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Abstract
Intelligent systems are enhancing city environments and improving their overall performance in all possible aspects. Innova-
tions in the field of information and communication technologies (ICT) and the proliferation of big data, internet-of-things 
(IoT), and cloud (BIC) infrastructures revolutionize the existing agile city ecosystems while effectively addressing customers 
and citizens needs. In this paper, we address the technology-driven applications that are capable of influencing the existing 
city infrastructures during their transformation towards smart cities with contactless technologies. We present applications, 
design principles, technology standards, and cost-effective techniques that leverage BIC for contactless applications and 
discuss user interfaces deployed in smart city environments. We further discuss state-of-the-art sensing methods and smart 
applications that support cities with smart contactless features. Finally, a case study is reported on how BIC can assist in 
efficiently handling and managing emergency situations such as the COVID-19 pandemic.
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Introduction

According to a computational and statistical data survey 
performed by the United Nations Department of Economic 
and Social Affairs (UN DESA) [1], by 2050, more the 68% 
of the world population will migrate to urban areas. Typi-
cal reasons justifying this transition include the search for 
improved living conditions, modern facilities and lifestyle, 
as well as smart and connected assets (e.g., housing units, 
vehicles, cities, etc.) [2]. However, this rapid population 
shift towards urban environments can potentially increase 
the risk of pollution, flash flooding events, lack of housing 
infrastructure, or evoke other social consequences affecting 
the citizen’s livelihood. To mitigate such threats, scientists 
and government experts introduced the “smart city” con-
cept. The definition of a smart city is not limited to tech-
nological advancements and innovations incorporated into 
the traditional city infrastructure, but also entails consumer 
involvement. A smart city is an architectural design that can 
support the economic growth of societies and provide better 
prospects for citizens—with high standards of sustainability 
and mobility—leveraging artificial intelligence [3], machine 
learning [4, 5], robotics, and automation schemes [3, 6].

This article is part of the topical collection ”Technologies 
and Components for Smart Cities” guest edited by Himanshu 
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Technological innovations endorsed the transition towards 
smart city deployments. Harnessing the advancements in 
scientific fields such as big data, Internet-of-things (IoT), and 
cloud technologies (BIC), can assist cities become secure, 
economically efficient, and sustainable infrastructures, while 
addressing most of the arising urbanization challenges. 
Apart from the aforementioned, contactless technology (CT) 
has recently received great adoption due to its practical and 
secure way for completing transactions [6–8]. Recently, the 
COVID-19 pandemic accelerated the need for CT in smart 
cities. CT has been in use for almost a decade in applica-
tions involving smart gadgets and embedded chip-based 
tools used for contactless payments, identity verification, 
attendance monitoring, etc. In early 2000, magnetic strip-
based payments were used in banking systems, and later on, 
CT payment methods were introduced through which users 
could make payments at dedicated embedded devices. Over 
the past few months and given the COVID-19 outburst, a 
massive digital transformation has occurred, forcing com-
panies to adapt to the new circumstances. In more details, 
almost 68% of enterprises have turned to digital technolo-
gies to retain their customer base, service provisioning and 
with minimum impact on the enterprise operation. Notably, 
during the pandemic global crisis, technology-driven smart 

applications including IoT devices (e.g., smartphones, com-
puters, smart watches, and sensors) improved the security 
and safety of citizens while keeping them socially isolated 
from the outside world to disrupt the virus spread per the 
government safety regulations.

A field study from the World Health Organization (WHO) 
and the United Nations predicts that there will be a 40–75% 
increase in technology-driven startups by 2030, which will 
be addressing the socio-environmental challenges around 
the world. Smart cities can furnish technological innova-
tions improving the sustainability and living quality of urban 
environments. Different information and communication 
technologies (ICT) technologies assisting this digitization 
thrust along with their functional capabilities and resource 
requirements in different sectors are illustrated in Fig. 1.

Consumer engagement, business objectives, and applica-
tion interfaces motivated the shift towards CTs which can 
positively influence smart ecosystems, making them envi-
ronmentally friendlier (e.g., by reducing the use of paper 
for documents, plastic for cards, etc.). Different use cases 
and application-specific fields encountered within smart city 
deployments (e.g., mobility, energy, healthcare, etc.) can be 
leveraged for the design, development, and evaluation of 
contemporary technologies enabled by BIC. Smart cities 

Fig. 1   Overview of the information and communication technologies (ICT) within smart cities assisted by big data, Internet-of-things (IoT), and 
cloud (BIC) infrastructure
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equipped with CT gateways can support high growth rates, 
become more competitive, and attain bigger market capitals 
when compared to business entities operating using outdated 
tools. COVID-19 has demonstrated the effectiveness of CT 
for different applications and paved the way for even some 
rural areas which tested BIC-enabled techniques, mainly in 
industry-based applications, proving their cost-effectiveness. 
Depending on the actual environment, where such CT are 
are employed, for instance in construction, transportation, 
business models, consumer engagement policies, etc., they 
can furnish a plethora of additional features [9].

The key contribution of this paper is to showcase the 
increasing number of CT applications within smart cities 
that can be promoted by BIC. A field study as well as a 
forecasted statistical analysis about BIC in their individual 
domains are briefly presented in Sect. 2. Detailed case stud-
ies, related literature, and the impact of ICT in smart cities 
are discussed in Section "Related Work" to raise the readers’ 
awareness regarding the benefits of CT. The inter-relation-
ship between BIC and application-specific innovations for 
CT are explained in Section "Contactless Technology (CT)”. 
Different technologies and their actual/forecasted impact on 
societal implications from the smart city’s perspective are 
also explained. Cross-platform technologies, applications, 
and technologies driving CT towards smart ecosystems in 
smart cities are discussed in Section "CT in Smart City”. 
The impact of big data in healthcare, national security, and 
various surveillance schemes is detailed in Section “Big 
Data Biometric Analytics: A CT Paradigm”. The importance 
of IoT for autonomous vehicles (AV) is examined in Section 
"IoT in Autonomous Vehicles (AV)”. Furthermore, given 
that cloud-based infrastructures are increasingly used in 
many embedded applications, the relation between contact-
less payments and cloud-based requirements are explained in 
Section “Frictionless Payment Technology and Cloud Infra-
structure”. A case study about the impact of BIC for smart 
cities in India during COVID-19 is presented in Section 
“Contactless Payments with NFC”. The security and safety 
standards which should be mandated before the deployment 
of CT in the smart city ecosystems are introduced in Sec-
tion “A Case Study of Utilizing BIC Technologies During 
COVID-19”. Finally, Sections “Discussion on the Implica-
tions of Utilizing BIC”, Conclusion” delineate the implica-
tions of CT and conclude with directions for future work on 
this topic.

Related Work

Smart city technological transformations require significant 
investments [10], innovations [11], research plans and long-
term infrastructure analyses [12]. Numerous venture capi-
tal investors, business analysts, and government agencies 

should actively participate in the development of the com-
plete city infrastructure provisioning smart features to citi-
zens. If comprehensive studies are not performed and strict 
deployment plans are not respected, urbanization can lead to 
unstable economic growth and negatively impact the smart 
city transition on a global scale. Typical challenges include 
generation, transportation, and distribution of power, water 
supply, connectivity, and communication [13], healthcare 
[14], schools and colleges, etc. Rapid urbanization has also 
affected the agriculture sector too. Technological innova-
tion, careful planning, and management of operations are 
critical requirements to conserve the existing infrastructure 
and materialize smart city schemes [15, 16].

About 36% of the developed countries already imple-
ment smart city concepts within their borders. Countries 
like India, China, Japan, Bangladesh, Myanmar, and Indo-
nesia have successfully built their smart city infrastruc-
ture, accounting for almost 27% of the world’s population 
[2]. A lot of opportunities, challenges, and critical factors 
have been analyzed during the design and planning phases 
granted that each smart city project could approximately 
cost around 25–30 million USD. With such considerable 
investments, ICT play a vital part in the implementation and 
deployment of smart city concepts. ICTs can ensure environ-
mental sustainability, integrate technological advancements, 
and assist in balancing economic growth without inhibiting 
the transition towards smart city ecosystems. Notably, sta-
tistical analyses shows that in 2000, only 15% of the world 
population was living in cities, whereas, in 2020, almost 
50% of the population has moved to urban environments, 
ad by extension smart cities. Furthermore, according to the 
United Nation’s analysis, by 2050 almost 70% of the popula-
tion will be located in complete smart city deployments and 
nearly 80% of the rural areas will have been urbanized incor-
porating technological innovations and scientific advance-
ments [17].

Every year, about 7–12 projects affecting population units 
in the range of 30–50 million people, and generating rev-
enues in the vicinity of 10–12 billion USD will be executed 
in most developing nations. Government agencies and poli-
cymakers are endorsing the urbanization in combination 
with the transition to smart cities, leveraging ICT and other 
current technological developments [18, 19]. Designing a 
smart city plan harnessing ICT and BIC is a daunting task 
due to the security requirements that need to support and 
protect the interoperable infrastructure web. In the smart city 
domain, the physical world communicates using embedded 
devices, software and numerous computational algorithms 
that provision better quality of service for the consumers. 
The contribution of the 3rd generation of internet—in the 
early 1990s—had a significant impact on the development 
of the 6th generation (6G) internet technologies that are uti-
lized today. Interconnected networks, smart communication 
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standards, large amount of big data exchanges, etc. provide 
seamless service integration, improve application interfaces 
as well as the user quality of living. Nearly two thirds of the 
available devices in smart cities are wireless, which illus-
trates the communication synergies that can be implemented 
for diverse applications and at large scale.

Once the system design is established (comprised of 
multiple embedded devices serving as autonomous agents), 
security and safety are major concerns when managing, 
storing, computing, and analyzing user data [9, 20]. Thus, 
ICTs must employ smart security schemes ensuring the con-
fidentiality of the data residing in the mentioned devices. 
In 2009, the world’s 1st smart city in Santander, Spain had 
around 20,000 decentralized sensors ,which were distributed 
throughout the urban landscape, collecting and transferring 
user information. Initially, during the transformation from 
offline processing and analysis to digitization with smart 
computerized processing, analyst and technical people finds 
it a bit difficult due to their high-speed processing capabili-
ties and result oriented computations [4, 13]. Later stages 
of data processing made them clear that there is no manual 
analysis and process re-verification is necessary due to their 
encryption-based complex algorithms.

Decades of advancements in ICT have caused serious 
impacts on the socio-economic well-being of people living 
in smart cities. The rapid growth of the internet and commu-
nications enabled smart city residents to remain connected to 
the internet in every aspect of their lives. Thus, IoT became 
an inseparable element of every smart community. Many 
researchers [7, 21, 22] surveyed the impact of IoT in smart 
city expansion. Focus on urban IoT scenarios with their 
application-specific objectives made clear that the transfor-
mation to smart cities requires considerable planning and 
technology-driven testing in real time. IoT can be found in 
many applications such as traffic systems, healthcare, home 
and industrial automation, power generation and delivery 
sectors, and in many customized services aimed at assist-
ing certain demographics. An empirical survey on urban 
IoT helps identify the intertwined concept of quality and 
quantity; improving the quality of the living environment in 
urban IoT infrastructure will also assist the economic growth 
of the city [4]. During this IoT integration process, the city 
operational costs are greatly reduced, while the fundamental 
lifestyle of people improves significantly.

A case study performed in Padova shows that open source 
data obtained from different sensors and actuators installed 
in many public areas can be integrated using IoT and used 
for monitoring the entire city from a centralized govern-
ment-operated interface. IoT provides a wide range of design 
options and solutions; however, the security of the devices 
and the algorithms used should conform to the current 
cyber-security standards. The authors in [21, 23, 24] present 
a detailed survey on security issues, challenges, and their 

attack mitigation for IoT devices in smart homes. Since data 
security is handled by the service providers, data confidenti-
ality, resource availability, authorization, and integrity must 
also be ensured along with non-repudiation. The authors 
performed an adversarial analysis, where IoT risk factors 
were analyzed and categorized (in three different groups) 
based on their severity and economic impacts [25]. Domestic 
electrification, transportation, and grid integration are the 
key areas analyzed in the survey along with potential coun-
termeasures. In such smart IoT setups, enormous amounts 
of data are generated from multiple sensor and embedded 
devices, thus proper attack categorization and comprehen-
sive security analyses are necessary to ensure data security 
[26, 27].

The need for efficient big data management becomes vital 
due to the inherent advantages that can provide to users and 
enterprises. Big data analysis can offer automatic sugges-
tions and user-friendly choices for consumers, and can also 
be employed in various other industries, such as e-com-
merce, transportation, health and medical field, and edu-
cation. The collected data have to be processed and stored 
before computations can be executed and useful results are 
generated. Big data privacy protection mechanisms are lev-
eraged to safeguard customer data [20] . Encryption tools, 
privacy-preserving computation models, complex data man-
agement algorithms are required to preserve the confidential-
ity of user-generated data (stored in government databases) 
for further analysis and processing. Networking standards 
should also conform to security recommendations and best 
practises when handling sensitive user data, promoting trust, 
and assisting in building secure connected communities.

In 2015, United States (U.S.) Networking and Information 
Technology Research and Development (NITRD) program 
released a framework for smart infrastructure communica-
tion zones which includes IoT-BIC and envisioned the devel-
opment of completely autonomous cyber-physical connected 
smart community (CPSC) [3]. This CPSC would possess 
networking units, communication devices, big data stack, 
decision-making models, and high-fidelity cloud-assisted 
real-time assistance systems. With the complete smart infra-
structure, industries and power distribution units will also 
be easily accessible, while the traffic management systems 
would become more eco-friendly. To avoid data congestion 
from the embedded agents, all seven distinct components 
must be collectively controlled and maintained [28].

Services that run in the background and can overcome 
potential abnormal conditions should be designed to main-
tain safety and security while complying with the inter-
national standards organization (ISO) regulations [29]. 
Although big data management may endorse the growth 
of smart cities the user accessibility to resources in such 
ecosystems can become a challenging task. To ensure 
user access to the available resources, cloud infrastructure 
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must be enabled in these smart communities. This cloud-
assisted data collection, resource management, and appli-
cation processing can help users get their desired results 
promptly. From banking and parking payments to other 
applications like billings, medical records, driving assis-
tance, etc., data can be stored in the cloud and can be 
instantly delivered to the authorized users. These cloud 
databases require sophisticated big data management 
schemes and robust IoT connectivity mechanism for seam-
less data communications. During the last few decades, 
cloud service providers like Google, Microsoft, and other 
e-commerce industries have been utilizing both private 
and public cloud infrastructures assisting real-time appli-
cations [17, 30]. The mentioned cloud services requires 
substantial internet-connected resources and large data 
storage facilities for the collection, processing, and analy-
sis of the aggregated data. As a result, in smart commu-
nities the three essential components, i.e., BIC, must be 
leveraged and secured for long-term sustainable economic 
growth and user-friendly ecosystems.

Contactless Technology (CT)

With the advent of COVID-19, CT, or Touchless Technol-
ogies have become the new normal. The pandemic uncer-
tainty has affected everyone around the world. The need 
for innovations and new technologies has been increas-
ingly requiring for more human and artificial intelligence 
(AI) collaboration. Organizations are already adopting 
new concepts using AI, robotic process automation (RPI), 
cloud-based systems, and other automation technologies to 
promote their business and combat the pandemic-induced 
impacts [30, 31].

Technologies like big data, IoT, AI, radio-frequency 
identification (RFID), near-field communication (NFC), 
machine to machine (M2M), MIkron FARE Collection Sys-
tem (MiFare)/DESFire RFID reader, etc. are few of the CTs 
assisting people. Thus, BIC schemes must be investigated 
before their adoption in more future applications. The men-
tioned CT can create opportunities for scientific advance-
ments, improve task proficiency, and provide profitability 
benefits [8]. AI leverages human intelligence concepts to 
allow machines execute complicated tasks, IoT consists of 
interconnected physical devices featuring sensors, using 
software, and other wired or wireless technologies, and 
big data consists of complex and extremely large data sets 
generated from consumer devices, industrial components, 
automobiles, etc. Consequently, BIC technology works in 
an orchestrated manner leading to many innovations [21, 32, 

33]. The connecting links between these three technologies 
are given below.

Big Data and Cloud Computing

Cloud assisted data analytics are crucial for the constantly 
growing data-centric era. For every instant that passes, large 
amounts of data are generated from embedded mobile devices, 
electronic gadgets, and computing resources. Such data are 
stored in local servers if instant access is required, while con-
fidential data are stored in secured private cloud databases 
utilizing essential safety and security countermeasures. The 
data can be retrieved or accessed from remote locations by 
authorized users leveraging the appropriate remote connection 
frameworks [15, 20, 34]. Thus, a suitable big data analytics 
tools are necessary for the management and effective handling 
of cloud data introducing the need for analytics as a service 
(AaaS) platforms.

Multiple licensed cloud service providers like AWS, Ten-
sorFlow, Hadoop, and private data analytic cloud-based ven-
tures provide customized application programming interfaces 
(API) for their users depending on their needs. Private com-
panies involved in this field provide 24/7 network assistance 
to their consumers. Typical examples of applications and user 
groups requiring data assistance services and/or remote cloud 
support are demonstrated in Fig. 2. Other trust-based cloud 
service providers also exist for applications including govern-
ment databases, military, and national security purposes, etc. 
[29]. Such features illustrate the advantages of cloud-based 
big data analytics, emphasize their importance, and present 
the diverse usages of cloud infrastructures.

IoT and Big Data

IoT can capture and process data from electronic devices and 
machines, process them while making them accessible from 
any remote location. However, for such applications, author-
ization, user verification, and security protocols have to be 
followed. Upon gaining permission and accessibility from 
individuals through their IoT enabled devices, the interactions 
between M2M can be analyzed and studied. This data-centric 
approach of IoT-big data helps categorize user behavioral pat-
terns and assist them with tailor-made results meeting their 
requirements in real-time [21, 35]. IoT capabilities can also be 
enhanced employing AI methods allowing for hyper-realistic 
M2M interactions mimicking human behavior. AI algorithms 
with their wide range of applications can enhance the user 
experience when handling IoT devices and provide additional 
custom functionality—based on the user profile—when deal-
ing with big data.
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CT in Smart City

Touchless technology is a promising way to maintain peo-
ple’s health and hygiene, especially during crisis such as 
the COVID-19 outbreak. A recent survey reports that due 
to the COVID-19 pandemic about 95% of the people pre-
fer touchless services like touch-free alcohol or soap dis-
pensers, touch-free faucets, etc. Contactless or touch-free 
technologies can be leveraged for different products and 
services. Some contactless technologies that can promote 
smart cities infrastructures are discussed in the following 
sections.

Touchless Biometric Solutions for Access Control

Fingerprints, iris, and face recognition are the biom-
etrics elements used for identity, temperature sensing, 
and access control in many organizations. To reduce the 
risk of disease spreading in workspaces, a Swiss-based 
company named touchless biometric solution (TBS) has 
emerged offering two services, the TBS 2D Eye and the 
3D Terminal.

2D Eye System

Serves as a combination between two techniques, i.e., the 
iris scanning and the face detection, reaching accuracy lev-
els of 95% and enhancing the security of access points. The 
process starts with facial identification through images cap-
tured using a highly sensitive camera. Then, iris details are 
extracted from the images and analysed for the user authen-
tication [2, 36].

3D Touchless Fingerprint Scanner

Provides an even higher level of security, recognition per-
formance, and authentication accuracy (compared to the 2D 
Eye System). The 3D touchless system achieves authentica-
tion accuracy of 97%, while only 5–8 ms are necessary for 
the extraction of the fingerprint scan. Furthermore, the 3D 
touchless system is resilient against light beams, UV and 
IR laser pointers and can withstand exposure to dirt, dust, 
smoke, and fog [7]. The entire module is resistant to abusive 
treatment involving contact or contactless use, while its sen-
sitivity level remains high allowing for correct authentica-
tions even if the person wears surgical gloves or any other 

Fig. 2   Application areas of big data in cloud computing
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industry-grade latex gloves that are used in hospitals and 
chemical laboratories.

Both 2D and 3D scanning systems have now been updated 
to include additional security features which can assess the 
user’s emotions and measure the body temperature when the 
TBS system scans the person. If abnormal body tempera-
ture is registered, TBS will not authorize the user. Similarly, 
gesture controls have also been included to mitigate the use 
of sign language and physical movements from end-users. 
The COVID-19 outbreak has increased the demand for CT; 
thus TBS can help companies provide safer working envi-
ronments for their employees [22, 30].

Thermal Scanner Systems/Temperature Detecting 
Cameras

Both schemes use thermal sensor modules to identify the 
body temperature of an individual and alert them if their 
body temperature is outside the nominal level. Touchless 
biometrics have been utilized in the healthcare sector too. 
Body area networks (BAN), wireless body area networks 
(WBAN), body sensor networks (BSN), or medical body 
area networks can assist in comprehensive healthcare mon-
itoring by monitoring body vital processes and tracking 
patient activities, etc.

Wearable Bands

Wearable bands are smart electronic devices worn over the 
surface of the skin, e.g., typically over the wrist. They ana-
lyze basic information like body blood pressure, heart rate, 
oxygen saturation, etc. and can also track activities (walking, 
running, sleeping, etc.). Apple smartwatches, Fitbit, Garmin, 
Suunto, Polar products, etc. are some of the most commonly 
used wearable devices available in the market.

HoloTouch

This technology uses human-machine interface (HMI) and 
works by allowing people to pass their finger through holo-
graphic images or buttons or keyboards which are floating 
in the air. Then, an infrared sensor detects and transmits the 
measurement to the detection software as shown in Fig. 3. 
Other similar applications to Holotouch include optical 
computers, biomedical imaging, scanning and diagnosis, 
and destructive or non-destructive testing in military appli-
cations. Some of the applications of HoloTouch have been 
used in China for touchless holographic elevators, hotels and 
room sections, or for food orders and payments.

Voice Recognition and Virtual Assistants

This technology works by collecting voice samples as input 
from the user and then decode them with the help of natural 
language generation (NLG). In addition, the voice recogni-
tion units as well as other CT like biometrics, face detection, 
HoloTouch devices, etc. can be used to perform a plethora 
of tasks as demonstrated in Fig. 4.

Big Data Biometric Analytics: A CT Paradigm

Big data biometric analytics is a technique, where personal 
data from the consumers are collected, processed, and ana-
lyzed for numerous reasons. This combinational was used 
even further during COVID-19, since contactless operations 
were implemented in many corporate settings. Furthermore, 
many industrial units mandated the use of biometric methods 
to grant employees access to the workplace. A recent survey 
from the Forbes magazinereported that the Indian govern-
ment has implemented the unique identification authority of 

Fig. 3   Overview of the Holo-
Touch setup
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India (UIDAI) which aims to manage and maintain India’s 
Aadhaar citizen registry [20, 37]. The key factor in Aadhaar 
is the collection of personal information from citizens. Such 
information include iris retinal scans, fingerprints, residen-
tial addresses, and digital face registrations. All these are 
clustered and maintained by MapR, an enterprise-grade 
NoSQL database in Hadoop. MapR is used due to its high-
speed data verification performance, i.e., within 200 ms, 3–5 
MB of individual data are obtained from people, processed 
and mapped to the database to get the exact evaluation 
results. This software-based data entity works on the Hadoop 
platform and uses big data analytical algorithms for the pro-
cessing and analysis [37]. To obtain meaningful outcomes 
from the captured data, large and complex programs were 
developed. These algorithms evaluate the consumer personal 
data both statistically and visually depending on the require-
ments, thus parallel computing is crucial for this scenario. 
Big data programs have the potential for parallel comput-
ing and data visualization, making the analytical framework 
easily interpretable by all domestic consumer entities upon 
proper government approval. The proliferation of contactless 
consumer electronics that use image recognition software, 
sensor-based encryption, and pattern mode decoding require 
big data storage infrastructures and processing power for 
essential computations.

Contactless Biometrics in Healthcare

COVID-19 has a global impact in the health sector affect-
ing 15–20 million people around the world. The pandemic 
has enforced the use of contactless biometric technology. 

Biometrics available in hospitals help identify doctors’ 
availability, patients’ health conditions, medications, and 
aid with resource management and health care profession-
als’ status. Depending on the biometric algorithms used, 
records about patients, doctors, and other medical workers 
were stored and retrieved during emergencies. The Univer-
sity of Pittsburgh medical centre (UPMC) has developed a 
fully operational biometric system enhancing the patient’s 
user interface [12, 38, 39]. The developed system was 
installed in around 75 cities with 4300 biometric devices 
for the recording of user data. The recorded data can help 
the government keep track of the citizens’ socio-welfare 
behaviors and medical conditions. More personalized 
functions such as voice assistance and iris scan assistance 
can help people during emergency situations. Recording 
patients’ records into a common database ensures a central-
ized tracking mechanism of their health condition. Hos-
pital management can benefit from such systems as long 
as they are interested to make this one-time investment. 
Record creation and maintenance, analysis and medication, 
treatments and procedures, summary reports and billing, 
etc. can be retrieved from the common biometric-ena-
bled contactless big data database [40, 41]. Furthermore, 
some specialized healthcare establishments in the United 
States could even store the patient’s DNA data along with 
other biometric features. DNA Records can help trace the 
patients’ identity in situations such as accidents, murders, 
or other potential crime scene investigations.

This DNA identification feature in combination with CT 
promotes the use of big data algorithms for applications such 
as health monitoring and user tracking leveraging smart 

Fig. 4   Overview of smart con-
tactless applications
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wearable devices. User data is mapped with their existing 
health records and this can help track their current condi-
tions, localize them during emergencies, etc. To underline 
the practicality provided by biometric technologies and big 
data analytics, we consider an Indian hospital scenario. The 
Apollo hospital was established in 1983 and has success-
fully achieved many advanced scientific breakthroughs in 
the medical sector. The success of Apollo hospital relies 
heavily on big data and biometric functions. For instance, 
the hospital is using the Askapollo application, which is an 
Online appointment scheduler to streamline the management 
of its patients [17, 42]. The virtual scheduler can help the 
patients or any user book appointments for normal health 
check-ups, doctor consultations, or any other medical ser-
vices, e.g., X-rays, etc. If a patient registered with the Apollo 
hospital faces an emergency, the patient’s record will be 
sourced from the hospital’s database to expedite medical 
procedures. Using this optimized and patient-centric data-
base, people with rare blood groups or people who are will-
ing to donate their organs can be effectively tracked during 
emergencies. In addition, one-to-one doctor-patient consul-
tation (via video) is also provided for the registered hospital 
patients. During such consultations, the patients’ records are 
revoked from the Apollo database, including case sheets, 
medical conditions and medications, and other relevant that 
can help doctors conduct their diagnosis. The practicality 
of this feature was emphasized during the COVID-19 crisis, 
since patients were able to reach their doctors without jeop-
ardizing their health (e.g., if they had to visit the hospital 
in-person) [42].

In the healthcare environment, touchless technologies can 
assist in preventing the cross-contamination of hospital facil-
ities. Aspects such as hygiene, safety, and accessibility are 
of great importance for the healthcare sector. To overcome 
potential issues, the Yale New Haven hospital (YNHH) has 
installed touchless holographic switches, replacing tradi-
tional tactile switches. The touchless holographic switch is 
operated by passing a finger through a holographic image 
that is floating in the air in front of the switch’s bezel. 
Unlike tactile switches, the touchless switches do not need 
to be physically touched. Such technologies allow people to 
intuitively enter commands by simply accessing a virtually 
displayed hologram image, which could be in the form of 
keys or buttons or PIN projected from an embedded holo-
graphic signal emitter. Light detectors, using optical or infra-
red beams can capture, classify, and diagnose the selected 
keys and transmit them to the embedded processing unit for 
analysis [42, 43].

Biometrics in National Security

Contactless biometric techniques are also employed by 
National Security organizations around the world. Many 

countries have already implemented such schemes since 
2014 in their government facilities and during the COVID-
19 crisis, contact tracing, entrance/exit systems, immigra-
tion, and medical records were all operating using biometric 
verification and analysis. In more detail, some countries have 
implemented strict border control and immigration rules to 
protect their citizens and inhibit the virus spread. In addi-
tion, biometric authentication mechanisms have been widely 
used for the verification of security personnel who work in 
mission-critical positions (e.g., army, central intelligence, 
etc.) [43]. The United States has mandated the record reten-
tion of military personnel biometrics for identification and 
verification before granting entrance to the nation’s military 
facilities. Likewise, North Korea has integrated AI features 
along with biometric and facial recognition software in their 
homemade smartphone ‘Jindallae’. AnyVision, an AI-based 
security company based in Israel, and supported by Micro-
soft, has established its business in 40 different countries 
around the globe. AnyVision builds key-based authentica-
tion, identification, and access control systems using cus-
tom built API and software development kits. Thus, pro-
tecting the privacy leveraging facial recognition, iris scan, 
and thumb impression mechanism. As a result, confidential 
data can be accessed by authorized personnel providing reli-
able and trust-based real-time authentication [44]. Different 
policies and practices are implemented by countries when 
handling biometric methods to protect their military infra-
structure [13].

As connectivity continues to spread across the globe, 
the use of touchless technologies is also expanding to more 
applications. From nuclear warhead management to fighter 
jet missile launching, soldiers are identified and authorized 
based on their personal biometrics. Data obtained from 
sensors in battle tanks are used to analyze the identity and 
current status of the operating personnel during military 
missions [45]. Battleship and submarine captains are also 
authorized only using their personal biometric scans. Thus, 
with contactless big data biometric strategies, nations can 
identify potential terrorists and criminals before they arrive 
on their borders sourcing their criminal records from the 
national databases [46].

Biometrics in Airports

Many international airport checks are completely auto-
mated, and passengers are granted entry to theory des-
tinations upon their successful biometric verification. 
Semi-autonomous biometric kiosks are installed at every 
entrance and exit point, and passengers are advised to 
use them for identification purposes. This mode of immi-
gration clearance has helped during the COVID-19 cri-
sis [47, 48]. In Singapore for instance, until 2019, there 
were about 2.16 million immigrants (out of 5.7 million 
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net population) all of which were given safe entry to their 
home country after registering with their biometrics at 
Singapore’s database. Passport scanners, face recognition, 
and thumb impressions were obtained from every pas-
senger during immigration clearance, as shown in Fig. 5. 
This mode of identification helps protect nations from 
potential terrorist incidents and during unexpected emer-
gencies such as the COVId-19 outbreak.

In 2015, U.S. Homeland Security implemented bio-
metric services for customs and border patrols. These 
mechanisms aided security officials in identifying 
illegal immigrants, trespassers, and terrorists before 
entering U.S. soil. Data obtained from immigrants 
were saved in FBI databases and retrieved for future 
identification [49, 50]. The biometric databases are 
frequently updated to track immigrant activities as 
well as short- and long-term visitors under different 
visa categories.

In 2018, the Bangladesh army organized a biometric 
registration campaign to deal with the Rohingya refugee 
problem. The statistical reports demonstrate that Bang-
ladesh is hosting more than one million refugees which 
is 13% more than the official estimate. Such results 
where brought to the surface due to the effective use of 
biometrics collected from native citizens and refugees. 
Upon obtaining the analysis results, most of the coun-
tries belonging to the Association of Southeast Asian 
Nations (ASEAN) stepped in and offered aid and medi-
cal resources to the refugees [51, 52].

Biometrics in Domestic Surveillance

Domestic surveillance using biometric techniques helps 
identify, measure, and analyse the people’s physical and 
emotional behaviors. Some of the physical biometric fea-
tures include fingerprints, DNA samples, and digital photos. 
In addition, in mission-critical cases, even data concerning a 
person’s voice, tone pitch, and walking patterns can also be 
used for military database. In 2015, U.S. Homeland Security 
used facial recognition methods to capture the facial expres-
sions of criminals and this feature proved extremely help-
ful in recognizing criminals from crime scene surveillance 
footage. The identification range varied from 40 m to about 
200 m and achieved excellent results using facial biometric 
features. Image processing techniques and big data analyti-
cal algorithms greatly helped in this thrust. To analyzing 
criminals’ mindset and decipher their behavior during inter-
rogation and judicial investigations, emotional state-based 
analysis is also used in many countries [46, 47, 51].

Emotional state-based analysis includes facial expres-
sions, voice, posture, walking pattern, and other schemes 
for prediction, analysis, cross verification, and exact identifi-
cation of criminals. In Singapore, in every residential apart-
ment building corridor high fidelity cameras are installed 
and the whole country is kept under surveillance to miti-
gate crime. DNA profiling is another trending contactless 
biometric technique that is already in use by the FBI and 
Interpol. In more detail, DNA profiling helps identify crimi-
nals from their blood samples and palm impression collected 

Fig. 5   BIC processes in airports for passenger identification and document verification
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from the crime scene. Recently, Japanese researchers have 
developed and deployed robots in big malls and crowded 
public communities to capture people facial patterns. These 
robots record the emotional activities (fear, stress, smile, 
joy, etc.) in real-time and map all these data to the country’s 
biometric database [42, 43, 48, 49]. Emotional activity is 
monitored to understand the mood and mindset of people, 
while unusual activity will be reported to the nearest police 
station. Other than criminals tracking, domestic surveillance 
methods are used to identify vehicle number plates, and in 
some assisted parking sections, vehicles will be allotted 
parking spaces based on the passenger details. Such com-
putations using sensitive user data require complex crypto-
graphic algorithms to protect the databases from potential 
malicious hackers.

Both security and safety go hand in hand with big data 
biometric contactless techniques paving the way for many 
other futuristic applications. Ethics and information technol-
ogy (IT) warn about the vulnerable elements when using 
biometric features in fields like surveillance, tracking, iden-
tification and authorization [3, 29, 38, 44]. Unauthorized 
use, access limitation,and erroneous classification of features 
are the pitfalls that require immediate attention when using 
biometric techniques.

IoT in Autonomous Vehicles (AV)

Connectivity plays a major role in the synchronized opera-
tion of AV. A better understanding of the environment and 
user behavior is achieved leveraging IoT electronic devices 
inside the AV. IoT sensors enable self-driving vehicles tran-
sitioning from the manually driven vehicles to completely 
autonomous units. From assisting sensory mechanism and 
actuators to software-in-loop (SIL), the operation is gov-
erned autonomously without any human interventions. 
Autonomous refers to the self-driving ability of vehicles 
using smart sensors and actuators. Developments in areas 
like IoT and machine intelligence, computational capabili-
ties, and real-time decision-making algorithms are leveraged 
in broader aspects when designing AV. Control circuitry is 
maintained and modulated based on the commands and driv-
ing pattern of the consumers [53, 54]. Remote connectivity 
using private cloud infrastructure renders the AV sensors 
constantly connected (in a 24/7 basis) both during the run-
time operation as well as off-road during resting periods 
(e.g., parking, electric vehicle charging, etc.).

Localization, mapping, mobility, and security are com-
pletely programmed and controlled by sophisticated elec-
tronic elements like LIDAR, RADAR, cameras, etc. Park-
ing assistance and traffic navigation with improved safety 
for both the user and he pedestrians, fuel and tire pressure 
monitoring unit, and lot more features are fitted and can be 

coordinately controlled and monitored from remote places 
exploiting the IoT.

Augmented Mobility Assistance

IoT ensures smart and safe operation of AV for both passen-
gers as well as pedestrians with the help of on-board sensors 
and other embedded components. Data collected from the 
available sensory elements are connected and communicated 
via customized private cloud services and are instantly pro-
cessed remotely for smooth control and operation of the 
vehicle. Adversarial analysis can be made with IoT-enabled 
smart sensors for quick recovery from cyber-attacks [55–57]. 
Data obtained from sensors are used to analyze the passen-
ger’s behavior, driving patterns eventually providing a tailor-
made driving environment for the users. Some of the key 
benefits for fitting IoT devices in AV include: 

1.	 Improved road safety and driving assistance.
2.	 Enhanced traffic navigation and optimal route identifica-

tion.
3.	 Smart connected car environment.
4.	 Better fuel and battery management mechanisms.
5.	 Driving comfort and better localization.

IoT Enabled Traffic Navigation

Automakers are working towards completely autonomous 
driving mechanisms which corresponds to level 5 of the 
society of automotive engineers (SAE) standards. Granted 
the multitude of on-board sensors, electronic and communi-
cation devices, vehicle location services, user driving pattern 
recognition mechanisms , vehicle surrounding assessments, 
etc. autonomous driving cars can be easily monitored and 
analyzed [7, 10, 32, 57]. Although vehicle-to-vehicle (V2V) 
and vehicle-to-everything (V2X) concepts can become chal-
lenging in the dense traffic setups, reliable navigation assis-
tance is possible using high precision sensors and actua-
tor units. Developments in communication standards like 
5G and recent advances in public cloud facilities—with 
enhanced security due to state-of-the-art cryptographic algo-
rithms—IoT-enabled AV navigation can be achieved even 
during peak traffic periods in urban areas. Figure 6 shows 
the effect of BIC during AV navigation. All the data are 
delivered to AVs and assist the vehicle’s central controller to 
perform critical tasks without any additional input or manual 
assistance from the driver.

Localization and Mapping

RADAR, LIDAR, and cameras are the key components 
required for smart localization, mapping, and navigation 
of AVs. The IoT sensors in these components control and 



	 SN Computer Science (2021) 2:334334  Page 12 of 24

SN Computer Science

coordinate the operation of AVs. The data obtained from the 
on-board AV sensors are used for mapping and localization 
purposes. After the current position of the AV is identified, 
it can be routed to any location using the aforementioned 
smart sensors, i.e., cameras, RADAR, and LIDAR. During 
driving, the embedded sensors manage the engine control, 
tire pressure, fuel levels, etc. providing a smooth driving 
experience to the passengers [53, 54].

IoT in Smart Infotainment Systems

Apart from driving assistance applications, to ensure better 
passenger experience, embedded features withing the vehi-
cle’s infotainment unit collects data about passengers driving 
pattern and habits (e.g., cabin temperature). Infotainment 
systems can support a variety of services such as, internet/
Wi-fi connectivity, streaming audio and video, voice control 
and calls,, touch control, and air conditioning unit operation, 
etc. All these features are enabled by the embedded sensor, 
which collect data, analyze them, and optimized the vehicle 
conditions enhancing the passenger experience [41, 58, 59].

IoT for In‑Network Computing and Operations

Sensors and other embedded components deployed in AV 
perform in real-time numerous computations for navigation 
and safe driving as well as run high-level security algorithms 
for user data privacy and protection. High fidelity sensors 
perform multiple time-critical operations and help AVs in 
their analysis and decision making procedures under var-
yin operational conditions, e.g., during peak traffic. These 
embedded actuation and smart sensing units are programmed 
to control and coordinate with each in V2V and V2X 
deployments [60]. IoT-enabled devices deal with different 
time-critical tasks which can be controlled and monitored 
from remote locations leveraging cloud-based resources. 
Automakers equip their recent models with cloud-assisted 

driving features improving both their consumer safety and 
efficiently navigating them to their destinations. The mas-
sive amount of real-time data collected and analyzed, within 
AVs, from their sensors and computation units have to be 
secured from adversaries. Protecting sensitive user data from 
malware, spyware, attackers, etc. mandates the use of secure 
encryption schemes like transport layer security (TLS) 1.3, 
quantum cryptography among others [23]. All these cryp-
tographic methods should operate in parallel with the data 
collection (from sensors) and computations performed in 
the corresponding units maintaining end-user safety and 
security [24, 61].

Frictionless Payment Technology and Cloud 
Infrastructure

Frictionless payment technology is comprised by all the 
mechanisms and operations that streamline the make the 
shopping experience for the clients. For instance, Amazon’s 
“just walk out” service is a great example for this technol-
ogy. It simplifies the buying process, allowing customers to 
enter, grab the items they need and just leave. The walkout 
technology keeps a track of what products shoppers add in 
their virtual carts. Once the shopping is done, their credit 
card is charged for the items they have purchased and their 
order receipt is emailed to them automatically [62]. Figure 7 
shows the global sales of smart gadgets in various cities 
around the world. Gadgets whcih can be used for frictionless 
payments include mobile phones, mobile wallets, contactless 
cards, and NFC-type devices, etc. [2, 63].

It is estimated that the value of ICT will grow 25% com-
pared to the growth expected by 2030. While digital trans-
formations are changing the lives of people in smart cit-
ies, digital innovation is also steadily increasing. As shown 
in Fig. 7, there is steady raise in global gadget sales and 
applications [64, 65]. Suitable safety standards and security 

Fig. 6   BIC-enabled services for 
AV transportation and naviga-
tion purposes
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protocols are also required to protect digital devices as well 
as the user transactions. Thus, governments are allocating 
their resources in improving the security of these newly 
introduces digital technologies.

NFC (Near Field Communication)

NFC enables the communication between two compatible 
devices over radio waves of specified frequencies. NFC-
enabled devices can exchange without minimum power 
expenditure [66]. Many smartphones and smartwatches 
support NFC and leverage this technology to perform vari-
ous everyday tasks, as shown in Fig. 8 [63]. NFC provides 
quick data transformation as the transmission frequency is 
13.56 Megahertz.

NFC for Healthcare Applications

Healthcare facilities should employ security mechanisms to 
protect both their physical resources (e.g., medical equip-
ment and supplies) as well as the digital ones (e.g., user 
databases) from unauthorized users. NFC labels are used 
in medical clinics to screen supplies and assets. Staff and 
patient access control, and hardware global positioning 
frameworks (e.g., for the elderly) are other approaches that 
reinforce the safe operation of medical organizations [67]. 
Given the current COVID-19 pandemic, specialists encour-
age patients to remain at home and avoid visiting hospitals 
unless an emergency exists. Therefore, people with minor 
symptoms struggle to find treatment for their conditions. 
NFC-enabled medical devices and home medical services is 

an interesting field that is receiving increasingly more atten-
tion especially in the unprecedented COVID-19 era [68–70].

NFC tags can be used to validate that patients are receiv-
ing genuine medicine and not counterfeit products. Further-
more, NFC tags can be employed to get useful medicine 
information just by scanning them with a smartphone. Such 
information include expiry date, potential symptoms, drug 
dosage, etc. The efficiency of NFC in reducing healthcare 
facility managing expenses, medicine counterfeiting is par-
ticularly useful for many applications. NFC-empowered 
gadgets are utilized in medical care and wellness applica-
tions both at home and in the healthcare clinics. Organiza-
tions are now embracing NFC to assist individuals monitor 
their health condition and symptoms.

Contactless Payments with NFC

NFC can provide quick data transmission using 13.56 MHz 
as its main frequency. The three main components used 
during NFC payments include the cloud infrastructure, the 
client’s devices (e.g., a smart phone), and the NFC reader, 
e.g., a point-of-sale (POS) device. Europay Mastercard Visa 
(EMV) is the standard used for NFC payments. NFC tech-
nology is a significant improvement over RFID, allowing 
users to transmit and collect data through over short ranges 
(roughly 10 cm). It works by connecting the reader and the 
payment devices over a wireless network. Apple pay, Google 
pay, and other digital electronic wallet payment applica-
tions utilize NFC payments, given that they are contactless, 
dynamically encrypted, and highly secure [71, 72]. When a 

Fig. 7   Global Smart Gadget 
Market Sales
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payment is initiated, the NFC controller inside smart mobile 
phones acts as a smart card and communicates with the NFC 
reader or POS device to exchange encrypted data enabling 
the transaction. Typical NFC-enabled devices can operate in 
three modes, i.e., the reader/writer mode, the peer-to-peer 
mode, and the card-emulation mode [73]: 

1.	 Reader/Writer mode In the reader/writer mode, an NFC 
device behaves as a reader for NFC tags such as contact-
less smart cards and RFID tags. It detects a tag immedi-
ately and it can either read or write data to the tag which 
is detected.

2.	 Peer-to-Peer mode In the peer-to-peer mode, two NFC 
enabled devices can exchange information. This is the 
model used by Android Beam technology.

3.	 Card-imitating mode: In the card-imitating mode, an 
NFC device operates exactly like a contactless smart 
card. In this mode, the smartphone does not generate its 
own RF field; the NFC handles this process. However, 
the standard conventions encompassing ISO/IEC 14443 
for traditional contactless cards have to be satisfied. 
In this mode, we can utilize our cell phone instead of 
credit/debit, travel cards, access or other types of cards, 

etc. Thus, NFC-enabled devices allow users to perform 
transactions such as payments or ticketing.

NFC can streamline frictionless payments and is inherently 
more secure than RFID due to its frequency (13.56MHz), 
which requires the two chips—the shopper’s and the retail-
er’s—to be in close proximity to each other. In addition, 
NFC payments require the client (not the retailer as is the 
case with RFID) to initiate the transaction [52, 73, 74]. To 
guarantee security, NFC exchanges leverage single-use 
tokens and encrypted credentials. In such scenarios, an 
ephemeral one-time token is made for every transaction 
instead of requesting and communicating with the client’s 
credit card system.

Steps in NFC Payment

Cloud computing provides access to server resources and 
a database for NFC payments. It operates as a platform for 
storing customer credentials and transaction details. The 
operational sequence of NFC payments shown in Fig. 9, 
explains the series of steps followed during NFC payments 
and purchases. [4, 18, 75]. 

Fig. 8   Overview of NFC-ena-
bled devices and their applica-
tions
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	 1.	 Purchase is initiated by scanning the NFC device over 
the POS device.

	 2.	 The POS device transmits a payment link from the 
cloud to the consumer device.

	 3.	 The POS requests credit limit validation, and payment 
authorization from the client’s banking network.

	 4.	 Authorization granted to the POS from the cloud net-
work.

	 5.	 Data validation and payment verification.
	 6.	 Merchant POS synchronizes with the client’s record (if 

client transaction is approved).
	 7.	 Once approved, the mobile application is transferred 

to banking network for the payment.
	 8.	 The bank server verifies the credentials given by the 

user and processes the transaction.
	 9.	 The proof of the transaction is forwarded to the POS 

terminal by the bank server.
	10.	 The POS device processes the payment and delivers 

the payment status receipt.

There are two main components in an NFC enabled smart-
phone: the security element (SE) and NFC controller. The 
SE is a processing unit that provides authentication for the 
requested transactions. NFC controllers act as the medium 
enabling the full duplex multi-cast handshake between the 
consumer NFC device and the POS terminal [73]. The SE 

is deployed as an algorithm operating on the cloud, whereas 
the NFC controller is embedded in the consumer devices 
and facilitates the storing of banking credentials and login 
details. Both NFC and SE must be synchronized before any 
application procedure initiation. Thus, consumer details are 
verified using SE (on the cloud resources), where it synchro-
nizes with the banking network and establishes the commu-
nication gateway for payment processing. The transaction 
flow is as follows: (i) consumer NFC device-POS device 
communication, (ii) credential verification via SE and the 
bank network, (iii) payment initiation between NFC device 
and POS. Thus, both NFC and SE aid in the successful veri-
fication, authorization, and control of every step involved 
during consumer payment transactions.

A Case Study of Utilizing BIC Technologies 
During COVID‑19

In this case study, two types of analysis are performed 
in the five biggest smart cities in India for a period span-
ning from May 2019 to 2020 in different sectors such as 
agriculture, transportation, etc. This study demonstrates 
the inherent advantages that BIC technologies possess and 
how they can be leveraged to help smart cities handle the 
COVID-19 pandemic.

Fig. 9   NFC Payment Steps
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Algorithm 1 and the flowchart depicted in Fig. 10 detail 



SN Computer Science (2021) 2:334	 Page 17 of 24  334

SN Computer Science

the processes involved in gathering, processing, and analyz-
ing data from BIC resources. The flowchart shows the opera-
tion sequences and illustrates the steps starting from data 
collection to interpretation and validation. In each step of 
the operation, the source of data is validated using the guide-
lines and rules from different operating agencies. During the 

validation steps if data are violated or mismatched, the pro-
cess is re-initiated. The test interpretation and validation are 
made visually available to the authorized government agen-
cies [65, 76]. The algorithm can be customized in real-time 
depending on the application and use case. Data packets are 
obtained from embedded IoT devices and loaded with 

Fig. 10   Flowchart for data pro-
cessing and interpretation using 
machine learning algorithms



	 SN Computer Science (2021) 2:334334  Page 18 of 24

SN Computer Science

suitable control and execution sequences. Both parametric 
(numerical data) and non-parametric (weights and percent-
ages) data sets can be loaded and modelled. During the pro-
cess initiation, modelling tools and machine learning algo-
rithms along with evaluation criteria need to be predefined. 
The data iterations are segmented based on time, usage, 
latency, and collection intervals. The data can vary with time 
and location, thus suitable correlation and evaluation is done 
before modelling the data providing useful insights. The 

process is initiated once the valid data sets are obtained for 
the modelling and training steps. During the training and 
analysis stages, the error values will be eliminated to obtain 
the best fit that will satisfy the predefined criteria. The cred-
ibility and validity of data are verified at regular time inter-
vals as shown in Algorithm 1. Once the training, testing, and 
modelling are completed, the mapping and interpretation are 
done based on the data set source, application and 
functions.

Fig. 11   Case studies on the impact of COVID-19 in different cities within India
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Survey results are presented to showcase the impact of 
COVID-19 and the effective usage of BIC in various sec-
tors of smart cities. Data generated from different embed-
ded devices are recorded periodically and updates are made 
at the government authorized data centers [10, 11, 77–79]. 
According to the statistical survey results and data obtained 
from government agencies, cities that are ICT-integrated 
are performing better compared to the other less digitized 
cities in India [63, 64, 76]. As shown in Fig. 11, the data 
obtained from various smart cities demonstrate better overall 
performance in May 2019 than May 2020 due to COVID-19. 
The data are collected over period of 1 year and investigate 
different parameters like internet usage, Fig. (11a), online 
purchase (Fig. 11b), electricity consumption (Fig. 11c), 
and e-learning (Fig. 11d) [33]. Some of the studies include 
data from state websites such as accidents and theft analy-
ses as shown in Fig. 11e. Data generated from embedded 
devices are connected from local (closed-circuit television) 
CCTV cameras, digital electricity meters, internet service 
providers, and local municipal web servers. Then, data ana-
lytics and machine learning algorithms are applied to the 

aggregated data. In this study, K-means clustering ML is 
used to evaluate the actual raw data from sensors and com-
pare them with data available from government websites. 
Since curfew and nationwide lockdown were employed from 
March 2020 and got extended with few relaxations, COVID-
19 drastically affected many industries [80] .

Since the cases of COVID-19 are/were increasing, keep-
ing records from the health sector is critical. Furthermore, 
since data are recorded at all possible access points, manual 
observation and extraction is not required. Furthermore, the 
pool of data-collecting sensors available on the embedded 
devices must be handled efficiently. The prime idea behind 
implementing IoT based data collecting modules, big data-
based classification, and cloud-based remote assistance is to 
monitor the operational status of these modules without time 
delays and with resource anonymity. The command line exe-
cutions from different operating sensors are secured using 
authorization codes and access control protocols before their 
commands are being executed in real-time. In such deploy-
ments, network gateways are utilized to enhance security. 
Consider the BIC model, as shown in Fig. 12, where the 

Table 1   Impact of COVID-19 in different sectors of Indian cities: a case study using CT-BIC

Sector Bangalore (%) Chennai (%) Delhi (%) Hyderabad (%) Mumbai (%) Kolkata (%)

Financial Service – 16.3 – 12.4 – 14.71 – 13.8 – 16.8 – 10.21
Real Estate – 14.5 – 13.3 – 14.43 – 12.11 – 17.43 – 10.3
Mining and Quarry – 7.8 – 6.17 – 7.3 – 4.10 – 5.41 – 3.98
Manufacturing – 8.5 – 5.53 – 9.32 – 4.40 – 7.11 – 6.61
Agriculture – 6.1 – 7.3 – 5.51 – 4.38 – 5.32 – 4.81
Fishing and Forestry – 5.3 – 4.23 – 3.17 – 3.82 – 4.20 – 3.4
Broadcasting – 9.3 – 7.7 – 8.03 – 7.20 – 7.89 – 8.81
Transportation – 10.6 – 9.12 – 11.15 – 9.10 – 16.81 – 13.21
Defence and Public Work – 1.3 – 1.28 – 1.81 – 1.39 – 2.21 – 2.08

Fig. 12   Machine learning and data analytics model: case study on different sectors in smart cities
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data are processed inside the manufacturing unit [81]. The 
model shows the detailed processes involved during the 
design, collection, processing and analysis of data collected 
from various sectors in India and help understand the impact 
of COVID-19. Predictive data analytics and machine learn-
ing models are used to interpret and map the data of differ-
ent affected sectors in India. Various government agencies 
are actively involved in updating the data using their ICT 
infrastructure. Many central statistical data collection agen-
cies are being involved to project the impact of COVID-19 
[63, 64]. The databases are cumulatively modelled enhanc-
ing the understanding of the pandemic impacts on a global 
level. This investigation can help understand how different 
sectors are impacted by COVID-19, as shown in Table 1 
[82–85]. The COVID-19 outbreak caused negative impacts 
on the country’s economic growth irrespective of the sec-
tor, according to statistical analyses performed from various 
government agencies [64, 76, 86, 87]. It is also estimated 
that the recovery time for cities to perform and compete in 
the global market is also drastically affected.

During the entire analysis process (pre and post COVID-
19), both actual and existing data were obtained and a lot of 
computational analysis, ML algorithms, and data analytics 
were done for feature extraction, modelling, and evaluation. 
For the initial segregation and analysis, clustered data were 
considered. Support vector machine learning (SVML) was 
used for the vector classification of the obtained data. These 
vectors were assigned after applying and clustering the data 
using K-mean clustering. The scaling factor obtained using 
cluster formations, and vector classification— used for 
the prediction and analysis of different components after a 
series of data analytic procedures—is called smart safe fac-
tor (SSF). Consider the sample on which the SSF model 

applied for predicting the number of industries affected 
between March 2020 and June 2020. The data is clustered 
on a regular basis and it is given as the input for analyzing 
the actual versus the available ratio for that particular sector 
and day. The SSF obtained will be used to find the predictive 
model of actual versus existing per day in the industry sector 
without leaving stocks on-hold over an extended time period 
and while running successfully in this pandemic situation. 
After getting the data of the sector, cluster partition is done 
using K-mean clustering ML. In this technique, the data for 
each sector will be given as input for vector combinations. 
From the clustering and mapping, data about the stocks, 
usage, and assembly different components were obtained. 
The following results were obtained using K-mean clustering 
ML for any automobile industry: 

1.	 Pre COVID-19state versus post COVID-19 data.
2.	 Market stocks.
3.	 Resources (before and after COVID-19).
4.	 Profit-loss ratio.
5.	 Production.
6.	 Sales and clearance levels.
7.	 Stock-in and stock-out ratios.
8.	 Waste and scrap per day.

With SVML, clustered data are assigned to vectors, and 
linearization is done on those data during pre- and post-
processing. With SSF, the extracted data are modeled, tested, 
and given as input for the analytics layer, where using the 
SSF predictions, the data will be columnized and identified 
with the desired vectors and cluster-IDs. Thus, vectors and 
clusters along with SSF tend to predict the margin of all the 
data required for a complete case study in each sector. In 

Fig. 13   Impact of COVID-19 
on the pollution level of smart 
cities
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this case study, different sectors are considered from dif-
ferent smart cities in India. An example derived from and 
automobile manufacturing sector case study is demonstrated 
in Fig. 12.

Vehicle design and assembly units are investigated to 
improve and make the workplace a completely automated 
and energy efficient system. With the detailed analysis and 
survey of the existing workplace environments, the industrial 
units are analyzed for obsolete functions and abnormalities. 
A field study by expert research communities was conducted 
for data collection, visualization, and critical area identifica-
tion. Following this case study approach, we have adapted 
the dynamic nationwide lockdown rules, preliminary mod-
elling tools, and developed a machine learning model [65, 
76, 86, 87].

This developed model is programmed using linear regres-
sion single line restructuring entities and encoded in the R 
coding platform. Classification, segmentation, and analysis 
includes results from market stocks, process control manage-
ment schemes, day/monthly business analytics, and struc-
tural mapping of different components during the final prod-
uct delivery. Data sets and results from the developed model 
help forecast the automaker industry and boost its produc-
tion in all aspects from assembly to commercialization on a 
long-term basis. The result is graphically studied and SSF 
is statistically evaluated using linear regression models and 
statistical data analytic methods. Final data forecasting is 
obtained from the regression model analysis and used for 
restructuring of actual data over the period from May 2019 
to 2020. The complete package is installed in respective 
industries to mitigate all types of losses and it is used as a 
restructuring formulation tool for long-term load and cost 
forecasting in the stock vending, production, polishing, and 
assembly sections. In this study, we also tried to analyze the 
pollution levels shown in Fig. 13, in different smart cities 
in India and check the impact of COVID-19 [84, 88, 89]. 
This can help the government as well as various industries 
to forecast, withstand, and survive the pandemic. Collec-
tion, plotting, and analysis of pollution data in smart cities 
illustrates the typical usage of ICT and can help improve 
the environmental conditions. Furthermore, pollution due 
to industrial waste (both processed and unprocessed) must 
be controlled and mandatory pollution level testing could be 
required to address these issues [63, 87] .

Discussion on the Implications of Utilizing 
BIC

Focusing on smart cities, both before and after COVID-19, 
BIC as well as CT greatly assisted in managing the con-
sumer needs and the data collection during the pandemic 

crisis. The following denote the implications of using BIC 
in smart cities.

Practical Implications

This study has significant implications in understanding the 
BIC applications and its effectiveness in smart cities. In this 
study, a detailed overview of the CT available for smart cit-
ies where explained. We have studied the BIC with respect 
to different sectors in Indian smart cities and our detailed 
survey shows the effect of BIC in data collection, process-
ing and results for identifying the worst affected sectors in 
each of the smart cities of India. The model is developed 
to showcase the data processing and other functions that 
are obtained from the embedded devices. In this study, the 
impact of COVID-19 is also taken into account to validate 
the effectiveness of BIC in smart cities. Furthermore, a bet-
ter understanding of data models, sequence generation algo-
rithms, and steps involved with different BIC techniques and 
applications are explained. Since the entire BIC completely 
relies on data that are generated from embedded devices, 
sensors, and components, computational resources are 
required to process those data.

Limitations of Study

Data obtained from official government websites and state-
wise portals are reliable for training machine learning mod-
els but while analyzing the data using model predictors, the 
vectors do not match with the models that are obtained when 
training using SVML and clustering analysis. Steep rise or 
sudden fall in 1 day of COVID-19 data had big impacts on 
determining the actual status prevailing in those states. This 
condition is mainly due to the inactive updating of the sec-
tor information made by the department officials. Predictive 
modelling and cluster formation require eigenvectors and 
Bayesian filter values which are obtained only after train-
ing the entire data set within the predefined time period. 
Short-span calculations, complex operations, and insufficient 
inhibit the prediction accuracy of such models.

Anonymity is available from the data provided by each 
regulating authority. However, the severity of COVID-19 led 
these smart cities to lockdowns inflicting resource restric-
tions during data collection, processing, and analysis. Upon 
evaluating the data with suitable ML models, results do not 
correlate due to the lack of validation factors and seasonal 
interference impacting the effectiveness of the developed 
model. The heuristic data impact the prediction accuracy 
of the vector and filter functions as well as the forecasting 
of the impacts on smart cities due to COVID-19. Further-
more, data from the healthcare sector are not easily obtained 
due to the potential unwanted consequences that negative 
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predictions can have on the public. Thus, government agen-
cies are strictly monitoring such data, allowing responsible 
and restricted disclosure.

Conclusion

Science and technology have become the key drivers of rapid 
urbanization and introduction of the smart city concept. The 
uncertainty caused by the COVID-19 pandemic paved the way 
for the development of CT globally. In this paper, we present 
a comprehensive survey of CT applications in smart cities 
using BIC technologies. Following, we discuss case studies 
from five smart cities in India which are using CT and BIC 
in many applications. We offer a detailed analysis on the dif-
ferent sectors within smart cities that the COVID-19 impacts 
mandated the use of BIC. We compile the survey results and 
provide insights on CT applications in various smart cities 
and how they certain sectors were affected by COVID-19. 
In our future work, we plan to investigate the challenges of 
implementing CT in highly populated countries, like India, 
and demonstrate the effectiveness of BIC in areas such as data 
collection, processing, and analysis to address current issues 
and open problems existing in smart city infrastructures.
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