable dimer complex, wherein the
addition of the intermediate chain induces a fully stable
complex with the dimer of the heavy chain. Although
the light chains are dispensable for the stability of the
dimerization of the heavy chains, their binding to intermediate
chains is believed to contribute to the self-association of the
intermediate chains (Hall et al., 2009; Nyarko and Barbar, 2011;
Barbar and Nyarko, 2015).

After the formation of the dynein complex, the heavy chain
no longer forms aggregates. The dynein complex alone, however,
is not a processive motor, moving along the microtubules
diffusively (Trokter et al., 2012; McKenney et al., 2014; Schlager
et al., 2014a; Torisawa et al., 2014). The mammalian dynein
complex on its own is known to exist in an autoinhibited
conformation due to its intra-dimer interaction. This has
been demonstrated by single molecule observations of the
recombinant mammalian dynein complex, where its movement
was characterized as being bidirectional and diffusive (Trokter
et al., 2012; McKenney et al., 2014; Schlager et al., 2014a;
Torisawa et al., 2014). This is in contrast to the case of
yeast dynein, which exhibits robust processive movements along
the microtubules (Reck-Peterson et al., 2006). Enzymatic and
structural studies using human dynein have revealed that the two
motor domains of a single dynein dimer form a characteristic
conformation called the “phi-particle” (Torisawa et al., 2014;
Zhang et al., 2017). In the phi-particle, two motor domains
are held together with low affinity for microtubules. Because
of this conformational restriction, phi-shaped dynein has a low
affinity for dynactin, a protein that activates processive motility
of dynein, and is thus autoinhibited. A mutant dynein with
a defect in phi-particle formation was found to accumulate
at the centrosome and the spindle pole, suggesting that phi-
particle-based autoinhibition plays a role in the intracellular
distribution of dynein (Zhang et al., 2017). Interestingly,
recent studies have shown that cytoplasmic dynein-2, which
is responsible for intraflagellar transport (IFT), forms a phi-
particle-like conformation (Toropova et al., 2017; Jordan et al.,
2018), suggesting that the formation of phi-particles is a
conserved regulatory mechanism of dimeric dyneins (Roberts,
2018). In order to act as a processive motor, the dynein
complex needs to interact with other proteins, such as the
dynactin complex, as will be explained in the following section
on layer 3.

Layer 3: Regulation of the Dynein
Complex Through Accessory Proteins
The third layer of regulation is achieved through the
interaction of the dynein complex with various accessory
proteins (Figure 1C). The non-motor subunits of the dynein
complex are responsible for the binding of various accessory
proteins. The N-terminal region of the intermediate chains
binds to the dynactin complex (Karki and Holzbaur, 1995;
Vaughan and Vallee, 1995; King et al., 2003; Siglin et al., 2013),
a major/ubiquitous binding partner of dynein required for
processive movements in vitro and in vivo. The interaction
between dynactin and the intermediate chains is reduced by

the phosphorylation of the intermediate chain in an isoform-
dependent manner (Vaughan et al., 2001; Jie et al., 2017).
The C-terminal region of the light intermediate chains binds
to various “adaptor” proteins, recruiting dynein to specific
cellular locations, including Spindly, bicaudal D homolog 2
(BICD2), Hook homologs, Rab interacting lysosomal protein
(RILP), Rab11 family interacting protein 3 (RAB11FIP3), ninein,
and TRAK1 (Schroeder and Vale, 2016; Redwine et al., 2017;
Lee et al., 2018; Celestino et al., 2019). The adaptor proteins
control the subcellular localization of dynein. NuMA is an
important adaptor that recruits dynein to the cortex membrane
(Woodard et al., 2010; Kiyomitsu and Cheeseman, 2012, 2013)
and spindle poles (Merdes et al., 1996, 2000; Elting et al., 2014;
Hueschen et al., 2017, 2019). The cortical-localized NuMA
forms the cortical force generating machinery (Kiyomitsu and
Cheeseman, 2012; Kiyomitsu and Cheeseman, 2013; Okumura
et al., 2018; Kiyomitsu, 2019). The recruitment of dynein to
the plus end of the microtubules depends on dynactin and EBs,
and contributes to the initiation of transport (Moughamian and
Holzbaur, 2012; Barbosa et al., 2017; Jha et al., 2017). HOOK
proteins recruit dynein to the early endosomes and nuclear
envelope (Bielska et al., 2014; Zhang et al., 2014; Guo et al., 2016;
Dwivedi et al., 2019). The C. elegans hook protein, ZYG-12,
mediates the essential attachment between the centrosome
and nucleus (Malone et al., 2003; Minn et al., 2009), and thus
plays a critical role in transporting the centrosome/nucleus
complex. Many other adaptors and their role in the spatial
control of dynein are well summarized in the literature (Liu,
2017; Olenick and Holzbaur, 2019).

Adaptor proteins not only specify the subcellular localization
of dynein, but also play an important role in regulating its activity.
The dynein complex alone, without adaptor proteins, forms a
phi-particle and is autoinhibited (Torisawa et al., 2014; Zhang
et al., 2017). Although a single molecule of purified dynein is
trapped in an autoinhibited state and diffuses along a microtubule
(Trokter et al., 2012; McKenney et al., 2014; Schlager et al., 2014a;
Torisawa et al., 2014), dynein is clearly responsible for directed
transport within cells. This apparent contradiction is resolved
via the aid of regulatory proteins. Cargo-adaptor proteins, such
as BICD2 and HOOK, associate dynein with dynactin, which
activates the processive motility of dynein. The dynein-dynactin-
adaptor complex allows for the robust processive movements
(McKenney et al., 2014; Schlager et al., 2014a; Olenick et al., 2016;
Olenick and Holzbaur, 2019). While dynein-dynactin-BICD2
complex moves along MTs in a processive way, Kobayashi et al.
(2017) reported that CC1, one of the coiled-coil regions in the
p150 subunit of dynactin, induces the dissociation of dynein
and dynactin from microtubules and negatively regulates the
motility of dynein. In addition, several recent studies have shown
that dynein-activating cargo-adaptor proteins are normally in an
autoinhibited state, and only become activated after cargo binds
(McClintock et al., 2018; Sladewski et al., 2018; Noell et al., 2019).

Although complex formation of dynein with dynactin and
adaptor proteins induces the robust processive movement, both
in vitro and in vivo, required for the directed intracellular
transport, the difference between the velocity of movement
in vitro and in vivo remains to be elucidated. Whereas the
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dynein-dynacin-BICD2 complex moves with the velocity of
several hundred nm/s to 1 µm/s (McKenney et al., 2014;
Schlager et al., 2014a; Belyy et al., 2016; Olenick et al., 2016;
Redwine et al., 2017; McClintock et al., 2018; Sladewski et al.,
2018), the dynein-driven intracellular transport exhibits a
velocity of several µm/s (Splinter et al., 2012; Schlager et al.,
2014b). A rapid unidirectional transport with the velocity of
several µm/s was not observed even in the team of up to
eight dyneins, although the motors were clustered on the DNA
nanotube (Torisawa et al., 2014). Previous studies have indicated
the weak-additive nature of the velocity of dynein, suggesting the
number of motors alone cannot explain the velocity of dynein-
based transport. In addition, the difference in velocity between
vesicles in vivo and purified vesicles in vitro suggests that the
cargo-related geometrical factor is not sufficient to explain the
difference in velocity (Hendricks et al., 2010). Considering that
physical properties, such as ionic strength, viscoelasticity, non-
equilibrium fluctuations, and hydrodynamic flow differ in vitro
and in vivo (Caspi et al., 2000; Brangwynne et al., 2008; Luby-
Phelps, 2013; Guo et al., 2014; Goldstein and van de Meent, 2015),
further studies focusing on the effects of these factors are required
to understand how rapid intracellular transport is achieved.

Layer 4: Regulation by External Forces
Interestingly, dyneins with identical subunit compositions and
identical associated proteins do not always have the same motor
activity, indicating another layer of regulation. The activity of
dynein is also regulated by applied forces (Figure 1D). Several
biophysical studies have shown that dynein has a characteristic
force response property: it binds to a microtubule more strongly
in the presence of backward loads than forward loads (Cleary
et al., 2014; Nicholas et al., 2015a; Rao et al., 2019). Recently,
Rao et al. (2019) revealed that the asymmetric force response to
directional loads is mediated by the sliding of the coiled-coils of
the stalk, and that coordinated conformational changes of linker
regions control this process. In addition to the asymmetry, dynein
has a catch-bonding property: the unbinding rate of dynein
decreases in the presence of strong loads in some force ranges
(Kunwar et al., 2011; Leidel et al., 2012). Theoretical studies
have argued that the force response of dynein supposed to be
important for coordinated transport (Soppina et al., 2009; Bhat
and Gopalakrishnan, 2012; Puri et al., 2019). Further biophysical
and theoretical studies that focus on how the multiple motors
share loads will be required to determine how force response
regulates dynein in a team of motors.

Inside the cell, such external forces are applied to dynein
through other motor proteins, applying forces to the microtubule
associated with the dynein, or associated with the common
cargos (see the following section). Forces may also be generated
as viscous drag against dynein itself or associated cargos
or microtubules.

NETWORK OF DYNEINS

In a cellular context, the dynein complex does not work alone.
Multiple dyneins are connected directly or indirectly in the cell

through molecular or physical interactions to form a functional
network of dyneins. For example, intracellular vesicles usually
contain multiple dyneins (Hendricks et al., 2010; Encalada et al.,
2011; Rai et al., 2013, 2016; De Rossi et al., 2017; Chowdary et al.,
2018; Cella Zanacchi et al., 2019), and the clustering enables a
team of dyneins to produce collective large stall forces (Mallik
et al., 2013; Rai et al., 2013). A recent super-resolution study
also reported that dynein forms nanoclusters composed of up
to seven dimers on microtubules (Cella Zanacchi et al., 2019).
Clustering of dyneins anchored at the cortex is activated by the
adaptor NuMA/Num1. Disruption of dynein clustering results
in impaired spindle positioning (Tang et al., 2012; Kraft and
Lackner, 2017, 2019; Okumura et al., 2018; Schmit et al., 2018),
suggesting that controlling the number of motors plays a key role
in dynein force generation at the cell cortex. The clustering of
dynein may also play an important role in intracellular transport.
Recent cryo-EM studies reveal that some activating adaptors,
including BICDR1 and HOOK3, recruit two dyneins to the
activated complex (Grotjahn et al., 2018; Urnavicius et al., 2018),
resulting in larger stall forces and faster velocities. In addition
to the clustering of dynein itself, the intracellular cargos also
have the opposite-directed kinesin motors (Hirokawa et al., 1990;
Martin et al., 1999; Gross et al., 2002; Ling et al., 2004; Kural
et al., 2005; Pilling et al., 2006; Barkus et al., 2008; Ally et al.,
2009; Soppina et al., 2009; Hendricks et al., 2010, 2012; Encalada
et al., 2011; Hancock, 2014; Kendrick et al., 2019). Interestingly,
several researches reported that reducing the opposite-directed
motor impaired dynein-dependent transport (Martin et al., 1999;
Gross et al., 2002; Ling et al., 2004; Pilling et al., 2006; Barkus
et al., 2008; Ally et al., 2009; Encalada et al., 2011; Hendricks et al.,
2012). These observations suggest the cooperative activation of
team of motors, although the detailed mechanism of cooperative
activation remains unclear. The force response property of
dynein discussed at layer 4 may play a key role in cooperative
transport (Soppina et al., 2009; Bhat and Gopalakrishnan, 2012;
Puri et al., 2019).

The clustering of dynein also induces the formation of higher-
order structures, such as mitotic/meiotic spindles. Whereas
dynein contributes to the focusing of microtubules at spindle
poles (Verde et al., 1991; Heald et al., 1996, 1997; Merdes
et al., 2000; Goshima et al., 2005; Morales-Mulia and Scholey,
2005; Raaijmakers et al., 2013; Dwivedi et al., 2019), an in vitro
reconstituted study demonstrated that dynein-dynactin-BICD2
complexes can organize the aster MT array through clustering
at the minus end of microtubules (Tan et al., 2018). The
accumulation of dynein-dynactin-BICD2 complex is regulated by
the tyrosination of the C-terminus of α-tubulin, which affects the
affinity of dynactin complex to microtubules (McKenney et al.,
2016; Barbosa et al., 2017).

Many previous studies have shown that the distribution
of dynein in the cytoplasm is highly homogeneous in many
eukaryotic cells (Schmidt et al., 2005, 2017; Nguyen-Ngoc et al.,
2007; Gassmann et al., 2008; Kobayashi and Murayama, 2009;
Kimura and Kimura, 2011; Fielmich et al., 2018; Rodriguez-
Garcia et al., 2018). As discussed in the section on layer 3, in
the absence of adaptor proteins, the dynein complex is in the
auto-inhibited state (Torisawa et al., 2014; Zhang et al., 2017).
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Active dynein accumulates at the minus-end of microtubules,
while auto-inhibited dynein is distributed uniformly in the
cytoplasm, indicating that dynein activity is regulated, not by
dynein gene expression, but by the distribution of dynein
regulatory proteins. In fact, a recent study suggested that
the force imbalance in the first cell division in C. elegans
embryos is caused by the asymmetric distribution of activating
adaptors on the cell cortex, not by the distribution of dynein
(Rodriguez-Garcia et al., 2018).

THE FIRST CELL DIVISION OF
Caenorhabditis elegans, AS A MODEL
FOR THE FUNCTIONAL NETWORKS OF
DYNEINS

So far, we have discussed that the multi-layered regulation of
cytoplasmic dynein can generate multiple types of dynein (i.e.,
dyneins) with distinct biochemical and biophysical activities.
These dyneins may contribute to provide diversity to the
cellular toolbox of minus-end-directed microtubule motors.
Furthermore, multiple dyneins may act cooperatively to
function as a “network of dyneins” to accomplish complicated
cellular activities.

Examples of multiple dyneins acting as a network include
the migration of neurons and the formation of the mitotic
spindle. In migrating neurons, a population of cytoplasmic
dyneins in the migratory process pulls the centrosome in the
direction of migration. Meanwhile, another dynein population
on the nuclear surface pulls the nucleus toward the centrosomes.
The combined action of these two dynein populations moves
the nucleus in migrating neurons (Tsai et al., 2007; Vallee
et al., 2009). In dividing cells, the formation of the mitotic
spindle requires multiple dyneins functioning at various locations
(Prosser and Pelletier, 2017). At the poles of the spindle, dynein
is involved in pole focusing. At the kinetochore, dynein aligns
the chromosomes. Dynein also slides along the microtubules
to generate forces required for the integrity of the spindle
structure. Dynein at these different locations appears to possess
different subunit compositions and/or to associate with different
proteins (Raaijmakers et al., 2013). These examples demonstrate
that multi-layered regulation of dyneins is critical to certain
in vivo processes.

In describing how multiple dyneins act as a network, we use
the first cell division of C. elegans as model system. In this system,
the dynamic reorganization of the cell occurs in less than 1 h
after fertilization (Pintard and Bowerman, 2019). Cytoplasmic
dynein functions in various processes, such as the formation
of meiotic and mitotic spindles, and the positioning of the
nucleus and spindle (Table 1). Because the cytoplasmic dynein
is responsible for various functions, we assume cells generate
multiple dyneins through multi-layered regulation in this system.
In fact, the localization, cargos, enzymatic activities, and temporal
changes of dynein are different for each process, suggesting the
coexistence of multiple dyneins in the cell. At the same time,
the dyneins share a common space (i.e., cytoplasm) and time,

suggesting that they may influence each other and function as
a network. Therefore, we believe that the first cell division of
C. elegans is a good model to examine the function a network of
dyneins in vivo.

In this review, we focus on centrosome positioning during
the first cell division of C. elegans (Figure 2). After fertilization
(Figure 2A), the two centrosomes are formed in the vicinity of
sperm pronucleus, as the centrioles are provided to the embryo
by the sperm. The two centrosomes are separated into the two
poles of the sperm pronucleus (Figure 2C). After separation,
the centrosomes move toward the cell center together with the
sperm pronucleus, and later also with the oocyte pronucleus
after pronuclear meeting (Figure 2D). The line connecting the
two centrosomes is first perpendicular to the long axis of the
embryo, but later rotates to become parallel to the long axis by
the time of the centrosomes reach the cell center (Figure 2E).
After nuclear envelope breakdown (NEBD), the mitotic spindle
is formed and the centrosomes become the two poles of the
spindle (Figure 2F). The centrosomes, together with the mitotic
spindle, will be displaced toward the posterior pole to prepare
for an asymmetric cell division (Figure 2G). The spindle also
oscillates perpendicular to the long axis, as the two centrosomes
separates further and thus the spindle elongates (Figure 2H).
Three distinct types of dyneins, at least, seem to exist in the cell
and they cooperatively move the centrosomes in the dynamic and
regulated manner.

Multiple Dyneins for Centrosome
Positioning in the C. elegans One-Cell
Embryo
The catalytic subunit of cytoplasmic dynein (DHC-1) localizes
to the cytoplasm, cell cortex, and nuclear surface (Gonczy
et al., 1999). The dynein in these three distinct localizations can
be considered to possess distinct biochemical and biophysical
properties, and can thus be considered as three different
types of dyneins. The anchoring mechanisms for these three
distinct types are well understood (i.e., layer 3 regulation). The
localization to the nuclear surface requires SUN-1 and ZYG-
12 proteins that forms a SUN/KASH pair, a well-conserved
protein complex penetrating through the inner and outer nuclear
membrane (Malone et al., 2003; Hiraoka and Dernburg, 2009).
The localization of the cell cortex is mediated through trimeric
G protein complexes (GOA-1 and GPA-16 as the alpha subunits),
GPR-1 and GPR-2 proteins, and LIN-5 protein (Nguyen-Ngoc
et al., 2007). The localization mechanisms at the cytoplasm are
less clear. In addition to a uniform distribution over the entire
cytoplasm, possibly as an inactive phi-particle (see the section
on layer 2), dynein should localize at the surface of organelles.
Several organelles move toward the minus end of microtubules
in a dynein-dependent manner (Gonczy et al., 1999; Kimura and
Kimura, 2011). RILP-1 is a protein known to connect dynein
and lysosomes in mammalian cells through light intermediate
chains (Celestino et al., 2019), and required to the lysosome
movement in the one-cell stage embryo of C. elegans (Kimura
and Kimura, 2011), indicating that RILP-1 is mediating organelle
localization of dynein.
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TABLE 1 | Processes involving dynein in C. elegans one-cell embryos.

Processes (*1) Localization of dynein in
action

Other subunit involved Accessory proteins
involved

References

Oocyte meiotic spindle
formation

Gonczy et al., 1999

Attachment of the
centrosomes to the sperm
pronucleus

Nuclear surface ZYG-12, SUN-1 Gonczy et al., 1999; Malone
et al., 2003

Centrosome separation Nuclear surface, Cell cortex ZYG-12, SUN-1, GPA-16,
GOA-1

Gonczy et al., 1999; Malone
et al., 2003; De Simone et al.,
2018

Oocyte pronuclear migration Nuclear surface DNC-1, DNC-2 ZYG-12, SUN-1 Skop and White, 1998; Gonczy
et al., 1999

Sperm pronuclear migration
and centering

Cytoplasm, Cell cortex (*2) DNC-1, DNC-2, DYRB-1
LIS-1/NudE

ZYG-12, SUN-1, RILP-1 Skop and White, 1998; Gonczy
et al., 1999; Cockell et al.,
2004; Kimura and Onami,
2005; Goulding et al., 2007;
Kimura and Kimura, 2011

Nuclear rotation Cell cortex, Cytoplasm DNC-1, DNC-2 Skop and White, 1998; Gonczy
et al., 1999; Kimura and
Onami, 2007

Mitotic spindle formation LIS-1/NudE SPDL-1, Rod/Zwilch/Zw10 Gassmann et al., 2008; Simoes
et al., 2018

Spindle displacement Cell cortex DYRB-1 PAR-2, PAR-3, GPA-16,
GOA-1, GPR-1, GPR-2,
LIN-5

Grill et al., 2001; Colombo
et al., 2003; Couwenbergs
et al., 2007; Nguyen-Ngoc
et al., 2007; Fielmich et al.,
2018

Spindle rocking Cell cortex GPA-16, GOA-1, GPR-1,
GPR-2

Spindle elongation Cell cortex GPA-16, GOA-1, GPR-1,
GPR-2

*1, In temporal order; *2, Antagonistic role, see text.

The subunit composition may be different (layer 2 regulation).
DYRB-1 is not required for centrosome separation on the nuclear
surface, but is required for the forces produced in the cytoplasm
and cell cortex (Couwenbergs et al., 2007; Kimura and Kimura,
2011). Point mutants of dynein show distinct enzymatic activities
of dynein (layer 1 regulation) are responsible for the three
distinct “dyneins.” Temperature-sensitive mutations identified
for the dhc-1 gene cause defective spindle formation but have
no effect on centrosome positioning. For example, a temperature
sensitive mutation (or195 allele) in the CC2 domain of the
coiled-coil stalk results in spindle shortening and failure in
cytokinesis (Schmidt et al., 2005). The suppressors of the point
mutants of dhc-1 have been identified, supporting a regulation
of dynein activity through dynein subunits and adaptor proteins
(O’Rourke et al., 2007).

Network of Dyneins for Centrosome
Positioning in the C. elegans One-Cell
Embryo
In the previous section, we listed dyneins in the cytoplasm,
cortex, and nuclear surface as distinct dyneins. These dyneins
cooperatively function in various aspects of centrosome
positioning and thus can function as a network of dyneins.

The first process is centrosome separation, in which a pair
of the centrosomes separate into two poles of the sperm

pronucleus. Dynein on the nuclear surface, anchored by
SUN-1/ZYG-12 (Malone et al., 2003), slides the microtubules
connected to the centrosomes to move the centrosomes (Gonczy
et al., 1999). Dynein at the cell cortex also contributes
to centrosome separation. The dynein at the cortex pulls
the centrosomes via microtubules (“cortical pulling force”)
and separates the centrosomes through a nucleus-independent
manner (Malone et al., 2003). The cortical pulling force separates
the centrosomes along the nuclear surface also in Drosophila
embryo (Cytrynbaum et al., 2003). Dyneins on the nuclear
surface and at the cortex both contribute to centrosome
separation, where the knockdown of both functions results in
defects in separation (De Simone et al., 2018).

The second process is nuclear centration. After centrosome
separation, the centrosomes move toward the center of the cell.
The sperm pronucleus and the oocyte pronucleus (after the two
pronuclei meet) are anchored to the centrosomes via the dynein
on the nuclear surface. With this mechanism, the pronuclei also
move to the center. Nuclear centration depends on dynein as a
knockdown of DHC-1 by RNAi, resulting in a complete lack of
the centration (Gonczy et al., 1999; Kimura and Onami, 2005).
From this and other arguments, it is difficult to explain the
centration by dynein-independent forces, such as the pushing
force generated by the polymerization of microtubules (Kimura
and Onami, 2005). Instead, several lines of evidence suggest
that dyneins in the cytoplasm contribute positively to centration
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FIGURE 2 | Intracellular localization and function of dynein during the first cell
division of C. elegans one-cell embryo (A–I, in temporal order, see also text).
Intracellular localization of the heavy chain subunit of dynein (DHC-1) is shown
in dark and light gray (Gonczy et al., 1999). Nuclei and chromosomes are
shown in blue. The movement of the centrosomes driven by dynein are
denoted by red arrows. See Table 1 for the references describing the
involvement of dynein in each process.

(Kimura and Onami, 2005, 2007; Kimura and Kimura, 2011).
Dynein at the cell cortex is also active during centration but
contributes negatively by pulling the centrosomes and nuclei
backward toward the nearest cortex (Kimura and Onami, 2007).
It should be noted here that a study reported that centration
slows down after the pronuclear meeting upon inhibiting dynein
at the cortex (Goulding et al., 2007), but this is likely due to
the centration speeding up in this condition, which makes the
meeting to occur near the center and there is little distance to
travel after the meeting. In summary, for nuclear centration,
dyneins at the cytoplasm and at the cell cortex act in an
opposing manner.

Similarly, when the mitotic spindle displaces toward the
posterior pole, the dyneins at the cortex and at the cytoplasm
act in an opposing manner. In this case, dynein at the cortex
produces a major force contributing positively to the movement
(Grill et al., 2001; Nguyen-Ngoc et al., 2007) whereas dynein
at the cytoplasm likely acts negatively to the displacement
(Kimura and Onami, 2007). The mitotic spindle also shows
oscillatory movement perpendicular to the long axis of the
cell. The oscillation is explained by a combination of a
positive feedback regulation, in which a displacement of a
spindle pole to one direction enhances a force moving the
pole to the same direction, and a negative feedback regulation
suppresses excess displacement in one direction (Grill et al.,
2005; Pecreaux et al., 2006). Dynein at the cortex is responsible
for positive feedback (Pecreaux et al., 2006), whereas dynein
at the cytoplasm is responsible for negative feedback (Sugioka

et al., 2018). These examples also indicate that dyneins at
the cytoplasm and at the cortex act cooperatively, however,
in an opposing manner. It should be noted here that the
involvement of dynein at the cytoplasm in spindle displacement
and spindle oscillation is still under debate, wherein some studies
argue that the pushing force generated by the polymerization
of microtubules is likely to play a role in the process
(Garzon-Coral et al., 2016).

Another example of the cooperative action of different
dyneins is nuclear rotation. During nuclear centration, the line
connecting the two centrosomes is initially perpendicular to
the long axis of the cell, but later rotates to become parallel
to the long axis. This rotation of the nucleus contributes to
the alignment of the mitotic spindle along the long axis of the
cell, which is known as Hertwig’s long axis rule (Minc et al.,
2011). Dynein in the cytoplasm is sufficient for this rotation
(Kimura and Onami, 2005, 2007). Dynein in the cellular cortex
is not essential for rotation, but does cause the rotation to be
earlier and faster (Kimura and Onami, 2007). Therefore, dyneins
at the cytoplasm and at the cortex both act positively to the
nuclear rotation. In conclusion, during dynamic centrosome
positioning of the one-cell stage C. elegans embryo, multiple
dyneins act cooperatively as a network to accomplish temporal
and spatial regulation.

CONCLUSION AND PERSPECTIVES

In this review, we discussed the coordination of different types
of “dyneins” generated by multi-layered regulatory mechanisms,
including enzymatic regulation in the motor domain, the subunit
compositions, the activation by the associated proteins, and the
regulation by force in cellular contexts. To further understand the
coordination of multiple dyneins, studies focusing on the cellular
processes, that is, where dyneins interact directly or indirectly,
will provide more details. As an example of such processes, we
discussed that microtubule dynamics in the early embryogenesis
of C. elegans embryos, where many types of dyneins coordinate
to drive various processes in a short period of time, mainly
focusing on the role of multi-layered regulatory network of
dynein. In addition to the cell biological attempts, in vitro
reconstitution of the microtubule-related cellular processes
(Laan et al., 2012; Dogterom and Surrey, 2013; Vleugel et al.,
2016a,b) and their expansion will help us to characterize the
coordination of dyneins.
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