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Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During
future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence
protons (1H) and high charge and energy (HZE) nuclei (e.g., iron-56Fe) for extended time. How the space-type IR affects BM-EPCs
is limited. In media transfer experiments in vitro we studied nontargeted effects induced by 1H- and 56Fe-IR conditioned medium
(CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2–15-fold
increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h. Ex vivo analysis of BM-
EPCs from single, low-dose, full-body 1H- and 56Fe-IR mice demonstrated a cyclical (early 5–24 h and delayed 28 days) increase in
apoptosis.This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could
be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines
responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in
the BMmilieu.

1. Introduction

Long lasting, up to 2 years, ionizing radiation- (IR-) induced
chromosomal instability had been reported in vivo in the
bone marrow (BM) after full body exposure to X-rays or
neutrons [1, 2]. In addition, it has been shown that after space
flights the number of myeloid and lymphoid BM-derived
stem and progenitor cells were reduced to just one-half of
their normal population [3]. In spite of these reports there is
significant gap in assessing the effects of low-dose full body IR
on the survival and function of BM stem and progenitor cells,
including BM-derived endothelial progenitor cells (BM-
EPCs).These earlier findings suggest that the number of EPCs
may be similarly reduced in the normal BM-EPC population
during and after space flights. Additionally, IR-induced DNA

damage in BM may affect significantly the number and
function of BM-EPCs. Subsequently reduced number and
function in EPCs and other BM stem and progenitor cell
populations may affect adversely cardiac homeostasis during
normal aging, as well as the repair and regeneration processes
after cardiac injury.

Radiobiological bystander responses (RBR) are the phe-
nomena in which nonirradiated (Non-IR) cells exhibit
responses similar to effects manifested by IR cells as a result
of signals received from either nearby or distant IR cells.
Radiobiological bystander responses of IR on a variety of
primary and tumor cells have been well-documented in vitro
[4–10]. RBR-mediated effects can be attributed to events
initiated near the Non-IR cell surface that in turn acti-
vates and integrates various intracellular signaling pathways
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that are regulated by RBR [11]. It is important to clarify
here that the ability to induce RBR [7] and the ability to
receive the IR-induced RBR signaling is cell-, cytokine-,
and chemokine-specific [4]. Further, specific ligand-receptor
interactions on Non-IR cells may play key role in the
propagation of RBR [4, 12, 13] in the remote site from the
original site of IR exposure cells and tissues, including cells
in the BMmilieu.

Our focus on BM-EPCs stems from considerable body
of evidence regarding the role of EPCs in repair and regen-
eration and postnatal angiogenesis (neovascularization) pro-
cesses after ischemic injury. In various animal models [14–
17] and human clinical trials [18–21] our laboratory and
others have shown that transplantation of BM cells and BM-
EPCs leads to migration and homing of these cells to the
areas of damage, where EPCs contribute to the processes of
neovascularization leading to the development of collateral
vessels, which then contribute to the recovery of blood flow
in the damaged tissue such as the heart [22–26], hind limb
[27–29], bone [30–33], liver [34–36], and brain and spinal
cord [37–41]. Consequently a decrease in the total number
of BM-EPCs or their dysfunction could contribute to the
pathogenesis of ischemic and/or peripheral vascular diseases.
This could also have negative impact on the recovery after
tissue injury, as well as negatively affect the maintenance
of normal vascular homeostasis in the organs and tissue
in general. We therefore tested whether BM-derived EPCs
may exhibit radiobiological bystander responses in vitro and
determined the effect of low-dose full-body particle IR on the
survival of BM-derived EPCs in vivo.

2. Material and Methods

2.1. Animal Models. To determine low-dose full-body proton
(1H)-IR and iron (56Fe)-IR induced effects on survival of
BM-derived EPCs, adult 8–10 months old male C57Bl/6NTac
mice were shipped directly from Taconic (Hudson, NY) to
Brookhaven National Laboratory (BNL) to be irradiated at
NASA Space Radiation Laboratory (NSRL). Mice were kept
in the temperature- and light-controlled environment and
handled in accordance with IACUC guidelines and protocols
approved by GeneSys Research Institute (GRI) and BNL.

2.2. Radiation andDosimetry. Full-body low-dose space-type
IR experiments for low linear energy transfer (LET) 1H-
IR and high-LET 56Fe-IR exposures were performed at the
BNL in the NSRL according to standardized procedures.
For both 1H and 56Fe full-body IR mice were placed in
individual polypropylene boxes with 4mm holes drilled
to produce a stress-free environment. LET levels for both
particle radiations were held constant and the average dose-
rate of 16.7 ± 5 cGy/min for 1H-IR and 5 ± 0.5 cGy/min
for 56Fe-IR to deliver a cumulative dose of 90 cGy for
1H and 15 cGy for 56Fe, respectively. Constant energy of
1,000MeV/nucleon (n) was used to deliver both, 1H- and
56Fe-IRs. Mice exposed to low-dose particle IR were driven
back toGeneSys Research Institute (GRI) animal facility from

BNL for housing and experimental analysis. Control Non-
IR mice for each ion species was sham-IR; that is, mice were
placed in the same individual polypropylene boxes, taken to
the irradiation “cave,” and placed on beam line platform for
the same duration of the time for each ion, but not irradiated.

2.3. Medium Transfer Experiments in BM-EPCs after 1H-
IR and 56Fe-IR. We isolated BM-EPCs from mononuclear
cell (MNC) fraction of total bone marrow isolated from
tubular bones by flushing tibiae and femurs of 1H-IR, 56Fe-
IR, and Non-IR mice using density gradient centrifuga-
tion. MNCs were then cultured on 22 × 22mm square
glass coverslips (Fisher Scientific, Pittsburg, PA) precoated
with 0.2% gelatin (Sigma, St Louis, MO) in 6-well dishes
(Corning Inc., Corning, NY). BM-EPCs were expanded ex
vivo in selective EBM-2 growth medium supplemented with
bullet kit growth factors (Lonza, Hopkinton, MA) until
they attained ∼70–80% confluence as described previously
[15, 28, 42]. These BM-EPCs cultured in EBM-2 growth
medium have been previously characterized for the following
markers: 𝛽-gal (biological EC marker–cells were grown from
Tie2/LacZ mice) and c-kit (stem/progenitor cell marker)
wherein we demonstrated that 95–100% of cells by days 4 and
6 were double positive for both markers [28]. We also used
two additional markers, Isolectin-B4 and Flk-1, which also
showed similar results by day 6 in culture [28]. In our recent
publication we further determined the purity of our BM-
EPC cultures for other lineage specific hematopoietic cells,
wherein we have performed immunofluorescent staining of
these cells with antibodies forGr1/Ly-6G (neutrophils), F4/80
(macrophages and blood monocytes), CD45R/B220 (B lym-
phocytes), CD3𝜀 (T lymphocytes), andTER-119 (erythrocytes
and erythroid precursors) [13]. These BM-EPCs have been
shown to be negative for B220, Cd3𝜀, and TER-119 markers
by day 5 in culture, with a negligible 1.17 ± 0.7% positivity for
Gr1 marker and ∼19% positivity for F4/80 marker [13].

For IR-conditioned media transfer studies, two sets of
BM-EPCs from the same WT mice that were IR with 1H
or 56Fe and Non-IR controls were prepared as described
previously [13, 43]. Upon attaining ∼70% confluence one set
of BM-EPCs was exposed to 90 cGy, 1 GeV of 1H-IR and
15 cGy, and 1GeV/n of 56Fe-IR. After irradiations conditioned
media (CM) from 1H- or 56Fe-IR-EPCs (1H- or 56Fe-IR-
CM) and control Non-IR EPCs (Non-IR-CM) were collected
at 2-, 5-, and 24-hour time points (Figure 1(a)). Prior to
IR exposures, media were changed in all wells of both sets
with fresh 3mL of EBM-2 media without growth factors
and incubated for 1 hour. The second set of Non-IR cells
from the same mice was used as näıve (nonirradiated) EPCs
for media transfer studies from their respective 1H-IR and
56Fe-IR exposed EPCs. 1H-IR- and 56Fe-IR-CM were filtered
through a sterile 0.22𝜇m membrane syringe filter and 2mL
of IR-CM collected at 2, 5 and 24 hours after IR was added
onto corresponding mice Non-IR EPCs. Non-IR-CM were
also collected, filtered, and transferred similarly. Naı̈ve EPCs
were incubated for 24 hours with 1H-, 56Fe-, and Non-
IR conditioned media. EPCs from all three CM treatment
conditions were collected at 2, 5, and 24 hours and processed
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Figure 1: Diagrammatic representation of the experimental design to evaluate the effect of low-dose, whole body 90 cGy, 1 GeV 1Hand 15 cGy,
1 GeV/n 56Fe-IR in BM-derived EPCs of 8–10 months old C57BL/6NTac. (a) In vitro study schematic for IR-conditioned medium transfer
study to evaluate bystander responses in nonirradiated BM-EPCs over 24-hour time period after IR. (b) Ex vivo study schematic to evaluate
the effects of full-body IR over 28 days on survival of BM-EPCs.

for phosphorylated (p)-H2AX immunostaining as described
below in Section 2.4. One mL of 1H-IR-, 56Fe-IR-, and Non-
IR-CM was aliquoted and snap frozen in liquid nitrogen for
protein analyses.

2.4. Immunofluorescent Staining. We assessed the formation
and decay of p-H2AX foci in naı̈ve EPCs treated for 24
hours with 2-, 5-, and 24-hour 1H-IR-, 56Fe-IR-, and Non-
IR-CM EPCs. Cells on cover slips were washed with 1xPBS,
fixed in 4% paraformaldehyde (PFA), and then incubated
with primary anti-p-H2AX rabbit monoclonal antibody
(Cat.9718S; Cell Signaling Technology, Danvers, MA). Alexa-
488 goat anti-rabbit secondary antibody (Cat.A11008; Life
Technologies, Grand Island, NY) was used to assay p-H2AX
foci formation and decay over time in Non-IR-, 1H-IR-, and
56Fe-IR-CM-treated ex vivo expanded EPCs. Topro-3 was
used to visualize nuclei (Cat.T3605; Life Technologies).

2.5. ConfocalMicroscopy andAnalysis. Laser scanning confo-
cal microscope (LSM 510 Meta, ZEISS, Thornwood, NY) was
used to obtain immunofluorescent images at ×200 magnifi-
cation. The analyses of p-H2AX foci were performed using
a computer assisted image analysis algorithm based on pixel
and color distribution. Data analysis was performed using
stringent constraint of not including cells with apoptotic
features or micronuclei for p-H2AX analysis. All time points

after 1H and 56Fe-IR were plotted as percent cells with an
N of p-H2AX foci compared to Non-IR controls and by
quantifying cells with ≥2 p-H2AX foci/cell.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). Con-
ditioned media from BM-EPCs after 1H-IR, 56Fe-IR, and
Non-IR were collected at 2, 5, and 24 hours after IR and
processed for mouse multiplex cytokine ELISA using man-
ufacturer protocol (Signosis, Santa Clara, CA). Following 9
cytokines, chemokines and growth factors were analyzed:
interleukin-1 alpha (IL-1𝛼), interleukin-1 beta (IL-1𝛽), mono-
cyte chemoattractant protein-1 (MCP-1), Rantes, microphage
inflammatory protein-1 alpha (MIP-1𝛼), granulocyte colony-
stimulating factor (G-CSF), granulocyte macrophage colony-
stimulating factor (GM-CSF), stem cell factor (SCF), and
tumor necrosis factor-𝛼 (TNF-𝛼). Absorbance readings at
450 nm were taken using Tecan Spectra model 96-well
Microplate Reader (MTX Lab Systems, Vienna, VA) and data
plotted using respective standard graphs obtained for each
protein. Data analyzed was categorized into two separate
groups: cytokines/chemokines and growth factors.

2.7. Apoptosis Assay of Ex Vivo Expanded BM-EPCs from 1H
and 56Fe Full-Body Irradiated Mice over 28 Days. To assess
the effects of 1H-IR and 56Fe-IR on survival of EPCs ex
vivo, we isolated BM-EPCs from the total bone marrow of
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the full-body IR mice for short-term (2, 5, and 24 hours)
and long-term (7, 14, and 28 days) time points after IR, as
described in [15, 28, 42] and in Section 2.3 (Figure 1(b)).
Isolated BM-EPCs from each 1H-IR and 56Fe-IR mice were
cultured for 72 hours ex vivo in EPC selective EBM-2
media supplemented with bullet kit growth factors (Lonza),
on 15mm circular glass coverslips (Electron Microscopy
Sciences, Hatfield, PA) precoated with 0.2% gelatin in 24-well
dishes (Corning Inc.). At the end of 72 hours after initial seed-
ing for both short- and long-term time points, BM-EPCswere
trypsinized and harvested along with the supernatant growth
media. No media change was done while BM-EPCs were
in culture for 72 hours after seeding. Harvested cells were
immunostained using Annexin V-FITC Apoptosis detection
kit (eBiosciences Inc., San Diego, CA) as per manufacturer
protocol and propidium iodide (final concentration 1 ug/mL).
Cells were analyzed by flow cytometry analysis to evaluate
1H- or 56Fe-IR induced apoptosis in BM-EPCs. Annexin V
was used to detect the cells in early stages of apoptosis and
propidium iodide (PI) was used to identify necrotic cells.
Data analyzed was plotted as percent (%) change in double
Annexin V/PI (+) cells for full-body 1H-IR and 56Fe-IR ex
vivo selected BM-EPCs compared to Non-IR BM-EPCs that
were set at 100%.

2.8. Gene Expression Analysis and qRT-PCR. RNA from
snap-frozen BM cells was isolated using RNeasy Mini Kit
(QIAGEN, Valencia, CA). After isolation total RNA was
converted to cDNA using the TaqMan Reverse Transcription
Kit (Life technologies). qRT-PCR was performed on two
genes (Bax and Bcl-2) that are known to play a significant role
in the regulation of cell apoptosis.The samples were analyzed
using Applied Biosystems 7300 Real Time PCR machine and
software.

2.9. Statistical Analysis. All results were expressed as mean ±
SEM and plots were obtained. Statistical analysis was per-
formed on the data by one-way ANOVA (Stat View Software,
SAS Institute Inc.; Gary, NC). Differences were considered
significant at 𝑃 < 0.05.

3. Results

3.1. Nonirradiated BM-Derived EPCs Treated with 1H-IR and
56Fe-IRConditionedMedia Exhibit Radiobiological Bystanders
Responses In Vitro. We determined whether non-IR BM-
EPCs may show evidence of bystander responses in media
transfer experiment after treatment with 1H-IR and 56Fe-
IR conditioned BM-EPCs media as described before [13].
There was a steady and significant increase in the mean p-
H2AX foci/cell for Non-IR BM-EPCs treated with 1H-IR-
CM. Compared to control CM-treated Non-IR BM-EPCs,
there was 2–4-fold increase in the percent of cells with
more than 4–11 p-H2AX foci/cell for 1H-IR-CM-treated cells
(Figures 2(a) and 2(b)). There was less than 0.3% of cells
with 12–16 p-H2AX foci/cell in control CM-treated BM-EPC;
whereas 1.5–4% of 1H-IR CM-treated naı̈ve BM-EPC had
12–16 p-H2AX foci/cell. Furthermore, BM-EPCs treatment

for 24 hours with 2, 5, and 24 h 1H-IR-CM revealed 0.3–
2% of cells with more than 17–23 p-H2AX foci/cell versus
no cells with 17–23 p-H2AX foci/cell in control Non-IR-
CM treated BM-EPCs (Figures 2(a) and 2(b)). These find-
ings suggest that Non-IR BM-EPCs treated with 1H-IR-CM
exhibit significant bystander responses up to 24 hours in vitro.
We also determined the mean p-H2AX foci/cell induced in
näıve BM-EPCs after 24-hour incubation with IR-CM at 2,
5, and 24-hour time point after IR. There was a steady and
significant increase in mean p-H2AX foci/cell for naı̈ve BM-
EPCs treatedwith IR-CM from 1H-IRBM-EPCs at every time
point compared to EPCs treated with Non-IR-CM, with a
∼400% increase for 24 hour post-IR-CM treated näıve EPCs
(Figure 2(c)).

Compared to control Non-IR CM-treated BM-EPCs,
there was 2–4-fold increase in the percent of cells with
more than 3–10 p-H2AX foci/cell for 56Fe-IR-CM-treated
cells (Figures 3(a) and 3(b)). Furthermore, only 56Fe-IR CM-
treated BM-EPCs revealed 0.3–1.3% of cells with more than
11–17 p-H2AX foci/cell at 2, 5, and 24 hours after treatment
(Figures 3(a) and 3(b)). These findings suggest that Non-IR
BM-EPCs treated 56Fe-IR-CM exhibit significant bystander
responses up to 24 hours in vitro. We also determined the
mean p-H2AX foci/cell induced in naı̈ve BM-EPCs after 24-
hour incubation with IR-CM at 2, 5, and 24-hour time point
after 56Fe-IR. There was a significant increase in mean p-
H2AX foci/cell for naı̈ve BM-EPCs treated with 56Fe-IR-CM
at every time point compared to EPCs treated with Non-IR-
CM,with a∼160% increase for 2–24 hour post-IR-CM treated
näıve EPCs (Figure 3(c)). It should be noted that the percent
of mean pH2AX foci/cell in 56Fe-IR-CM treated naı̈ve EPC
was twice as low compared to 1H-IR-CM treated naı̈ve EPCs.
This finding could be directly attributed to significant cell
death observed in 56Fe-IR-CM treated EPCs over 24 hours
(data not shown).

3.2. Inflammatory Cytokines Are Significantly Increased in 1H-
IR and 56Fe-IR Conditioned Medium. In 2006 Bubici et al.,
demonstrated that the convergence of IR-mediated effects
results in inflammation due to increased levels of various
cytokines and chemokines that generate reactive oxygen and
nitrogen species [44]. We sought to determine the effect
of 1H-IR on production and accumulation of cytokines,
chemokines, and growth factors, such as IL-1𝛼, IL-1𝛽, MCP1,
MIP-1𝛼, Rantes, G-CSF, GM-CSF, and SCF in BM-EPCs, all
of which are known to be elevated within minutes to hours
after IR [4]. ELISA analysis of conditionedmedia from 1H-IR
BM-EPCs showed a gradual increase in the levels of several
cytokines, chemokines, and growth factor, when compared
to Non-IR-CM. The maximum and statistically significant
increases (2–53-fold) in IL-1𝛼, MCP-1, Rantes, G-CSF, GM-
CSF, and SCF were observed in the culture media of 1H-
IR BM-EPCs at 24 hours (Figures 4(a), 4(c)–4(e), 4(g), and
4(h) and Table 1). Although, IL-1𝛽 and MIP-1𝛼 levels in
1H-IR BM-EPC culture media were slightly elevated (∼39–
136%) by 24 hours, it was not significant when compared
to Non-IR EPC media (Figures 4(b) and 4(f) and Table 1).
These findings suggest that in BM-EPCs, 1H-IR at 90 cGy
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Figure 2: Nonirradiated BM-EPCs treated with 1H-IR conditioned media exhibit increased number of p-H2AX foci/cell in vitro. (a)
Representative confocal images of p-H2AX 24 h after treatment of Non-IR BM-EPCs with 1H-IR-CM medium collected from duplicate set
of respective BM-EPCs 2, 5, and 24 hours after 90 cGy 1H-IR. (b) Mean p-H2AX foci distribution (with ≥2 p-H2AX foci/cell) in BM-EPCs
treated with Non-IR and 1H-IR conditioned media (CM). Foci distribution plot for % of Non-IR BM-EPCs with a given number (𝑁) of foci
after treatment for 24 h with CM from 90 cGy 1H-IR BM-EPCs at 2 h (red bars and dotted lines), 5 h (blue bars and dashed lines), and 24 h
(green bars and dashed/dotted lines) compared to Non-IR controls (black bars and solid lines). For clarity of data presentation and due to no
difference in the number of p-H2AX foci/cell betweenNon-IR and 1H-IR treatment groups, graphs represent distribution of p-H2AX foci/cell
after excluding the cells with zero and 1 foci/cell. (c)Mean p-H2AX foci/cell plotted for control, 2 h, 5 h, and 24 h time points after treatment of
Non-IR BM-EPC with 1H-IR CM. Graphs represent mean ± SEM of the pooled data from 5-6 independent biological samples/experiments.
Statistical significance was assigned when 𝑃 < 0.05.

Table 1: Represents % change and statistical significance values in cumulative levels of cytokine, chemokine, and growth factors collected
24 h after treatment with 1H-IR-CM, for control versus day 1.

1H-IR-CM
Cytokines and chemokines Growth factors

IL-1𝛼 IL-1𝛽 MCP-1 MIP-1𝛼 Rantes G-CSF GM-CSF SCF
CTRL versus 1
day
% increase

1541%↑ 136%↑ 197%↑ 39%↑ 486%↑ 5337%↑ 324%↑ 271%↑

CTRL versus 1
day
P value

∗∗∗
𝑃 < 0.0003

∗
𝑃 < 0.05

∗∗
𝑃 < 0.002

∗∗∗
𝑃 < 0.0001

∗∗∗
𝑃 < 0.007

∗∗
𝑃 < 0.002

Asterisk corresponds to the respective plots for cumulative levels of inflammatory cytokines and chemokines in 1H-IR conditioned medium (Figure 4).
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Figure 3: Nonirradiated BM-EPCs treated with 56Fe-IR conditioned media exhibit increased number of p-H2AX foci/cell in vitro. (a)
Representative confocal images of p-H2AX 24 h after treatment of Non-IR BM-EPCs with 56Fe-IR-CM medium collected from duplicate
set of respective EPCs 2, 5, and 24 h after 15 cGy 56Fe-IR. (b) Mean p-H2AX foci distribution (with ≥2 p-H2AX foci/cell) in BM-EPCs treated
with Non-IR- and 56Fe-IR conditioned media (CM). Foci distribution plot for % of Non-IR BM-EPCs with a given number (𝑁) of foci after
treatment for 24 h with CM from 15 cGy 56Fe-IR BM-EPCs at 2 h (red bars and dotted lines), 5 h (blue bars and dashed lines), and 24 h (green
bars and dashed/dotted lines) compared to Non-IR controls (black bars and solid lines). Due to no difference in the number of p-H2AX
foci/cell between Non-IR and 56Fe-IR treatment groups, graph represents distribution of p-H2AX foci/cell after excluding the cells with zero
and 1 foci/cell. (c) Mean p-H2AX foci/cell plotted for control, 2 h, 5 h, and 24 h treatment time point after treatment of BM-EPCs with 56Fe-IR
CM. Graphs represent mean ± SEM of the pooled data from 5 to 6 independent biological samples/experiments. Statistical significance was
assigned when 𝑃 < 0.05.

induces accumulation of several cytokines and growth factors
that have been directly implicated in mediating bystander
responses in BM-derived EPCs [11, 13].

Similar to studies with 1H-IR BM-EPCs we also deter-
mined the accumulation of cytokines, chemokines, and
growth factors in the media of BM-EPCs irradiated with
15 cGy, 1 GeV/n of 56Fe-IR. ELISA analysis of conditioned
media from 56Fe-IR BM-EPCs showed a gradual increase
in the levels of several cytokines, chemokines, and growth
factor, when compared to Non-IR-CM. Maximum and sta-
tistically significant increase (1.4–22-fold) in IL-1𝛼, MCP-1,
MIP-1𝛼, Rantes, G-CSF, GM-CSF, and SCF was observed by
24 hours (Figure 5(a) and 5(c)–5(h) and Table 2). Although,
IL-1𝛽 level in 56Fe-IR EPC media were slightly elevated (∼
40%) by 24 hours, it was not significant when compared to
Non-IR EPCmedia (Figure 5(b) and Table 2). These findings
suggest that 56Fe-IR at 15 cGy induces accumulation of

several cytokines and growth factors that have been directly
implicated in mediating bystander responses [11, 13].

3.3. Full-Body 1H-IR and 56Fe-IR Induce Cyclical Increases
in BM-EPC Apoptosis over 28 Days after IR. To determine
the effect of full-body 1H-IR on ex vivo apoptosis, MNC
isolated from total bone marrow were plated in 24-well
plates at 2, 5, and 24 hours and 7, 14, and 28 days after
1H-IR. BM-EPC apoptosis was determined 72 hours after
plating using flow cytometry analysis of BM-EPCs double
stained with Annexin V and propidium iodide. Our results
revealed that compared to control Non-IR BM-EPCs, in full-
body 1H-IR EPCs cultured for 72 hours ex vivo there was
50% and 350% increases in BM-EPC apoptosis at 5 and 24
hours, respectively (Figure 6(a)). By day 7 the apoptosis was
decreased to near control Non-IR levels. However, there was
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Figure 4: Cumulative levels of inflammatory cytokines and chemokines are significantly increased in 1H-IR conditioned medium. Graphic
representation of IR-induced increases in the cumulative concentration (pg/mL) of cytokines, chemokines, and growth factors in CM from
90 cGy 1H-IR BM-EPCs in vitro at 2, 5, and 24 h after IR for (a) IL-1𝛼, (b) IL-1𝛽, (c) G-CSF, (d) GM-CSF, (e) MCP-1, (f) MIP-1𝛼, (g) SCF, and
(h) Rantes. Graphs represent mean ± SEM of the pooled data from 3 independent biological samples/experiments. Statistical significance was
assigned when 𝑃 < 0.05.
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Figure 5: Cumulative levels of inflammatory cytokines and chemokines are significantly increased in 56Fe-IR conditioned medium. Graphic
representation of IR-induced increase in the cumulative concentration (pg/mL) of cytokines, chemokines, and growth factors in CM from
15 cGy 56Fe-IR BM-EPCs in vitro at 2, 5 and 24 hours post-IR for (a) IL-1𝛼, (b) IL-1𝛽, (c) G-CSF, (d) GM-CSF, (e) MCP-1, (f) MIP-1𝛼, (g) SCF,
and (h) Rantes. Graphs represent mean ± SEM of the pooled data from 3 independent biological samples/experiments. Statistical significance
was assigned when 𝑃 < 0.05.
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Table 2: Represents % change and statistical significance values in cumulative levels of cytokine, chemokine, and growth factors collected
24 h after treatment with 56Fe-IR-CM, for control versus day 1.

56Fe-IR-CM
Cytokines and chemokines Growth factors

IL-1𝛼 IL-1𝛽 MCP-1 MIP-1𝛼 Rantes G-CSF GM-CSF SCF
CTRL versus 1
day
% increase

141%↑ 40%↑ 413%↑ 140%↑ 2230%↑ 402%↑ 92%↑ 1107%↑

CTRL versus 1
day
P value

∗
𝑃 < 0.02

∗
𝑃 < 0.04

∗
𝑃 < 0.04

∗∗∗
𝑃 < 0.0001

∗
𝑃 < 0.02

∗
𝑃 < 0.04

∗
𝑃 < 0.02

Asterisk corresponds to the respective plots for cumulative levels of inflammatory cytokines and chemokines in 56Fe-IR conditioned medium (Figure 5).
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Figure 6: Full-body 1H-IR and 56Fe-IR induces early (2–24 h) and delayed (14–28 days) apoptosis in BM-EPCs ex vivo. Graphic representation
of mean % change in Annexin V and propidium iodide (P.I) double positive (+) BM-EPCs cultured ex vivo for 72 h (solid red line) after full-
body single-dose IR of (a) 90 cGy 1H-IRmice and (c) 15 cGy 56Fe-IRmice at 2, 5, and 24 hours and 7, 14, and 28 days after IR.The corresponding
control for each time point was set at 100%. Insets in (a) and (c) are representative flow cytometry analysis plots for corresponding control
and 28-day time points. Graphic representation of qRT-PCR analysis, mean RQ values compared to control (which was set at 1) of BM-EPCs
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corresponding control for each time point was set at 1. Graphs represent mean ± SEM of the pooled data from 5-6 independent biological
samples/experiments. Statistical significance was assigned when 𝑃 < 0.05.
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a second 250% increase in BM-EPC apoptosis in 1H-IR EPCs
on day 28 (Figure 6(a)). This data indicates that there is a
cyclical increase, early at 5 hours and delayed at 28 days, in
BM-EPC apoptosis after a single full-body low-dose 1H-IR.

Accordingly, flow cytometry analysis of Annexin V/PI
double positive cells revealed that 2, 5, and 24 hours after
full-body 56Fe-IR there was 250–350% increase in BM-EPC
apoptosis, with the peak 350% increases in apoptosis after
56Fe-IR at 5 hours (Figure 6(c)). By day 7 the apoptosis in
56Fe-IR BM-EPCs was decreased to near control Non-IR
levels. However, there was a gradual increase in BM-EPC
apoptosis in 56Fe-IR mice between days 14 and 28, with
maximum320% increase in apoptosis onday 28 (Figure 6(c)).
This data indicates that there is a cyclical increase, early at 5
hours and delayed at 28 days, in BM-EPC apoptosis after a
single full-body low-dose 56Fe-IR.

3.4. 1H-IR and 56Fe-IR Modifies Expression of Cell Cycle
and Apoptosis Regulating Genes in BM-EPCs Ex Vivo. To
determine whether full body 1H-IR may affect expression of
Bax and Bcl-2 (two well-known regulators of survival and
apoptosis) [45, 46], total RNA from 1H-IR BM-EPCs were
processed for qRT-PCR. Because early effects of IR may be a
nonspecific global shut-down of transcription and translation
[47] we examined the gene expression in our samples at
the later time points, that is, 7, 14, and 28 days after 1H-IR.
Because the ratio of Bax protein, an inducer of apoptosis,
to Bcl-2 protein, an inhibitor of apoptosis, could regulate
survival or apoptosis after a stimulus, such as, ionizing radia-
tion [48, 49], we evaluated the ratio of Bax/Bcl-2 expression.
The ratio of Bax to Bcl-2 was decreased ∼20% (𝑃 < 0.01)
on day 7, which coincided with a significant decrease in
BM-EPC apoptosis on day 7 compared to 24 h after 1H-
IR (Figure 6(a)). There was ∼60% (𝑃 < 0.05) increase in
Bax/Bcl-2 ratio on day 14 after 1H-IR (Figure 6(b)) which
coincided with the beginning of the increase in apoptosis
in 1H-IR BM-EPCs between 14 and 28 days (Figure 6(a)).
These results suggest, at least in part, the increase in the ratio
of Bax/Bcl-2 expression may be responsible for induction of
apoptosis in 1H-IR BM-EPCs.

As for 1H-IR BM-EPCs, we also examined the gene
expression in 56Fe-IR BM-EPCs samples at 7, 14, and 28 days
after 56Fe-IR. The ratio of Bax to Bcl-2 was decreased ∼65%
on day 7 (Figure 6(d)), which coincided with a significant
decrease in BM-EPC apoptosis on day 7 compared to 5
and 24 h after 56Fe-IR (Figure 6(c)). There was a further
∼15% decrease in Bax/Bcl-2 ratio on day 14 after 56Fe-IR
(Figure 6(d)). However, compared to 7 and 14 days, there was
more than 2-fold (𝑃 < 0.02) increase in the Bax/Bcl-2 ratio
on day 28 (Figure 6(d)), which correlated with significant
increase in apoptosis in 56Fe-IR BM-EPCs on day 28 after
IR (Figure 6(c)). These results suggest at least in part the
increase in ratio of Bax/Bcl-2 expression may be responsible
for induction of apoptosis in 56Fe-IR BM-EPCs on day 28.
However, increased apoptosis on day 14may not be associated
with the changes in the regulation of mitochondrial proteins,
such as Bax and Bcl-2.

4. Discussion

A growing body of evidence indicates that in the heart and
other organ-tissues vascular homeostasis does not exclusively
rely on proliferation of local endothelial cells (ECs) but
also involves BM-derived EPCs [50]. Indeed, studies have
demonstrated that in patients with CV risk factors, the
number and migratory ability of EPCs isolated from periph-
eral blood is reduced [51] and EPC function is impaired
[52]. In addition, a strong inverse correlation was reported
between the number of circulating EPCs, vascular function,
and the subject’s combined Framingham CV factor score
[53]. Furthermore, measurements of flow-mediated brachial-
artery reactivity also revealed a significant relation between
endothelial function and the number of EPCs, supporting a
role for EPCs in themaintenance of endothelial integrity [54].

It is established that EPCs mobilized from the bone
marrow into circulation in response to injury or stress are
aided by numerous chemokines and growth factors [55] that
are known to be elevated within minutes to hours after IR
[4, 56]. Proinflammatory cytokines such as TNF-𝛼, IL-1𝛼,
and IL-6 have been well documented to be regulated as
a direct effect of gamma (𝛾)-IR in murine hematopoietic
cells [57] and human epithelial cells [58]. However, high
levels of proinflammatory cytokines after IR exposure can
cause profound negative effects and perpetuate further DNA
damage through induction of reactive oxygen and nitrogen
species, which thenmay lead to the increased oxidative stress
[59–61]. It has been shown that EPCs express lower levels
of basal and stress-induced intracellular reactive oxygen
species (ROS) than primary ECs because EPCs express
higher levels of catalase, manganese superoxide dismutase
(MnSOD), and glutathione peroxidase-1 (GPx-1) [62, 63].
Hence, inhibition of catalase, MnSOD, and GPx-1 [64] may
increase ROS levels in EPCs, which in turn impairs EPC
survival and migration [62]. As ischemic/damaged tissue is
characterized by high levels of inflammatory cytokines which
activate ROS production [65], it has been proposed that high
levels of ROS metabolizing enzymes in EPCs are essential
to maintain their survival during tissue regeneration after
injury. Conversely, these findings suggest that an imbalance
in ROS can contribute to EPC dysfunction and that oxidative
stressmay impair neovascularization, thereby contributing to
the pathogenesis and the progression of CV disease risks.

Current understanding of low-dose space and terrestrial
radiation and its biological effects is that direct damage of
DNA in the nucleus causes cell death and mutations [12].
However, in the past two decades there have been numer-
ous studies which suggest that radiation can cause damage
in nonirradiated cells through radiobiological bystander
responses (RBR) [66, 67]. The term “bystander effect” was
used to describe the ability of a cell, affected by radiation,
to cause damage in other cells not directly traversed by
the initial radiation [68]. It was suggested that generation
of reactive oxygen and nitrogen species in IR tissues is
mediated by increase in cytokines and chemokines [44, 69–
71] and this could be one of the main mechanisms for
persistent nontargeted, RBR after IR [66, 67]. The role of
the bystander responses in BM-derived EPC after ionizing
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particle radiation remains largely unknown. The main goal
of this study was to determine whether space-type 1H- and
56Fe-IR may induce RBR in BM-derived EPCs and evaluate
the long term survival capacity of BM-EPCs after particle
radiation.

We postulate that low-dose space IR-induced DNA dam-
age responses in BM progenitor cell populations, including
EPCs,may be of long duration and thismay lead to significant
decrease in the number of these cells, as well as long-term loss
of EC function of BM-EPCs. This may then pose significant
degenerative risk on physiologic homeostasis in the organs
and tissue under conditions of normal aging and on repair
and regeneration processes under pathologic conditions,
such as injury or ischemia.

The acute phase of full-body low-dose IR induces apop-
totic and immunological responses in the organ-tissues,
including the heart [72], and is usually characterized by a
neutrophil infiltration in affected areawheremacrophages are
responsible for the phagocytic clearance of the apoptotic cells
[73, 74]. It has been shown that phagocytosis of IR-induced
apoptotic cells can activatemacrophages, which subsequently
induce an inflammatory response in the surrounding tissue
[75] by releasing various cytokines, superoxide, and nitric
oxide [76]. This can provide a potential feedback loop
mechanism perpetuating inflammatory response leading to
endothelial cell dysfunction in the heart and stem and
progenitor cell populations in the BM milieu, as well as in
other organs and tissues. Our in vitro findings of significant
increase in the levels of several cytokines and chemokines
(known to induce radiobiological bystander responses) [11,
13] in 1H- and 56Fe-IR BM-EPC conditioned media taken
together with cyclical increase in BM-derived EPC apopto-
sis in in vivo studies may suggest a possible perpetuating
mechanism of long-lasting IR-induced effects in the BM
cell populations, including BM-EPCs. These findings in BM-
EPCs can be corroborated with IR-induced inflammatory
changes in ECs resulting in modification of homeostasis and
endothelial dysfunction [77].

NASAHuman Research Program (HRP) identified space
radiation as one of the space flight risk factors to the car-
diovascular system which is vastly unknown and limited to
information collected days to weeks after spacemissions [78].
In addition to the possible biological effects of exposure to 1H
andhigh charge and energy (HZE) ions (e.g., 56Fe), astronauts
are also subjected to another critical physiological stressor,
microgravity, which has been shown to produce untoward
effects on the hematopoietic system and the BM microenvi-
ronment, leading to altered hematopoiesis-immunity [79–83]
and cytokine production [84–87].While most studies to-date
examining DNA damage in the bone marrow environment
as a result of exposure to IR have focused on direct effects on
the stem and progenitor cell populations in BMmilieu, recent
studies [88, 89] have suggested that cytokines and signals
within the BM tissue may play a key role in the ability of stem
and progenitor cells to respond appropriately to IR-induced
DNA damage. The effects of microgravity coupled with
exposure to ionizing space radiation, both low-linear energy
transfer (LET) proton (1H) and high-LET iron (56Fe), would

eventually put astronauts in long-duration space missions at
a higher risk of development of thrombotic diseases [90],
manifestation of previously asymptomatic CV disease [78],
immune dysfunction, and reduced vascular function and
perfusion [91–94].

Epidemiologic data on IR-induced cardiovascular dis-
eases from radiotherapy patients [95–97], nonoccupational
exposure [43, 98, 99], and occupational exposure has demon-
strated that cardiovascular (CV) morbidity may occur within
months or years, andCVmortalitymay occurwithin decades,
after initial IR exposure. Since EPCs are embedded in
the microenvironment of bone marrow stroma which is
considered as the most concentrated reservoir [100] and
are mobilized to the circulation in response to activation
of several mobilizing signaling pathways [55, 101], ionizing
radiation induced dysfunction in BM-EPCs can ultimately
result in degenerative CV risks. Since the transition from
proinflammatory to more anti-inflammatory environment
is crucial for proper tissue recovery it is of the utmost
importance that cell proliferation and resistance to radiation
induced cell death in bystander cells is enhanced [4, 102].

5. Summary

It is important to substantiate here that studies using particle
radiation such as proton and iron are not only important
for future successful space exploration it is also vital for
civilian population, as by 2012 more than 120,000 cancer
patients in 16 counties [103] have been treated using particle
radiation therapy, primarily protons but also including car-
bon and other HZE ions, with similar centers being planned
and constructed every year. Therefore our studies may also
provide a foundation for the development of therapeutic
measures to prevent CV morbidity and mortality due to
cancer radiotherapy (conventional and/or the particle), as
well as accidental and occupational IR exposures.

6. Conclusions

The presence of persistent IR-induced DNA damage in BM-
EPCs along with increased apoptosis and possible impair-
ment in DNA-repair characteristics of BM stem and progeni-
tor cells may lead to BM-EPC dysfunction. This could then
lead to the increase in CV degenerative risks in the form
of cardiac fibrosis and eventually loss of cardiac function.
We conclude that longitudinal studies using low-dose proton
and heavy ion (HZE) radiation studies are warranted to
determine IR-induced long-term CV risks.
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