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Abstract: Transient receptor potential canonical (TRPC) channels are membrane proteins involved in
regulating Ca2+ homeostasis, and whose functions are modulated by G protein-coupled receptors
(GPCR). In this study, we developed bioluminescent resonance energy transfer (BRET) biosensors
to better study channel conformational changes following receptor activation. For this study, two
intramolecular biosensors, GFP10-TRPC7-RLucII and RLucII-TRPC7-GFP10, were constructed and
were assessed following the activation of various GPCRs. We first transiently expressed receptors
and the biosensors in HEK293 cells, and BRET levels were measured following agonist stimulation
of GPCRs. The activation of GPCRs that engage Gαq led to a Gαq-dependent BRET response of
the functional TRPC7 biosensor. Focusing on the Angiotensin II type-1 receptor (AT1R), GFP10-
TRPC7-RLucII was tested in rat neonatal cardiac fibroblasts, expressing endogenous AT1R and
TRPC7. We detected similar BRET responses in these cells, thus validating the use of the biosensor in
physiological conditions. Taken together, our results suggest that activation of Gαq-coupled receptors
induce conformational changes in a novel and functional TRPC7 BRET biosensor.

Keywords: transient receptor potential canonical (TRPC); G protein-coupled receptor (GPCR);
bioluminescence resonance energy transfer (BRET); Angiotensin II (AngII); Angiotensin II type-
1 receptor (AT1R); G protein alpha q subunit; cellular signaling

1. Introduction

Transient Receptor Potential (TRP) is a superfamily of transmembrane proteins that
function as ion channels. TRPC (“C” for canonical) was the first subfamily identified
in the six existing subfamilies, which includes six distinct members: TRPC1,3-7 (TRPC2
is a pseudogene) [1]. Similar to other TRPs, they are constituted of six transmembrane
domains (TM1–TM6), with a pore region between TM5 and TM6 and cytoplasmic N- and
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C-termini. They also present several motifs, reported to be important for their trafficking
and interactions with other proteins or TRPs, such as ankyrin repeat, coil-coiled domains,
PSD-95, Discs-large, ZO-1 (PDZ), and calmodulin/IP3 receptor binding (CIRB) domains [2].
TRPC subunits assemble in an oligomeric structure thereby forming homo-tetrameric or
hetero-tetrameric non-selective cation channels that play an important role in ion home-
ostasis. While TRPC channels are reported to be non-selective, they enable Ca2+ entry [3].
TRPC proteins can be divided in two groups, depending on their sequence and functional
homologies: (i) TRPC1/4/5 are diacylglycerol (DAG)-insensitive and activated by complex
pathways [4], and (ii) TRPC3/6/7 are activated by DAG and its analogs [4,5].

TRPC7 is the most recently identified member of the TRPC subfamily. It is abundantly
expressed in the brain, lung, and heart [5], and is highly homologous to TRPC3 and TRPC6
(81% and 75% sequence homology, respectively) [6]. It has been described as a nociceptive
mechanoreceptor [7], especially activated downstream of Gαq-coupled G protein-coupled
receptors (GPCR), via the hydrolysis of phosphatidylinositol-4,5-biphosphate (PIP2) by
phospholipase C (PLC), producing DAG as a second messenger [5]. Although the intricacies
of TRPC7 channel activation remain unclear, it is well established that it is directly activated
by DAG [4,8,9]. Other studies have also demonstrated that TRPC7 is activated indirectly
by DAG through other interacting proteins [10], or independently by PIP2 or IP3 [11,12].

TRPC7 is implicated in physiological as well as pathological conditions, such as in
age-related diseases like UVB-induced skin aging [7], initiation of acute seizure [13], and
myocardial apoptosis [14]. Conversely, TRPC7 possesses a potential protective effect in
breast cancer [15]. Altered TRPC expression is often associated with the development
and progression of cardiac pathologies. TRPC7, along with other members of TRPC
family (i.e., TRPC3 and TRPC6) are involved in these pathologies in response to the
activation of Angiotensin II type-1 receptor (AT1R) [14,16,17]. Thus, several BRET-based
biosensors of TRP channels have been successfully developed in the past in order to
characterize biological processes associated with these ion channels [18,19]. However, a
TRPC7 BRET-based biosensor has never yet been described. In this study, we designed
novel intramolecular TRPC7 BRET-based biosensors to characterize TRPC7 conformational
changes that occur following stimulation of various GPCRs. These biosensors allowed us to
study TRPC7 activation, especially downstream of AT1R transiently expressed in HEK293
cells, and endogenously expressed in neonatal rat cardiac fibroblasts.

2. Results and Discussion
2.1. Design of TRPC7 BRET-Based Biosensors

We developed intramolecular TRPC7 BRET-based biosensors to detect TRPC7 con-
formational changes with Renilla luciferase (RLucII), and a modified version of the green
fluorescent protein (GFP10) fused to the N-terminus and the C-terminus, respectively
(RLucII-TRPC7-GFP10), or vice versa (GFP10-TRPC7-RlucII) (Figure 1). These constructs
are reminiscent of similar intramolecular BRET constructs previously used to examine
elements of signaling pathways such as β-arrestin [20].

Figure 1. TRPC7 biosensors were designed to detect their conformational changes in a BRET2 assay.
The double brilliance intramolecular BRET TRPC7 biosensor was double-tagged N-terminally with
GFP10 and C-terminally with RLucII (or N-term RLucII and C-term GFP10). TRPC7, Transient
receptor potential canonical channel 7; RlucII, Renilla luciferase; GFP10, green fluorescent protein.

As Liu et al. developed an intramolecular BRET to monitor TRPC3 activity, we used
the same design for TRPC7 [18]. However, while their method of detection was BRET1,
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we used BRET2, changing the YFP for a GFP10, thus increasing the wavelength separation
between RLucII and fluorescent protein emission, resulting in an improved detection and
discrimination of signals [21].

2.2. Activation of the Gαq Pathway Results in Conformational Changes of Functional
Intramolecular TRPC7 Biosensors

As TRPC7 is activated by downstream Gαq signaling effectors [5], we first exam-
ined and compared the BRET signals of RLucII-TRPC7-GFP10 and GFP10-TRPC7-RLucII
biosensors in conjunction with the use of Gαq Designer Receptors Exclusively Activated
by Designer Drugs (Gαq-DREADD), a Gαq-biased seven transmembrane synthetic recep-
tor [22]. Co-expression of TRPC7 biosensors with Gαq-DREADD and stimulation with
1 µM of Clozapine-N-Oxide (CNO; DREADD’s synthetic and selective agonist) led to a
decrease in BRET ratio with both intramolecular biosensor configurations (Figure 2a,b).
This observation suggested that a conformational change of the TRPC7 channel, such as
distancing or orientation change of the tagged N-terminus and C-terminus, occurs follow-
ing Gαq-DREADD stimulation. An optimal dynamic range was observed with transfection
of 25 ng for RLucII-TRPC7-GFP10 (0.022 ± 0.004) and 75 ng for GFP10-TRPC7-RLucII
(0.043 ± 0.004), respectively (Figure S1), and was sustained over time (Figure 2a,b). Since
the GFP10-TRPC7-RLucII construct possessed the ideal combination of RLucII signal in-
tensity and dynamic range, as well as a stable signal over time, we used this construct in
subsequent experiments.

We then verified whether the conformational changes of GFP10-TRPC7-RLucII biosen-
sor could be specifically due to Gαq signaling downstream of Gαq-DREADD activation.
Pre-treatment with 1 µM of the Gαq inhibitor YM-254890 [23] completely abolished Gαq-
DREADD-induced TRPC7 conformational changes (Figure 2c). Importantly, we also ver-
ified whether GFP10-TRPC7-RLucII maintained the same electrophysiological profile as
its wild-type (WT) counterpart through the use of patch-clamp electrophysiology. With
these experiments, we assessed whether this novel biosensor, bearing relatively large fu-
sion proteins (i.e., GFP10 and RLucII), was a fully functional cationic channel. As TRPC7
is activated downstream of Gαq signaling [5], we compared current–voltage profiles in
HEK293 cells co-transfected with plasmids encoding Gαq-DREADD and either TRPC7 WT
or GFP10-TRPC7-RLucII, as illustrated in Figure 2d. Following Gαq-DREADD stimula-
tion with 1 µM of CNO, we observed no detectable difference between TRPC7 WT and
GFP10-TRPC7-RLucII in the recorded currents.

Furthermore, we also assessed whether the change in BRET2 ratio was due to confor-
mational changes of the TRPC7 channel in response to Gαq-DREADD activation or due to
calcium entry through the channel pore. Our results showed that the normalized BRET2

ratios were similar between physiological buffer (containing calcium) and calcium-free
buffer conditions (normalized ∆ BRET2 ratio 0.118 ± 0.031 and 0.086 ± 0.021, respectively)
(Figure S2a,b). Additionally, we evaluated the effect of SKF96365 (SKF), a non-selective
calcium entry blocker, known to inhibit TRPC channels [24], on BRET2 ratio changes.
Interestingly, after SKF treatment, a decrease in normalized BRET2 ratio (normalized ∆
BRET2 ratio 0.087 ± 0.020 for CNO vs. control, and 0.068 ± 0.019 for CNO + SKF vs. SKF
alone), similar to the non-treated condition, was observed (Figure S2c). Taken together,
these results suggest that calcium influx does not hinder the function of the GFP10-TRPC7-
RLucII biosensor.
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Figure 2. Double brilliance GFP10-TRPC7-RLucII biosensors allow the detection by BRET of
TRPC7 conformational changes in response to Gαq-DREADD activation while being fully functional.
(a,b) HEK293 cells were co-transfected with plasmids encoding RLucII-TRPC7-GFP10 or GFP10-
TRPC7-RLucII biosensors (75 ng) and Gαq-DREADD (500 ng), and were stimulated with Clozapine-
N-Oxide (CNO; 1 µM) or vehicle as a control. The BRET signal was measured for 10 min. (c) HEK293
cells were transfected in the same conditions as in (a) and were pre-incubated with YM-254890 (Gαq

inhibitor; 1 µM) or vehicle for 10 min before basal BRET signal was read. The BRET signal was
measured for 10 min following stimulation with CNO (1 µM). Each data set represents the mean
of three independent experiments, which were each performed in triplicate, and expressed as the
mean ± S.E.M. (d) Whole-cell patch-clamp experiments on HEK293 cells were performed 48 h after
co-transfection with plasmids encoding Gαq-coupled DREADD and TRPC7 WT (open circles) or
the GFP10-TRPC7-RLucII biosensor (closed squares). Current–voltage relationships were obtained
from the TRPC7 WT and GFP10-TRPC7-RLucII in control conditions (black symbols) and following
Gαq-coupled DREADD stimulation with CNO (red symbols; 1 µM). Each data set represents the
mean of seven (7) recordings ± S.E.M. Statistical analyses were performed using a two-way ANOVA
with multiple comparisons followed by a Sidak’s post-hoc test. * p < 0.05, ** p < 0.01 for control
vs. CNO.

Such tools have been reported by other groups to monitor TRP member conformational
changes with TRPC3, shown to exhibit intramolecular changes using BRET1 [18]. This type
of construct with BRET1 was also studied with another member of the TRP superfamily,
TRPV1 (TRP Vanilloid 1) [19], recently demonstrating that this technology can be used for
high-throughput screening [25]. This group also used NanoLuc tag, exhibiting less steric
hindrance and higher signal, associated with the mNeonGreen tag to assess conformational
changes of different TRP (TRPV4 and TRPM8) or non-TRP proteins (KCa2.3, Kir6.1, TREK1,
rP2 × 2). Similar to the demonstrated functionality of the GFP10-TRPC7-RLucII biosensor,
the intramolecular BRET-based TRPV1 biosensor was also assessed by patch-clamp [25].
This assay revealed that, despite the addition of two tags on the ion channel subunits, they
remain functional. All of these results converge to confirm that BRET is a useful tool to
study ion channel activation, especially for TRP members.
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2.3. GFP10-TRPC7-RLucII Biosensor Competition with Untagged TRPC3 or TRPC7 Does Not
Alter Its Conformational Changes in Response to Gαq-DREADD Stimulation

Fully functional cationic TRPC channels are formed either as homotetramers or het-
erotetramers [26–28]. Thus, we overexpressed the untagged TRPC7 WT or one of its
partners, TRPC3 WT, to verify whether the observed BRET signal changes were solely
due to intramolecular changes in conformation of GFP10-TRPC7-RLucII or to the relative
intermolecular changes upon pore opening in a homo- or hetero-tetrameric protein complex.
The competition between GFP10-TRPC7-RLucII biosensor (75 ng) and increasing TRPC7 or
TRPC3 WT (0 to 500 ng) showed a quantity-dependent and partial decrease in BRET ratio
(Figure 3a,b). This pattern suggests that the BRET signal observed with the GFP10-TRPC7-
RLucII biosensor was derived from both intra- and intermolecular interactions between the
different subunits of the tetrameric protein complex. We then tested the response of this
biosensor to Gαq-DREADD receptor’s activation with high levels of TRPC7 or TRPC3 WT
expression (500 ng) (Figure 3c,d). Even if the ∆ BRET2 ratios were lower in these conditions,
the activation of the GFP10-TRPC7-RLucII biosensor remained detectable and significant,
even in competition with untagged TRPC7 or TRPC3 WT after Gαq-DREADD stimulation.

Figure 3. Double brilliance GFP10-TRPC7-RLucII biosensor also shows intermolecular interactions
between TRPC7 subunits. HEK293 cells were co-transfected with plasmids encoding GFP10-TRPC7-
RLucII (75 ng), Gαq-DREADD (500 ng) and increasing concentration of the corresponding untagged
TRPC7 WT (a) or TRPC3 WT (b). Basal BRET ratio was measured. Statistical analyses were performed
using a Kruskal–Wallis multiple comparisons followed by a Dunn’s post-hoc test. ** p < 0.01,
*** p < 0.001 compared to no competition (0 ng of TRPC7 or TRPC3 WT). (c,d) HEK293 cells were
co-transfected with plasmids encoding Gαq-DREADD (500 ng), GFP10-TRPC7-RLucII (75 ng), and
TRPC7 WT (500 ng) (c) or TRPC3 WT (500 ng) (d) and were stimulated with CNO (1 µM) or vehicle as a
control. BRET signal was measured for 10 min. Each data set represents the mean of three independent
experiments, which were each performed in triplicate, and expressed as the mean ± S.E.M. Statistical
analyses were performed using a two-way ANOVA with multiple comparisons followed by a Sidak’s
post-hoc test. * p < 0.05, *** p < 0.001 for control vs. CNO.
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BRET modulation in response to Gαq activation, indicating conformational changes,
was still detected in these experimental competition paradigms. The lower dynamic range
following TRPC7 activation in competition experiments are still significant, compared
to the previous experiments reported in Section 2.2 (0.028 ± 0.010 with TRPC7 WT and
0.021 ± 0.002 with TRPC3 WT vs. 0.052). The BRET signal monitored would be the result
of not only intermolecular conformational changes within the heterotetrametric TRPC7
channel, but also integrated intramolecular conformational changes occurring within
the single TRPC7 monomer. These experiments provide evidence that intermolecular
interactions occur, although the intramolecular changes are readily detectable with a double-
tagged ion channel biosensor. This could be extrapolated to other ion channel biosensors.

2.4. Gαq Signaling Is Required to Induce Conformational Changes in GFP10-TRPC7-RLucII
BRET-Based Biosensor

We next investigated the activation of GFP10-TRPC7-RLucII biosensor (75 ng) in
response to different Gαq-coupled receptors (500 ng), namely the Angiotensin II type-1
receptor (AT1R), thromboxane A2 receptor alpha (TPα), and Urotensin II receptor (UT).
The stimulation of these co-transfected receptors with saturating concentrations (1 µM) of
Angiotensin II (AngII), U-46619 (a synthetic TPα agonist), and Urotensin II (UII), respec-
tively, induced a decrease in BRET ratio (Figure 4a–c). Interestingly, the amplitude and
kinetic of activation of the GFP10-TRPC7-RLucII biosensor under these conditions differed
amongst the three tested Gαq-coupled receptors, suggesting divergent pharmacokinetic
properties and/or relative propensity to activate Gαq protein by their respective agonists.

Figure 4. Gαq-coupled receptors modulate BRET ratio of GFP10-TRPC7-RLucII biosensor.
(a–c) HEK293 cells co-transfected with plasmids encoding GFP10-TRPC7-RlucII biosensor (75 ng)
and Gαq-coupled AT1R (a), TPα (b), or UT (c) receptors (500 ng) and were respectively stimulated
with AngII, U-46619 and Urotensin (1 µM) or vehicle as a control. BRET signal was measured for
10 min. Each data set represents the mean of three independent experiments, which were each
performed in triplicate, and expressed as the mean ± S.E.M. Statistical analyses were performed
using a two-way ANOVA with multiple comparisons followed by a Sidak’s post-hoc test. * p < 0.05
for control vs. stimulation.

Since GFP10-TRPC7-RLucII displayed a superior dynamic range upon AT1R agonist
stimulation (0.057 ± 0.019), which has already been demonstrated to play a role in TRPC7
activation [14], and as compared to TPα (0.055 ± 0.007) and UT (0.022 ± 0.024), we fur-
ther characterized this biosensor using AT1R, which is known to couple to Gαq, Gαi/o
and Gα12/13 [29–31]. Therefore, we investigated the effect of pharmacological inhibition
of specific AT1R pathways by using the Gαq/11 inhibitor YM-254890 (1 µM), the Gαi/o
inhibitor pertussis toxin (PTX) (100 ng/mL), and the Rho kinase inhibitor Y27632 (10 µM),
a downstream effector of the Gα12/13 pathway (Figure 5a–c). The activation of GFP10-
TRPC7-RLucII was completely suppressed with YM-254890 (Figure 5a). In contrast, PTX
and Y27632 did not impact the BRET signal of GFP10-TRPC7-RLucII activation (Figure 5b,c).
Other members of the TRPC family, namely TRPC3 and TRPC5, have been demonstrated to
be activated downstream of Gαq/11 and Gαi/o [32–34]. Under our experimental conditions,
the results demonstrate a predominant role of the Gαq/11 pathway in the activation of
TRPC7 following AT1R stimulation.
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Figure 5. Modulation of BRET ratio in response to inhibition of specific G-protein signaling and
loss of β-arrestins. (a–c) HEK293 cells were co-transfected with plasmids encoding AT1R (500 ng)
and GFP10-TRPC7-RLucII (75 ng). Cells were pre-incubated 10 min with YM-254890 (Gαq inhibitor;
1 µM) (a), Y27632 (ROCK inhibitor; 10 µM) (b) or 24 h with Pertussis Toxin (PTX, Gαi/o inhibitor;
100 ng/mL) (c) before BRET measurement and stimulation with AngII (1 µM) or vehicle as a control.
BRET signal was measured for 10 min. (d) βArr KO HEK293 cells were co-transfected with plasmids
encoding AT1R (500 ng) and GFP10-TRPC7-RLucII (75 ng) and were respectively stimulated with
AngII (1 µM) or vehicle as control. BRET signal was measured for 10 min. Each data set represents
the mean of three independent experiments, which were each performed in triplicate, and expressed
as the mean ± S.E.M. Statistical analyses were performed using a two-way ANOVA with multiple
comparisons, followed by a Sidak’s post-hoc test. * p < 0.05, ** p < 0.01 for control vs. AngII; $$ p < 0.01
for Y27632 vs. AngII + Y27632; and † p < 0.05 for PTX vs. AngII + PTX.

Since the GPCR adapter protein β-arrestin 1 (βarr1) was found to be essential in
TRPC3 activation following the binding of AngII to AT1R [18], we then assessed whether
βarrs also affect TRPC7 activation. To this end, we co-transfected AT1R with the GFP10-
TRPC7-RLucII biosensor in βArr KO HEK293 cells. Albeit the ∆ BRET2 ratio is diminished
in βArr KO HEK293 cells (0.031 ± 0.007), as compared to WT HEK293 cells (0.052 ± 0.014),
AT1R stimulation by AngII still led to a decrease in the BRET2 ratio in βArr KO cells
(Figure 5d), suggesting that βarrs are not crucial for TRPC7 activation. This differs from
TRPC3, which depends on βArr1 to be activated [18]. Our results suggest that TRPC7
activation by GPCRs do not form a supramolecular complex at the cell membrane with
the receptor and βarrs, as shown for TRPC3. We can assume that the decreased ∆BRET2

ratio is a consequence of the adaptation of HEK293 cells to CRISPR/Cas9 deletion of βArrs,
certainly involving cell signaling rearrangement, and that the cellular context probably
plays an important role in the activation of all TRPCs.
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2.5. GFP10-TRPC7-RLucII Biosensor Shows Conformational Changes in Rat Cardiac Fibloblasts
Expressing Endogenous AT1R

TRPC7 and AT1R have been shown to be expressed in rat cardiac fibroblasts [35–37].
Satoh et al. (2007) have linked AT1R stimulation and TRPC7 activation in rat cardiomy-
ocytes, and our results showed that TRPC7 is activated downstream of AT1R in HEK293
cells. Therefore, we assessed whether AT1R endogenously expressed in primary cell culture
of rat neonatal cardiac fibroblasts (RNCFs) can also modulate the BRET responses of the
GFP10-TRPC7-RLucII biosensor. RNCFs were isolated and infected with an adenovirus
encoding GFP10-TRPC7-RLucII biosensor 4 h after plating, and the BRET signals were
measured 48 h post-infection (Figure 6a). Following stimulation with AngII (1 µM), a
decrease of the BRET2 ratio was observed in RNCFs.

Figure 6. Stimulation of endogenous AT1R induces GFP10-TRPC7-RLucII biosensor conformational
changes. Isolated rat neonatal cardiac fibroblasts were infected with the adenovirus encoding GFP10-
TRPC7-RlucII biosensor. (a) Cells were stimulated with AngII (1 µM) 48 h post-infection, and BRET
signal was measured for 10 min. Cells were pre-incubated with Losartan (100 µM) (b), YM-254890
(1 µM) (c) or Y27632 (10 µM) (d) before BRET measurement, and stimulation with AngII (1 µM) or
vehicle as a control. BRET signal was measured for approximatively 10 min. Each data set represents
the mean of three independent experiments, which were each performed in triplicate, and expressed
as the mean ± S.E.M. Statistical analyses were performed using a two-way ANOVA with multiple
comparisons, followed by a Sidak’s post-hoc test. * p < 0.05, ** p < 0.01 for control vs. AngII and
$ p < 0.05 for Y27632 vs. AngII + Y27632.

Since both AT1R and AT2R subtypes are expressed in cardiac fibroblasts [37–39],
we assessed whether the activation of TRPC7 BRET biosensor is mainly due to AT1R
stimulation and not AT2R using Losartan, a selective AT1R antagonist (Figure 6b). Pre-
incubation of Losartan with RNCFs completely abolished the activation of the GFP10-
TRPC7-RLucII biosensor following AngII stimulation. We also confirmed the implication
of Gαq signaling pathway in mediating TRPC7 activation after AT1R stimulation by using
YM-254890 and Y27632 in these primary cultured cells (Figure 6c,d). YM-254890 completely
prevented the GFP10-TRPC7-RLucII biosensor activation (Figure 6c), whereas Y27632
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did not affect its activation following AngII stimulation (Figure 6d). These results are in
accordance with the findings in HEK293 cells as shown in Section 2.4.

Overall, these results confirmed that TRPC7 activation in NRCFs can be efficiently trig-
gered by AT1R stimulation under physiological conditions. Our results are in line with pre-
vious studies highlighting the presence and function of TRPC7 in cardiac fibroblasts [35,36].
Moreover, TRPC7 and other TRPC are recognized to be important contributors, together
with the canonical Transforming Growth Factor β (TGFβ) and AT1R pathways [40,41], in
the development of cardiac fibrosis, and to exert essential roles in cardiac physiological and
pathophysiological processes [42,43]. Considering the major role of Ca2+ signaling in the
pathophysiological processes leading to cardiac fibrosis [44], the use of this novel GFP10-
TRPC7-RLucII BRET biosensor may therefore help to decipher new pathways contributing
to fibrosis.

3. Materials and Methods
3.1. Materials

Angiotensin II, U-46619, Urotensin II, Y27632, and SKF96365 were acquired from
Sigma-Aldrich (St. Louis, MO, USA), Clozapine-N-Oxide (CNO) and Losartan were pur-
chased from Tocris (Toronto, ON, Canada), YM-254890 was purchased from Adipogen Life
Sciences Inc (San Diego, CA, USA), and Pertussis Toxin (PTX) was acquired from List Bio-
logical Laboratories (Campbell, CA, USA). Dulbecco’s modified Eagle’s medium (DMEM),
fetal bovine serum (FBS), penicillin-streptomycin-glutamine (PSG), Hank’s balance salt
solution (HBSS), and (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) were
purchased from Wisent (St-Bruno, QC, Canada). TryPLE Express Enzyme with phenol red
was obtained from Gibco (Gaithersburg, MD, USA). Opti-MEM was purchased from Invit-
rogen (Burlington, ON, Canada). Polyethylenimine (PEI) was acquired from Polyscience
(Warrington, PA, USA). Coelenterazine 400 A was from GoldBio (St. Louis, MO, USA).
YM-254890 was used as described in other studies [45,46], i.e., preincubated 10 min at 1 µM.
Other inhibitors were used as in our previous study [47]: Y27632 at 10 µM and Losartan at
100 µM (one hundred times AngII concentration) were preincubated 10 min before BRET
reading, whereas PTX was preincubated at 100 ng/mL overnight.

3.2. Plasmids

Plasmid encoding the human Angiotensin II type-1 receptor (AT1R) was kindly pro-
vided by Dr. Sylvain Meloche (Université de Montréal, Montréal, QC, Canada). The
plasmid coding for the SNAP-tagged urotensin II receptor (UT) was obtained from Cisbio
Bioassays (Codolet, France), and the one containing Thromboxane A2 receptor alpha (TPα)
was from cDNA.org. Gαq-DREADD was acquired from Addgene (cat#45547) (Watertown,
MA, USA). The empty plasmids pcDNA3.1zeocin-RLucII/GFP10 and pcDNA3.1zeocin-
GFP10/RLucII were a gift from Dr. Michel Bouvier (Université de Montréal, Montréal,
QC, Canada). β-arrestin 1-Flag and β-arrestin 2-Flag plasmids were kindly given by Dr.
Stéphane A. Laporte (McGill University, Montréal, QC, Canada).

TRPC7 plasmid, in pLX304 vector, was obtained through DNASU plasmid repository
(clone#HsCD00437023, Arizona State University, Tempe, AZ, USA). RLucII-TRPC7-GFP10
and GFP10-TRPC7-RLuc double brilliance BRET-based biosensors were generated by PCR
amplification of the human TRPC7 cDNA. Primers used to amplify TRPC7 contained
15 bp from the pcDNA3.1(+) RLucII-GFP10 or pcDNA3.1(+) GFP10-RLucII vector to be
subcloned using the Gibson HiFi Assembly (New England Biolabs, Whitby, ON, Canada),
according to the manufacturer instructions. A list of the PCR primers used to amplify the
TRPC7 moiety is reported in Table S1. All generated constructs were purified by Midi DNA
preparation (Qiagen, Toronto, ON, Canada), and analyzed through Sanger sequencing and
subsequent DNA alignment. Sequences of generated biosensors plasmids are provided as
Sequences S1 and S2.
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3.3. Cell Culture

Human embryonic kidney 293 (HEK293)-A cells were purchased from Life Tech-
nologies (Carlsbad, CA, USA). The SL-CRISPR βArr1/2 KO HEK293 cell lines (βArr KO
HEK293) were generated by Prof. Stephane A. Laporte (McGill University, Montréal,
QC, Canada) by using the CRISPR/Cas9 method to delete β-arrestin 1 and β-arrestin
2, from a subclone of HEK293-A cells (HEK293-SL used as a control in β-arrestin exper-
iments) [48]. Cells were maintained in DMEM medium supplemented with 10% FBS,
penicillin (100 U/mL)-streptomycin (100 µg/mL)-glutamine (2 mM) at 37 ◦C in a humidi-
fied 5% CO2 atmosphere.

3.4. BRET Assays

To monitor TRPC7 activation, we used plasmids encoding intramolecular biosensors
(i.e., RLucII-TRPC-GFP10 and GFP10-TRPC7-RLucII) or TRPC7 WT, co-transfected with
plasmids containing cDNAs encoding different receptors. pIRES(puro)-RLucII vector was
used to calculate the netBRET ratio of intramolecular biosensor activation subtracting the
BRET background. Cells were transiently transfected with the indicated constructs at a
density of 3.5 × 105 cells/mL using a 3:1 ratio of linear PEI (1 mg/mL) per µg DNA [49]. A
maximum of 2 µg of plasmid DNA was prepared in Opti-MEM to transfect 3.5 × 105 cells.
Salmon sperm DNA was used to keep the same amount of DNA under each condition.
Cells were then directly seeded (35 × 105 cells/well, 100 µL) in white opaque 96-well plates
(BD Falcon, Corning, NY, USA).

After 48 h post-transfection, the medium was removed and replaced by HBSS con-
taining 20 mM of HEPES, and left 1 h at 37 ◦C. The luciferase substrate coelenterazine
400 A (5 µM) was added 5 min prior to reading the BRET signal, and followed by the
addition of ligands. Inhibitors were added 10 min before BRET reading, except for the PTX,
which was added 24 h prior to the BRET reading. RLucII and GFP10 signals were acquired
using a Berthold TriStar2 LB 942 Multimode Reader (Berthold, Bad Wildbad, Germany)
equipped with high-sensitivity BRET2 filters (RLucII emission 410 nm/GFP10 emission
515 nm). BRET2 ratio was determined by dividing acceptor signal (GFP10) over donor
signal (RLucII).

3.5. Electrophysiological Measurements

To monitor the electrophysiological activity, the maintenance and transfection of
HEK293 cells were performed as previously described [50]. HEK293 cells were grown on
glass coverslips in a 60 mm dish, were transfected with cDNAs encoding TRPC7 WT (0.7 µg)
or GFP10-TRPC7-RLucII (0.7 µg), Gαq-DREADD receptor (1 µg), and Green Fluorescent
Protein (GFP) (0.3 µg), and used within 48 h.

The methods for electrophysiology were previously described [51]. Briefly, cells were
placed into a 2 mL bath solution containing (in mM): 140 NaCl, 1.5 CaCl2, 2 MgCl2, 5 KCl,
10 HEPES, 10 D-glucose (pH 7.4 adjusted with NaOH). Borosilicate glass (Harvard Appara-
tus Ltd., Holliston, MA, USA) pipettes were pulled and polished to 2–5 MΩ resistance with
a DMZ-Universal Puller (Zeitz-Instruments GmbH, Martinsried, Germany), and filled with
an internal solution containing (in mM): 120 CsCl, 10 EGTA, 10 HEPES, 3 MgCl2, 2 ATP,
and 0.5 GTP, pH 7.2 adjusted with CsOH. Recordings were performed using an Axopatch
200 B amplifier (Axon Instruments, Hawthorn East, Australia). Cells were voltage-clamped,
and TRP currents were measured using conventional whole-cell patch-clamp method. All
the recordings were performed at room temperature (22 ± 2 ◦C). Currents were elicited by
a ramp protocol from -100 mV to +100 mV at 10 s interval. CNO (1 µM), dissolved in the
bath solution, was delivered using a gravitational perfusion system (ALA-VM8, Scientific
Instruments, Columbia, MD, USA) at a rate of 1–2 mL/min. Voltage clamp protocols were
applied using pClamp 10.4 software (Axon Instruments). Data were filtered at 1 kHz (8-pole
Bessel) and digitized at 10 kHz with a Digidata 1440 A converter (Axon Instruments). For
whole-cell recordings, the series resistance was compensated.
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3.6. Cardiac Fibroblast Isolation and Infection

TRPC7 WT and GFP10-TRPC7-RLucII were subcloned into the Gateway pENTR3C
Dual Selection vector (Invitrogen) using the NEBuilder HiFi DNA Assembly Cloning Kit
(New England Biolabs). pENTR3C Dual Selection vectors were recombined in the Gateway
pAd/CMV/V5-DEST adenovirus vector (Invitrogen) using the Gateway LR Clonase II
Enzyme Mix (Invitrogen). The plasmids (4.5 µg) were digested with PacI (New England
Biolabs), and transfected into 80% confluent HEK293A cells cultured in 35-mm dishes
with Lipofectamine 2000 transfection reagent (Invitrogen). The primary adenoviruses were
collected seven days after the transfection from the medium, and amplified with 10 cm
dishes of 90–100% confluent HEK293A cells. To determine the titer of newly generated
adenoviruses, HEK293A cells were infected with serial dilutions of the viral particles,
fixed with 100% methanol 36 h post-infection, stained with a specific anti-hexon antibody
(Abcam, Cambridge, UK) and a secondary anti-mouse Alexa 488 antibody (Cell Signaling,
Danvers, MA, USA), and imaged with the Operetta System (Perkin Elmer, Waltham, MA,
USA) at 10× magnification.

Neonatal rat cardiac fibroblasts (NRCFs) and ventricular myocytes (NRVMs) were
extracted from the hearts of 1–3 days-old Sprague–Dawley rat pups (Charles River Lab-
oratories), as previously described [52]. Briefly, after trypsin and collagenase digestion,
NRCFs and NRVMs were separated by a pre-plating step of 30 min at 37 ◦C, where NRCFs
attached more rapidly than NRVMs to the petri dish. The supernatant containing NRVMs
was resuspended in M199 medium supplemented with 10% FBS, penicillin (100 U/mL)-
streptomycin (100 µg/mL)-glutamine (2 mM), and plated on gelatin-coated 96-well plates
at a density of 10 × 105 cells per well. NRCFs were cultured in DMEM supplemented with
10% FBS, penicillin (100 U/mL)-streptomycin (100 µg/mL)-glutamine (2 mM) and used at
passage 3, at which point they were plated in 96-well plates at a density of 10 × 105 cells
per well. Four hours after plating, NRCFs and NRVMs were infected with adenoviruses
encoding GFP10-TRPC7-RLucII at a multiplicity of infection of 50, and then cultured for
48 h before BRET assay.

3.7. Data Analysis

For BRET assays, raw data were imported in GraphPad Prism 9 software (San Diego,
CA, USA), and each result is represented as mean ± S.E.M. of at least three independent
experiments performed in triplicate. netBRET was calculated by subtracting background
luminescence of cells only expressing Renilla Luciferase.

For electrophysiological assay, data analysis and offline leak subtraction were com-
pleted in Clampfit 10.4 (Axon Instruments), and all the analysis was performed using
Origin 7.0 analysis software (OriginLab, Northampton, MA, USA).

Statistical analyses were performed using GraphPad Prism 9 and are described
in the figure legend when applicable. A value was considered statistically significant
when p < 0.05.

4. Conclusions

In this study, we report the construction of new tools to monitor conformational
changes of TRPC7, an ion channel particularly involved in Ca2+ homeostasis. Using BRET-
based constructions of TRPC7, we were able to record TRPC7 conformational changes in
living cells with a fully functional channel, and to link the changes of conformation of
TRPC7 to its activation. Using adenoviruses to package the TRPC7 biosensor, we effectively
transduced and monitored TRPC7 activation in primary cells (cardiac fibroblasts). These
new tools can therefore be used to decipher mechanistic events leading to TRPC7 activation
in various cellular and pathophysiological contexts. Furthermore, BRET is a highly sensitive
and robust technique that is suitable for high throughput screening, thus these biosensors
can be used in the discovery of new TRPC7 modulators. The biosensor design described in
this study can be applied not only to other members of the TRPC family, but also to the
broader TRP channel family.
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