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We report a highly efficient green protocol for developing a novel library of

1,2,4-triazole-tagged 1,4-dihydropyridine analogs through the one-pot process from the

four-component fusion of the 1H-1,2,4-triazol-3-amine with different chosen aldehydes,

diethyl acetylenedicarboxylate, and active methylene compounds in a water medium

under microwave irradiation and catalyst-free conditions. Excellent yields (94–97%) of the

target products were achieved with high selectivity with a short reaction time (<12min) at

room temperature. The structures of the synthesized pyrimidine analogs were established

by NMR andHRMS spectroscopic analysis. Simple workup, impressive yields, no column

chromatography, green solvent, rapid reaction, and excellent functional group tolerance

are the benefits of this protocol.

Keywords: microwave irradiation, multi-component reaction, aqueous medium, 1,4-dihydropyridine, one-pot

method

INTRODUCTION

The green chemistry approach employing non-hazardous chemicals and eco-friendly reaction
conditions is most motivating in preparing broadly used and pharmacologically significant organic
compounds (Kerru et al., 2019a,b). The microwave irradiation (MW) technique mostly applies
environmentally benign green technology in heating to speed up the organic reactions for
value-added conversions. The MW-assisted organic synthesis has become a powerful tool and
an excellent non-conventional approach in the green synthetic methodologies in modern drug
discovery programs (Wathey et al., 2002; Mavandadi and Pilotti, 2006). MW induces the growth of
oscillation excitation andmass transference in a microwave environment, which produces vigorous
heating in reaction vessels, an alternative energy source of chemical reaction for enhanced reaction
rate (Polshettiwar and Varma, 2008). Furthermore, the MW technique has attracted considerable
interest in organic synthesis due to the higher selectivity, improved product yield, and atom
economy, which reduce the by-product generation compared to conventional thermal heating
techniques (Khumalo et al., 2019). Therefore, MW-mediated organic synthesis is the preferred
green method over unconventional to classical thermal processes for the rapid synthesis of a series
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Graphical Abstract | Synthesis of Fictionalized 1,4-Dihydropyridines Under Microwave Irradiation and Aqueous Conditions.

of bioactive heterocyclic compounds (Diaz-Ortiz et al., 2019). In
recent years, multicomponent reactions (MCR) have also gained
eminence as ecofriendly green procedures in synthetic organic
chemistry (Kerru et al., 2020a,b). The one-pot processes afford a
high atom economy, high functional group tolerance, avoidance
of the separation and purification methods, and minimizing the
chemical waste (Kerru et al., 2020c,d). Thus, the MCR strategy
is an economical approach for the synthesis of libraries of
heterocyclic molecules for medicinal chemistry benefits (Maddila
et al., 2020a).

Heterocyclic moieties are valuable scaffolds in the drug
innovation program and exploring potential biological
applications (Maddila et al., 2016; Kerru et al., 2020e). Among the
N-heterocyclic molecules, the 1,4-dihydropyridine skeleton has
gained extra significance due to a broad array of pharmacological
activities such as calcium channel blocking, antidyslipidemic,
antioxidant, antidiabetic, antibacterial, and antimycobacterial
activities, and it has also shown to have an effect on Alzheimer’s
disease (Kumar et al., 2010; Sirisha et al., 2011; Niaz et al.,
2015; Schaller et al., 2018; Malek et al., 2019). Recent literature
reports show the increasing approval toward the synthesis of
1,4-dihydropyridine moieties through MCR strategy. Some
multicomponent reactions have been reported in the literature
for the synthesis of different 1,4-dihydropyridine derivatives,
which employed catalysts, including sulfamic acid, Fe3O4/KCC-
1/BPAT, Gd(OTf)3, aminated CNTs, hydromagnesite, and
nano-ZrO2-SO3H (Rajesh et al., 2013; Amoozadeh et al., 2016;
Sadeghzadeh, 2016; Sheik Mansoor et al., 2017; Mahinpour et al.,
2018; da Costa Cabrera et al., 2019). In the recent past, different
procedures for 1,4-dihydropyridines in good yields have been
reported to employ heterogeneous catalysts, such as V2O5/ZrO2

(Bhaskaruni et al., 2018), USY-zeolit (Alponti et al., 2021),
and Fe3O4@SiO2 (Saffarian et al., 2021). Davarpanah et al.
(2019) reported nicotinic acid as a catalyst for the Hantzsch

synthesis dimedone and different aldehydes under solvent-
free conditions obtaining the desired products in high yields.
However, eco-friendly and sustainable protocols are still in
demand to synthesize 1,4-dihydropyridine derivatives under
green conditions.

Our continuous strive for green methodologies by applying
the MCR approach, we earlier have been reported various
synthetic procedures (Kerru et al., 2019c, 2020f,g,h; Maddila
et al., 2020b). Herein, we describe the synthesis of 12
novel, functionalised 1,2,4-triazole-agged 1,4-dihydropyridine
scaffolds through a one-pot process. A four-component reaction
between 3-amino-1,2,4-triazole, diethyl acetylenedicarboxylate,
malononitrile, and various chosen aldehydes in water under
microwave irradiation at room temperature was utilized.

EXPERIMENTAL SECTION

General Procedure for the Synthesis of
1,2,4-Triazole-1,4-Dihydropyridine (5a-l)
Under Microwave
A solution of 1H-1,2,4-triazol-3-amine (1, 0.1 mmol), diethyl
acetylenedicarboxylate (2, 0.1 mmol), chosen aldehydes (3a-l, 0.1
mmol), and malononitrile (4, 0.1 mmol) in water solvent (6mL)
were added in a 100mL volume shielded combination vessel.
The reaction mixture was MW aided by exploitation microwave
irradiation power (150W) at room temperature for 10–12min.
The reaction progress was monitored by TLC (Hexane: Ethyl
acetate; 70:30). After the completion of the reaction, the reaction
mixture was transferred to the beaker. The synthesized solid
product was filtered by vacuum before being the product was
recrystalised with hot ethanol to offer the corresponding pure
product. The structural elucidation of all the novel compounds
was accomplished by different spectroscopic methods (1HNMR,
13C NMR, and HRMS).
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TABLE 1 | Optimized effect of solvent under catalyst-free for the

1,2,4-triazol-1,4-dihydropyridine (4a) formationa.

S.No Medium Microwave Conventional

Time in min Yield (%)b Time in min Yield (%)b

1 Solvent-free 60 18 150 19

2 CH3CN 60 36 120 24

3 DCM 60 22 120 21

4 THF 60 26 120 18

5 AcOH 30 68 120 56

6 H2O 10 96 90 81

7 MeOH 10 82 90 72

8 EtOH 10 87 90 79

aThe reaction was performed with 1H-1,2,4-triazol-3-amine (1, 0.1 mmol), diethyl

acetylenedicarboxylate (2, 0.1mol), para-methoxy benzaldehyde (3a, 0.1 mmol),

malononitrile (4, 0.1 mmol) and solvent (6.0mL) at room temperature.
b Isolated yields.

Diethyl 6-Amino-5-Cyano-4-(4-
Methoxyphenyl)-1-(1H-1,2,4-Triazol-3-yl)-
1,4-Dihydropyridine-2,3-Dicarboxylate
(5a)
White solid; 1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H, triazole-
CH), 7.93 (d, J = 8.9Hz, 2H, Ar-H), 7.68 (s, 2H, NH2), 7.04 (d,
J = 8.9Hz, 2H, Ar-H), 6.55 (s, 1H, NH), 4.96 (s, 1H, CH), 4.38
(q, J = 7.6Hz, 4H, 2×CH2), 3.94 (s, 3H, OCH3), 2.34 (t, J =
7.4Hz, 6H, 2 × CH3);

13C NMR (100 MHz, CDCl3) δ 174.38,
170.30, 164.85, 158.92, 146.80, 141.43, 133.49, 128.41, 124.04,
115.16, 114.46, 113.38, 78.87, 64.11, 55.84, 34.64, 13.81; HRMS
of [C21H22N6O5 + 1]+ (m/z) 439.1517; Calcd: 439.1509.

RESULTS AND DISCUSSION

To examine the solvent effect and reaction conditions for the
synthesis of 1,2,4-triazole tagged 1,4-dihydropyridine 4a on the
reaction rate and yield of the desired product and results are
illustrated in Tables 1, 2. Initially, the typical reaction between
the equimolar mixture of 3-amino-1,2,4-triazole (1), diethyl
acetylene dicarboxylate (2), para-methoxy benzaldehyde (3a),
and malononitrile (4) was performed at room temperature (RT)
under solvent-free conditions. Bothmicrowave (1 h) and classical
heating (2.5 h) reactions gave a low yield of the product (Table 1,
entry 1). We further investigated the solvent’s impact on the
product formation by using different polar-aprotic (CH3CN,
DCM, and THF) and polar-protic (AcOH, H2O, MeOH, and
EtOH) solvents. The polar-aprotic solvents gave the low yields
of the desired product at RT under both conditions (Table 1,
entries 2–4). The polar-protic solvents offered improved yields
of the target product in shorter reaction time observed with both
the methods (Table 1, entries 5–8). Among the solvents, water
provided the best yield (96%) with a short reaction time (10min)
under microwave irradiation conditions (Table 1, entry 6). In an
aqueous medium, the hydrogen bond development with starting
substrates accelerates the reaction rate.

TABLE 2 | Examined the efficiency of catalyst for the

1,2,4-triazol-1,4-dihydropyridine (4a) formationa.

S.No Catalyst Microwave Conventional

Time (min) Yield (%)b Time (min) Yield (%)b

1 Catalyst free 10 96 90 81

2 NaOH 10 78 90 78

3 KOH 10 77 90 76

4 Cs2CO3 10 82 90 68

5 K2CO3 10 73 90 79

6 Et3N 10 92 90 83

7 NH4OAc 10 94 90 69

aReaction conditions: 1H-1,2,4-triazol-3-amine (1, 0.1 mmol), diethyl

acetylenedicarboxylate (2, 0.1mol), para-methoxy benzaldehyde (3a, 0.1 mmol),

malononitrile (4, 0.1 mmol), catalyst (10 mol%) and water (6.0mL) at RT.
b Isolated yields.

Moreover, water is eco-friendly and inexpensive than the
other organic solvents. With water as the solvent, the classical
heating reaction required a longer time (1.5 h) and gave 81% of
the target product (Table 1, entry 6). The overall results revealed
that the microwave irradiation protocol provided high yields of
the corresponding products in less time than the classical heating.
Thus, water was shown to be the best medium for product
yield and reaction time for synthesizing 1,2,4-triazole-tagged
1,4-dihydropyridine scaffolds undermicrowave irradiation at RT.

Additionally, we investigated the catalysts’ ability to enhance
the yield. Runs were conducted with NaOH, KOH, Cs2CO3,
K2CO3, trimethylamine, and ammonium acetate as a catalyst
under otherwise similar conditions (Table 2). Lesser yields were
detected under MW (73–94%) for 10min and under classical
heating for 90min (68–83%) (Table 2, entries 2–7) as compared
to the catalyst-free condition (Table 2, entry 1). The reaction
without catalyst provided superior yields under both conditions.

Under these optimized conditions (water and catalyst-free),
we explored the scope and efficacy of this procedure, engaging
different aldehyde substrates (3a-l) and C-H active compounds,
(4) acetylenedicarboxylate (2) and reacting with 3-amino-1,2,4-
triazole (1) under MW conditions (Scheme 1). A total of 12
of the 1,2,4-triazole-linked 1,4-dihydropyridine analogs (5a-l)
were synthesized in excellent yields (94–97%) within a reaction
time of <12min (Table 3), and all were novel compounds. We
observed that the different electron-deficient and electron-rich
functional groups on the aldehydes’ phenyl moiety were well-
tolerated and performed effectively, offering the desired product’s
excellent yields.

All the synthesized scaffold structures were elucidated and
confirmed by 1H and 13C NMR and HRMS spectroscopic
analysis (Supplementary Material). For example, the
synthesized compound 5a exhibited two prominent signals
at δ 4.96 and δ 7.68 ppm due to the CH and NH2 protons of
the 1,4-dihydropyridine moiety. The quartet and triplet peaks
appeared at δ 4.38 and δ 2.34 ppm attributed to the acetate
(COOCH2CH3) group protons. The two singlet signals at δ

6.55 and δ 8.36 ppm are due to the NH and CH protons of the
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SCHEME 1 | Synthesis of 1,2,4-triazole-1,4-dihydropyridine derivatives (5a-l).

TABLE 3 | Synthesis of 1,2,4-triazole tagged 1,4-dihydropyridine scaffolds 4a-la.

S.No R Compound Time (min) Yield (%)b M.p./◦C

1 4-OCH3 4a 10 95 210–212

2 4-Cl 4b 10 96 206–208

3 4-Br 4c 10 95 214–216

4 3,4-di-OCH3 4d 9 95 202–204

5 4-SCH3 4e 11 94 196–198

6 4-CH2CH3 4f 9 94 201–203

7 4-N(CH3)2 4g 11 97 221–223

8 3-Br 4h 12 97 199–201

9 3-OCH3 4i 10 96 194–196

10 2,4,5-tri-OCH3 4j 11 95 203–205

11 2-OCH3 4k 9 96 202–204

12 4-CH3 4l 12 97 209–211

aReaction conditions: 1H-1,2,4-triazol-3-amine (1, 0.1 mmol), diethyl

acetylenedicarboxylate (2, 0.1mol), para-methoxy benzaldehyde (3a-l, 0.1 mmol),

malononitrile (4, 0.1 mmol), and water (6.0mL) under microwave irradiation at RT.
b Isolated yields.

1,2,4-triazole ring moiety. Another singlet was appeared at δ

3.94 ppm belongs to the three protons of the methoxy group
(OCH3) on the phenyl ring. The other residual phenyl ring
protons appeared at their corresponding aromatic positions in
the 1H NMR spectrum. The acetate moiety’s carbonyl carbon
exhibited at δ 174.38 and 170.30 ppm in the 13C NMR spectrum.
The HRMS spectrum further confirmed the formation of the
condensation product 5a with the molecular-ion peak (M+H) at
m/z 439.1517. All the synthesized derivatives were established as
the 1,2,4-triazole-linked 1,4-dihydropyridine analogs based on
the structural characterization data.

Table 4 illustrates the comparison of the results from the
proposed green method and literature reported protocols in
terms of experimental conditions, reaction time, and yield. An
observation of the table’s data indicates that eco-friendly solvent
water provides superior results under microwave irradiation at
RT in all respects compared to the reported methods. Thus, the
MW method offers higher yields, excellent selectivity, simple
workup, and a rapid reaction under catalyst-free green solvent
conditions.

A probable mechanism to synthesize 1,2,4-triazole-linked
1,4-dihydropyridine analogs through a one-pot process is

TABLE 4 | Comparison of the current reported procedure with previously

described methods for the synthesis of 1,4-dihydropyridines.

S.No Catalyst Reaction

conditions

Time

(h)

Yield(%)Ref

1 Sulfamic acid Reflux/MeOH 24 47–92 (da Costa Cabrera et al., 2019)

2 Fe3O4/KCC-

1/BPAT

Reflux/Water 4 79–88 (Sadeghzadeh, 2016)

3 Gd(OTf)3 RT/Ethanol 6 82–89 (Sheik Mansoor et al., 2017)

4 Aminated

CNTs

Reflux/ethanol 6 80–96 (Mahinpour et al., 2018)

5 Hydromagnesite 90◦C/Water 0.75 80–98 (Rajesh et al., 2013)

6 Nano-ZrO2-

SO3H

80◦C/solvent-

free

1 84–93 (Amoozadeh et al., 2016)

7 Catalyst-free Microwave/

RT/Water

<12min 94–97 (This work)

proposed (Scheme 2). Water plays a significant part in this
conversion. The electrophilicity of the aldehyde substrate (3a-l)
carbonyl carbon enhances through the hydrogen bond between
the water and carbonyl group (Ramesh and Lalitha, 2016;
Kerru et al., 2020i). Simultaneously, the acidic hydrogen of
malononitrile (4) hydrogen bonds with the oxygen of the H2O
molecule. Then, the Knoevenagel condensation product (I)
forms by the elimination of water molecules. Subsequently, 1,2,4-
triazole-amine (1) reacts with diethyl acetylenedicarboxylate (2),
resulting in the formation of the enolate intermediate (II).
Then, through the Michael addition, the intermediate (I) reacts
with intermediate (II), generating the transient intermediate
(III) (Maddila et al., 2019). The intermediate (III) undergoes
intramolecular cyclisation (IV) followed by tautomerisation,
finally leading to the generation of the target compound, 1,2,4-
triazole-linked 1,4-dihydropyridine derivative (5a-l).

CONCLUSION

We described the procedure for synthesizing 12 novel
biologically imperative 1,2,4-triazole-tagged 1,4-dihydropyridine
analogs with excellent yields (94–97%) under microwave
irradiation conditions. The one-pot reaction between
the 3-amino-1,2,4-triazole, diethyl acetylenedicarboxylate,
malononitrile, and various selected aldehydes was effectively
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SCHEME 2 | The possible mechanism for the synthesis of 1,2,4-triazole-1,4-dihydropyridines.

accomplished in a water medium at RT in <12min reaction
time. The structural elucidation of the synthesized derivatives
was achieved by HRMS, 1H, and 13C NMR spectral analysis.
The method’s various benefits are catalyst-free and show swift
reactions, high selectivity, excellent yields, green solvents, and
avoidance of column chromatography and hazardous reagents.
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