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A B S T R A C T   

An improved optimal drug scheduling model with considering two control drugs is proposed and 
the Gauss pseudospectral-based optimization method is studied to decrease the tumor size and 
drug toxicity in this work. Firstly, the Dexrazoxane drug, which has significant clinical effect to 
reduce the toxicity of the anticancer drug, is introduced. By analyzing the growth kinetics model 
of cancer chemotherapy, the toxicity reduction drug is regarded as the second input in the cancer 
dynamic equations. Correspondingly, the drug scheduling optimization problem with particular 
optimization goal and necessary constraints is established. Next, a model transformation tech-
nique is proposed to reduce the complexity of dynamic equations. With deriving the Gaussian 
time grid discretization detailly, the Gauss pseudospectral method (GPM)-based cancer chemo-
therapy drug scheduling algorithm is presented to test the performance of the proposed model 
within different rates. Finally, the implementation structure of drug scheduling optimization is 
given in detail. To test and validate the performance of proposed chemotherapy model, extensive 
simulation results and comparative evaluation are carried out on a specific mathematical model. 
Simulation results show that the improved optimization model is superior to other literature 
studies, resulting in the average improvement of performance index by 66.54% and revealing the 
significant guiding property for cancer chemotherapy.   

1. Introduction 

Cancer is the general term for a group of more than 100 diseases. Although there are many types of cancer, all of them start when 
abnormal cells are grown and reproduced uncontrollably. The cancerous cells may invade surrounding tissue and metastasize to the 
whole body. Untreated cancers can cause serious illness and even death. A significant portion of cancers can be cured by surgery, 
radiotherapy or chemotherapy, especially if they are detected in early stages (American Cancer Society 2016; World Health Orga-
nization 2016). Chemotherapy is a commonly used and powerful treatment method. Anti-cancer drugs are usually used to destroy 
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cancerous cells. Depending upon the type of cancer, the patient can also be treated with a single medicine (monotherapy) or a 
combination of medicines (combination therapy) [1]. Many clinically significant anticancer drugs, for instance, anthracyclines, have 
been widely used and have played a very important role for cancer chemotherapy [2]. However, this kind of anticancer drugs have an 
obvious side effect, which will lead to cardiac toxicity in patients and this issue has attracted much attention in recent years [3]. In the 
past cancer treatment process, drug delivery is basically relied on experience of doctors. With the development of computation science, 
some optimized treatments have been established through mathematical modeling and corresponding optimizations have been pro-
posed. In 1992, Martin et al. [4] proposed an optimal drug scheduling model for cancer chemotherapy to optimize drug delivery and 
minimize tumor. Then, this model was solved by using an established numerical solution technique known as control parametrization 
optimization method. 

Currently, plenty of scholars have proposed many optimization methods to solve the model of cancer chemotherapy [4] and 
improve the optimization results. For instance, Luus et al. [5] employed direct search optimization to solve this model and obtained 
scheduling strategy; Banga et al. [6] used stochastic techniques to obtain better optimization results; Liang et al. [7] proposed a fast 
drug scheduling optimization approach based on cycle-wise genetic algorithm to enhance the solving efficiency; Li et al. [8] employed 
the smoothed penalty function method to further improve the chemotherapy effect under theoretically analysis. The above researches 
have effectively improved the drug scheduling strategies for cancer chemotherapy in theoretical. However, the previous literature 
basically retained the original model established by Martin to solve and did not involve the treatment of reducing cardiotoxicity, which 
would have great effect on the chemotherapy in the process of cancer chemotherapy. Therefore, more factors should be considered in 
the chemotherapy model. In the part of cumulative drug toxicity, only certain restrictions on the drug toxicity are made in previous 
models, that is, an upper limit on the cumulative drug toxicity in the model is set, but the reduction of drug toxicity was not considered, 
which limits the research to a certain extent. In view of this situation, Martin’s model [4] is further studied in this work and the drug 
toxicity is taken into account. Meanwhile, on the basis of previous literatures, it is found that anthracycline is one of the most 
commonly used anticancer drugs in clinic with high efficiency [9], and the anthracycline anticancer drug is therefore employed in this 
work for cancer chemotherapy model. Furthermore, with the development of pharmacology, Dexrazoxane has been clinically 
recognized as the most efficient drug for the prevention of anthracycline cardiotoxicity [10]. On this basis, it is necessary to consider 
the control of drug toxicity in drug scheduling optimization model. Furthermore, uncertainty and sensitivity are also the hotspots of 
drug scheduling, many researchers have paid much attention on these issues. For example, Pachauri et al. [11] designed the modified 
fractional order internal model control for cancer treatment; Panjwani et al. [12] focused on multi-objective optimization of a 
multi-drug chemotherapy schedule for cell-cycle-specific cancer treatment under the influence of drug resistance, where the para-
metric uncertainty was considered by the proposed method. 

Combined with the above reasons, it can be seen that reducing tumor cells and inhibiting cumulative drug toxicity simultaneously 
is extremely important for cancer chemotherapy. An improved drug scheduling optimal control model, which employs two control 
variables to decrease the tumor size and drug toxicity simultaneously, is thereby established in this work. In terms of solving algorithm, 
Gauss pseudospectral method was rarely used to solve the cancer chemotherapy scheduling model in previous studies. However, it can 
be found that Gauss pseudospectral method has the advantages of high accuracy and fast speed. Therefore, based on the improvement 
of the model, this paper uses the Gauss pseudospectral method to solve the corresponding problem, and the optimal effect of tumor 
cells obtained is better than the results of previous studies, and the cardiotoxicity caused by the anticancer drug has been significantly 
reduced. To further verify the therapeutic effect of Dexrazoxane for drug toxicity prevention and tumor reduction in cancer chemo-
therapy, different Dexrazoxane drug efficiency effects are considered in this improved model so as to analyze the influence. Simulation 
tests are carried out to verify the efficiency of the proposed model and the corresponding optimization method, where some literature 
results [4–6,8,13] are employed to make comparisons. 

2. Improved drug scheduling model of cancer chemotherapy 

2.1. Growth kinetics model of cancer chemotherapy 

Based on the model of Ref. [4], it is known that the single chemotherapeutic agent is widely used to treat a tumor, and the 
anticancer drug concentration at the cancer site is always described by differential equation (1): 

v̇(t) = u(t) − γv(t)
v(0) = v0

(1)  

where v(t) is the anticancer drug concentration at time t, u(t) is the corresponding injection rate of anticancer drug at time t, γ is the 
half-life parameter and the half-life is denoted as ln(2 /γ). v(0) is the initial drug concentration at start time and is defined as v0. 

Meanwhile, the treatment is delivered over the fixed interval [0,T] in this work. Therefore, the Gompertz growth model [4], which 
has been widely used in tumor growth, is employed to describe the growth of cancer tumor as equation (2): 

Ṅ(t) = λN(t)ln[ρ/N(t)] − ζ[v(t) − α]H[v(t) − α]N(t)
N(0) = N0

(2)  

where N(t) is the tumor cell population at time t, and N0 is the initial tumor size at t = 0; the parameter λ is a positive constant to 
describe the rate of tumor growth; ρ is the plateau population (also known as the carrying capacity), which reflects the maximum value 
that the tumor can grow naturally under the Gompertz growth model. Besides, ζ is the killing fraction, describing the killing effect of 
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drugs on tumor; α is a positive constant to reflect the minimum concentration at which the anticancer drug can work; H[v(t) − α] is the 
Heaviside step function defined as equation (3): 

H(v(t) − α)=
{

1, if v(t) ≥ α
0, if v(t) < α (3) 

Furthermore, in the process of cancer chemotherapy, Ref. [4] also considered the cardiotoxicity caused by anticancer drugs. The 
cardiotoxicity is described as equation (4) by the integral method and is limited by vcum for safety reason: 

∫ T

0
v(t)dt ≤ vcum (4) 

During the treatment, the cardiotoxicity is measured in the drug concentration multiplied by the time of exposure, which can be 
quantified mathematically as the integral of the drug concentration v(t) over the entire therapy interval [0, T]. 

2.2. Improved drug scheduling optimization model 

As it is studied in Ref. [4], it is found that cardiotoxicity always exists in the form of integral and has not been eliminated or 
reduced, which greatly affects the effect of drug scheduling of cancer chemotherapy. However, in the previous literatures [5,6,8], 
cardiotoxicity is only limited in a certain threshold, control strategies are rarely taken to reduce this parameter value. With the 
development of pharmacology in recent decades, lots of drugs, such as Dexrazoxane [10], have been proved very effective to reduce 
cardiotoxicity, which provides a good basis for further improving cancer chemotherapy. Therefore, this paper reconsiders the 
modeling of drug-induced cardiotoxicity and introduces the following work to control cardiotoxicity. 

Firstly, an additional state variable μ(t) is introduced to describe the cardiotoxicity as equation (5): 

μ(t) =
∫ T

0
v(t)dt (5) 

Since there are many existing drugs, such as Dexrazoxane, which can be used to reduce cardiotoxicity, the cardiotoxicity can be 
controlled. On this basis, the following treatment model (6) is introduced for cardiotoxicity control: 

μ(t) =
∫ T

0
[v(t) − θω(t)]dt (6)  

where ω(t) is the injection rate of Dexrazoxane, and θ is the efficacy parameter of Dexrazoxane. 
The addition of Dexrazoxane can reduce the cardiotoxicity of the anticancer drug in the process of chemotherapy, and the 

parameter θ can reflect the reducing effect of the anticancer drug with different efficacy on cardiotoxicity, which is helpful for the 
analysis of other possible cardiotoxicity reducing drugs. Since there is no precedent in the previous studies to add Dexrazoxane to the 
model proposed by Martin, the efficacy of Dexrazoxane after adding the model cannot be determined temporarily. In current work, its 
value range is set between 0% and 100%. Correspondingly, seven groups of efficacy values (0%, 5%, 10%, 25%, 50%, 75% and 100% 
respectively) are selected for simulation test to verify the reduction of cumulative drug toxicity and tumor cells after the addition of 
Dexrazoxane. On the basis of clinical experience, the value of cardiotoxicity is expressed as the integral expression of the whole 
treatment cycle. 

With introducing anticancer drug and cardiotoxicity control drug, the growth and treatment kinetics model of cancer chemo-
therapy can be described by differential equation (7): 

Ṅ(t) = λN(t)ln[ρ/N(t)] − ζ[v(t) − α]H[v(t) − α]N(t)
v̇(t) = u(t) − γv(t)
μ̇(t) = v(t) − θω(t)
v(0) = v0,N(0) = N0, μ(0) = μ0

(7) 

While, during the treatment process of cancer chemotherapy, Ref. [4] has pointed out that the drug should be controlled within 
limited concentrations for safety reasons. Thus, during the treatment process, growth constraints should be considered in the opti-
mization model. In this work, the concentration constraint of the anticancer drug and cardiotoxicity limitation are studied as equation 
(8): 

0 ≤ v(t) ≤ vmax for all t ∈ [0,T]
0 ≤ μ(t) ≤ μmax for all t ∈ [0,T] (8)  

where vmax is the maximal limit of the anticancer drug concentration and μmax is the maximal cardiotoxicity that the patient can accept 
during the therapy [4]. 

Meanwhile, it has been studied in Ref. [14] that drug-resistance was a frequent cause of chemotherapeutic failure in human 
cancers. Correspondingly, it has been shown that the probability of having drug resistant lines and the proportion of drug resistant cells 
increases with increasing tumor size [15]. Therefore, to limit the tumor size during treatment, the continuous state constraint (9) is 
imposed in the optimization model. 
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N(t) ≤Nmax for all t ∈ [0,T] (9)  

where Nmax denotes the upper bound of tumor cell population. 
Furthermore, reducing the likelihood of the emergence of drug resistant cells in the course of treatment is necessary, the tumor size 

should be forced to reduce by at least 50% every 3 weeks [4]. That is, during the three time periods (t1, t2, t3), the mass of cancer cells 
must be lower than a certain value (η1, η2, η3). Accordingly, the tumor size constraints at different time points are introduced as 
equation (10): 

N(t1)≤ η1,N(t2)≤ η2,N(t3) ≤ η3. (10) 

Typically, various objective functions can be considered in cancer chemotherapy. Combining with the clinical treatment re-
quirements, the following performance index (11), which is mainly employed for reducing the number of cancer cells, is studied in this 
work as the optimization goal: 

minimize J1(u(t),ω(t)) =N(T) (11) 

Finally, the improved drug scheduling optimization model for cancer chemotherapy can be stated below: 
Problem 1: Giving the continuous growth and treatment kinetics system Eq. (7) and initial conditions of system, optimize the 

drug injection rates of u(t) and ω(t) under certain boundaries to obtain the minimum cancer cells of N(T) within the limited treating 
period, where the constraints (8)~(10) are satisfied simultaneously during the whole treatment domain. 

For ease of description, let x1(t) = N(t), which represents the mass of tumors, x2(t) = v(t) denotes the anticancer drug concen-
tration in the body in drug units [D], and x3(t) = μ(t) expresses the cumulative drug toxicity. Meanwhile, denote u1(t) = u(t) and 
u2(t) = ω(t) as the control variables. Therefore, Problem 1 can be stated by the dynamic optimization mathematical model as equation 
(12): 

min J1(u1(t), u2(t) ) = x1(T)
s.t. ẋ1(t) = λx1(t)ln[ρ/x1(t) ] − ζ(x2(t) − α )H(x2(t) − α )x1(t)

ẋ2(t) = u1(t) − βx2(t)
ẋ3(t) = x2(t) − θu2(t)
x1(0) = N0, x2(0) = v0, x3(0) = μ0
x1(t1) ≤ η1, x1(t2) ≤ η2, x1(t3) ≤ η3
0 ≤ x2(t) ≤ vmax, 0 ≤ x3(t) ≤ μmax for all t ∈ [0,T]
0 ≤ u1(t) ≤ u1,max, 0 ≤ u2(t) ≤ u2,max for all t ∈ [0,T]

(12) 

It can be seen that Problem 1 is a complex infinite dimensional dynamic optimization problem containing three state variables 
x(t) = [ x1(t) x2(t) x3(t) ]T, two control variables u(t) = [ u1(t) u2(t) ]T and several complex constraints of state and control vector. 

3. Gauss pseudospectral optimization-based drug scheduling 

Usually, it is difficult to solve the infinite optimization problem. Recent years, with the development of numerical optimization 
theory, plenty of methods have been proposed for solving this kind of problem [16–18]. To sum up, these methods can be divided into 
three categories [19–21]: indirect methods, direct methods and intelligent algorithms. As one of the most efficient direct methods, 
Gauss pseudospectral method (GPM) converges faster and has larger convergence domain when compared with other optimization 
methods, it is therefore employed for solving Problem 1 in this work. The main idea of GPM is to discretize a continuous optimal 
control problem into a nonlinear programming (NLP) problem [22,23] by using the theory of orthogonal collocation where the 
collocation points are the Legendre–Gauss (LG) points. The purpose of this method is to approximate the continuous solution to a set of 
differential equations using polynomial interpolation through discrete LG points or nodes [24]. 

3.1. Optimization model transformation 

As it is discussed in Ref. [4] that the mass of tumors x1(t) = N(t) would be a very big value, which would affect the solving per-
formance of optimization methods. According to previous research [4,7], N(t) can be expressed by the function of 1012 × exp( ⋅). To 
reduce the complexity of dynamic equations, the transform equation (13) is introduced: 

N(t) = x1(t)= 1012 × exp( − x1(t)) (13) 

Then, equation (14) can be obtained: 

Ṅ(t) = ẋ1(t)= − 1012 × exp( − x1(t))ẋ1(t) (14) 

Accordingly, the objective function of problem (12) can be restated as function (15): 

minimize J1(u(t))= 1012 × exp( − x1(t)) (15) 

For ease of calculation, objective function (14) can be represented by the function (16): 

minimize J2(u(t))= − x1(t) (16) 
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Meanwhile, the growth kinetic of Ṅ(t) can be stated as equation (17): 

Ṅ(t)= ẋ1(t) = − 1012 × exp( − x1(t))ẋ1(t)

= − λ× 1012 × exp( − x1(t))ln
[
ρ

/ (
1012 × exp( − x1(t))

)]

− ζ(x2(t) − α)H(x2(t) − α)× 1012 × exp( − x1(t))

(17) 

By arranging Eq. (17), equation (18) can be obtained: 

ẋ1(t) = − λ×
(
x1(t)+ ln

(
ρ
/

1012))+ ζ(x2(t) − α)H(x2(t) − α) (18) 

Since ρ = 1012 is employed in Ref. [4], ln(ρ /1012) = 0 can be calculated. Sequentially, optimization model (12) is transformed into 
the optimal control problem (19): 

min J2(u(t) ) = − x1(T)
s.t. ẋ1(t) = − λ × x1(t) + ζ(x2(t) − α )H(x2(t) − α )

ẋ2(t) = u1(t) − βx2(t)
ẋ3(t) = x2(t) − θu2(t)
x1(0) = N0, x2(0) = v0, x3(0) = μ0
x1(t1) ≥ η1, x1(t2) ≥ η2, x1(t3) ≥ η3
0 ≤ x2(t) ≤ vmax, 0 ≤ x3(t) ≤ μmax for all t ∈ [0,T]
0 ≤ u1(t) ≤ u1,max, 0 ≤ u2(t) ≤ u2,max for all t ∈ [0,T]

(19)  

3.2. Gaussian time grid discretization 

Without loss of generality, the cancer chemotherapy optimization problem (19) is formulated into the unified form optimal control 
problem (OCP) (20): 

min J2(u(t) ) = φ(x(T),T )

s.t.

⎡

⎢
⎢
⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤

⎥
⎥
⎦ =

dx(t)
dt

= f (x(t),u(t), t ), t ∈ [0,T]

φ(x(t0), t0 ) = x0

C(x(t), u(t), t0, ti,T ) ≤ 0, i = 1, 2, 3

xL ≤ x(t) ≤ xU ,uL ≤ u(t) ≤ uU

(20) 

Firstly, by introducing the time scale transformation strategy [25], which is shown as equation (21), the original time interval t ∈
[t0,T] is transformed into time interval [− 1,1]. 

τ= 2t
T − t0

−
T + t0

T − t0
(21) 

Next, the Gaussian distribution nodes (named Gauss points) are obtained by solving the zero point of the Legendre polynomial in 
time domain ( − 1,1). According to the properties of orthogonal polynomials, all zeros are single real roots in the open time domain. 
Therefore, the distribution nodes can be obtained by solving the N-order Legendre polynomial as equation (22) and equation (23) 
adopted in Ref. [26]. 

Pn+1(τ)= (τ − αn)Pn(τ) − β2
nPn− 1(τ), n= 0, 1,⋯ (22)  

P0(τ)= 1,P− 1(τ) = 0 (23) 

To solve Eq. (22), the following inference is employed in this work. 
Inference 1. The root of N-order Legendre polynomial is the eigenvalue of the matrix H as follows. 

H=

⎛

⎜
⎜
⎜
⎝

α0

β1

β1

α1 β2

⋱

αn− 2

βn− 1

βn− 1

αn− 1

⎞

⎟
⎟
⎟
⎠

ProofBased on the definition of Legendre polynomial, the root of the N-order Legendre polynomial is the solution of equation (24): 

Pn+1(τ)= (τ − αn)Pn(τ) − β2
nPn− 1(τ)= 0 (24)  

When n = 0, equation (25) can be obtained: 
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P1(τ)= (τ − α0)P0(τ) − β2
0P− 1(τ) (25) 

Since P− 1(τ) = 0, P1(τ) = (τ − α0)τ can be obtained. 
When n = 1, equation (26) can be obtained: 

P2(τ)= (τ − α1)P1(τ) − β2
1P0(τ) (26) 

Since P0(τ) = 1, it can be found that P2(τ) = (τ − α1)P1(τ) − β2
1. 

Let equation (27): 

A0 = α0,A1 =

[ A0 β1

β1 α1

]

(27) 

It can be found that the root of P2(τ) = 0 is the solution of (τ − α1)(τ − α0) − β2
1 = 0. Furthermore, the eigenvalue of A1 is in the 

form (28): 

|λI − A1| = (λ − A0)(λ − α1) − β2
1 = 0 (28) 

By comparing Eq. (26) with Eq. (28), it can be seen that the root of P2(τ) = 0 is the eigenvalue of matrix A1. 
Similarly, let equation (29): 

A2 =

[ A1 β2

β2 α2

]

(29) 

Then, the root of P3(τ) = 0 is as equation (30): 

(τ − α2)|τI − A1| − β2
2|τI − A0| = 0 (30) 

The eigenvalue of A2 =

[ A1 β2

β2 α2

]

is as equation (31): 

|λI − A2| =

⃒
⃒
⃒
⃒
λI − A1 − β2
− β2 λ − α2

⃒
⃒
⃒
⃒=

⃒
⃒
⃒
⃒

λ − α0− β1 − β1 λ − α1 − β2

− β2 λ − α2

⃒
⃒
⃒
⃒

= (λ − α2)|λI − A1| + β2(− β2)|λI − A0| = 0
(31) 

Therefore, the root of P3(τ) = 0 is the eigenvalue of matrix A2. By using the recursive method, it can be seen that the root of N-order 
Legendre polynomial is the eigenvalue of matrix H. 

Finally, by solving Eq. (22), these N discrete points will be obtained. On this basis, control vector and state vector are further 
simultaneously approximated by Lagrange polynomials [27] as equation (32): 

x(τ) ≈ X(τ) =
∑N

i=0
Li(τ)X(τi) =

∑N

i=0
Li(τ)Xi

u(τ) ≈ U(τ) =
∑N

i=0
Li(τ)U(τi) =

∑N

i=0
Li(τ)Ui

(32)  

where Xi and Ui are the value of state vector and control vector at discrete point τi respectively. Meanwhile, Lagrange interpolation 
functions are stated as equation (33): 

Li(τ) =
∏N

j=0,j∕=i

τ − τj

τi − τj
=

b(τ)
(τ − τi)ḃ(τi)

b(τ) =
∏N

i=0
(τ − τi)

(33)  

3.3. Optimal control problem discretization 

Consequently, it is easy to calculate the derivation of state vector as equation (34): 

ẋ(τ)≈ Ẋ(τ) =
∑N

i=0
L̇i(τ)Xi (34) 

Let Dk,i = L̇i(τk) at each discrete points, the discretization of state equations can be replaced by the constraints (35): 

ẋ(τ)≈ Ẋ(τ)=
∑N

i=0
Dk,iXi =

T − t0

2
f
(
Xk,Uk, τk; t0, tf

)
, k= 1, 2, ...,N (35) 
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Correspondingly, terminal state can be calculated by using equation (36): 

x(1)= x(τ0) +

∫ 1

− 1
f (x(τ),u(τ), τ)dτ (36)  

With employing the discrete integral formula [28], Eq. (36) can be expressed as equation (37): 

XT =X0 +
∑N

i=0
Xi

∑N

k=1
wiDk,i (37)  

where wi is the integral weight in Gauss integral formula and the calculation function please see Ref. [28]. 
Furthermore, during the treatment processing, the mass of cancer cells must be lower than certain values in three time periods. In 

this work, the corresponding three times nodes are transformed into three discrete state points. Finally, the optimal control problem is 
transformed into the general nonlinear programming (NLP) problem (38). 

min J2 = φ(XT, 1)

s.t.
∑N

i=0
Dk,iXi −

T − t0

2
f (Xk,Uk, τk; − 1, 1) = 0

C(Xk,Uk, τk; − 1, 1) ≤ 0

XT = X0 +
∑N

i=0
Xi

∑N

k=1
wiDk,i

xL ≤ Xk ≤ xU ,uL ≤ Uk ≤ uU , k = 1, 2, ...,N

(38) 

It is obvious that the goal of Problem (38) is to find a set of variables (Xk,Uk) to minimize the performance index. Typically, many 
effective methods, such as gradient-based NLP solvers, can be used to solve the transformed Problem (38) with high precision [29]. In 
this work, sequential quadratic programming (SQP) method [30,31] is recommended. Briefly, the steps are stated as follows: 

Step 1: Use time scale conversion method to convert the original time interval into a new time domain [− 1,1]; 

Fig. 1. Structure of optimization implementation.  
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Step 2: Solve the zero point of Legendre polynomial in the new time domain to obtain the Gaussian distribution nodes; 
Step 3: Use Lagrange interpolation polynomial to discrete control variables and state variables; 
Step 4: Select the terminal constraint calculation strategy to calculate the terminal point; 
Step 5: Convert the original OCP problem into NLP problem; 
Step 6: Calculate the gradient of the NLP problem relative to the optimization parameters; 
Step 7: Use the gradient-based NLP solver to solve the transformed problem. 

4. Drug scheduling optimization implementation 

Based on the specific details of proposed improved optimization model, with combining with the GPM method, the implementation 
structure of drug scheduling optimization for cancer chemotherapy is given in Fig. 1. 

To obtain the drugs delivery strategies for cancer chemotherapy, the tumor growth model, drug and toxicity concentration 
equations, treatment constraints will be analyzed at first; the dynamic cancer chemotherapy drug scheduling dynamic optimization 
model are then established; the corresponding optimal control problem is subsequently solved by employing the GPM ; finally, the 
outputs of the optimization processing are the dose curves of anticancer drug and Dexrazoxane drug. Specifically, the implementation 
steps of drug scheduling computation are given as follows: 

Algorithm. 
Step 1: INPUT division number N and initial state variable X0, set initial parameters X0 and U0, set NLP solver tolerance ς, state and 

control boundaries xL, xU, uL, uU. 
Step 2: Using optimization model transformation strategy to transform problem (12) into problem (19). 
Step 3: Calculating the Gauss distribution points by using Inference 1. 
Step 4: Arranging the Gaussian time grid nodes and transform them into corresponding discrete points in time interval (− 1, 1). 
Step 5: Using the obtained N Gauss discretization points to discrete state and control variables. 
Step 6: Choosing terminal constraints computation strategy to calculate the terminal points. 
Step 7: Employing the Lagrange interpolation functions to discrete the OCP problem (19) into an NLP problem. THEN GO TO Step 

8; 
Step 8: Calculating the gradients of NLP problem with respect to optimization parameters. 
Step 9: Using the gradient-based NLP solver to solve NLP problem. 
Step 10: OUTPUT the drug scheduling optimization results. 

5. Simulation studies of cancer chemotherapy 

To verify the performance of improved cancer chemotherapy optimization model for drug scheduling, the model parameters, which 
has been widely studied in Refs. [4,6–8] are employed in this work for testing. Meanwhile, the limitation of u2,max is chosen as 10 times 
of u1,max based on Ref. [32]. Furthermore, the presented Gauss pseudospectral method (GPM) are used for solving the improved OCP 
problems and some literature results are adopted to make comparison. Correspondingly, the parameter values, initial values and 
constraint parameters are given in Table 1. All simulation studies are carried out on a personal computer in MATLAB 2018a platform 
with a 1.0 GHz Intel Core i5-1035G1 processor and 16 GB 3200 MHz SK Hynix DDR4 memory. 

As it is discussed section 2.2, θ is the efficacy parameter of Dexrazoxane in improved optimization model, the specific efficacy of the 
newly added input amount of Dexrazoxane in the improved model is uncertain, while its efficiency range can be roughly determined, 7 
groups of efficacy assumptions are therefore employed for testing, and the treatment optimization results under different efficacy are 
analyzed. The simulation results are shown in Table 2. 

It can be seen in Table 2 that without using the toxicity reduction drug, the performance index of J2 is 16.79641, while by 
employing the Dexrazoxane to reduce toxicity, the average performance index of J2 is 31.16389, which improves the index by 85.54%. 
With using the transformation Eq. (13) to calculate the tumor cells, it can be obtained that N(T) is reduced from 50,747 to 0.0292, 
showing the effectiveness of toxicity reduction for treatment. Furthermore, results in Table 2 reveal that the efficacy rate parameter (＞ 
0%) does not influence the performance indexes, while it will affect the drug values of u2(t) so as to change the values of x3(t). Table 3 
gives the average values of control and state variables in cancer chemotherapy optimization under different efficacy rates. It is obvious 
that the introduction of toxicity reduction drug for cancer chemotherapy is significative, which provides a good reference for further 
exploring the toxicity reduction efficiency of Dexrazoxane in treatment process. 

Table 1 
Parameters of cancer chemotherapy model.  

Symbol Value Symbol Value Symbol Value 

λ 9.9 × 10− 4 μ0 0 η3 ln(800)
ζ 8.4 × 10− 3 t1 21 vmax 50 
α 10 t2 42 μmax 2100 
β 0.27 t3 63 T 84 
N0 ln(100) η1 ln(200) u1,max 120 
v0 0 η2 ln(400) u2,max 1200  
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To further verify the improvement property of proposed cancer chemotherapy model, the literature results of previous optimization 
methods are also concluded in this work and are listed in Table 4. By analyzing these results, it is found that Martin et al. [4] employed 
the control parameterization method to solve the traditional cancer chemotherapy optimization problem and obtained a performance 
index of 16.836. Later, Luss et al. [5] reported a performance value of 17.4760, while Banga et al. [6] pointed out the path constraint 
on x2(t) was slightly violated. Accordingly, they proposed the two-phase hybrid approach to solve this optimization model and pre-
sented a value of 17.4811. To further improve the efficiency of control vector parameterization method for solving this cancer 
chemotherapy optimal control problem with incomplete and different integral time domains, Li et al. [8] proposed an efficient 
computational method and obtained the performance index of 17.4852. Recently, Karar et al. [13] introduced a new closed loop fuzzy 
logic controller based on intuitionistic fuzzy sets and invasive weed optimization (IWO) algorithm for regulating intravenous 
anti-cancer drug delivery, simulation results shown that the remaining cancer cells of 27.63 was obtained. Compared with the reported 
results, it can be seen that when efficacy rate parameter θ = 0 (no toxicity reduction), the performance index value of this work is 
16.79641, which is similar with the literature result of Ref. [4]. However, when the toxicity reduction drug works, better treatment 
effect can be achieved, resulting the minimum number of remaining cancer cells of 31.16389 and 0.0292. The comparison with 
previous literature results in Table 4 shows the improvement of proposed optimization model is excellent. 

By arranging the variable values of cancer chemotherapy optimization under different efficacy rates, the control curves and state 
curves are shown in Fig. 2~Fig. 6. In Fig. 2, the numbers in parentheses represent different efficacy of Dexrazoxane, and it is obvious 
that when efficacy rate θ = 0, the days of using the anticancer drug and not using the anticancer drug are almost the same, accounting 
for half of the treatment course, and the time of administration is mainly concentrated in the first three weeks and the last four weeks, 
which is similar to the results of Ref. [4]. While, when Dexrazoxane works, the law of administration is the same: in the first week, a 
large dose was administered, and the latter is almost uniform, with the dosage being maintained below 20 [D]. It can be seen from the 
above that the dose of each given anticancer drug does not vary greatly when the Dexrazoxane takes effect during the chemotherapy 
process, which will be more convenient for the administration process of clinical treatment. 

Correspondingly, Fig. 3 shows the Dexrazoxane drug delivery curves, and the numbers in parentheses represent different efficacy of 
Dexrazoxane. The curves show a large trend of increasing first and then decreasing in the dosage of Dexrazoxane with the increase of 
time when θ ≤ 0.25. And when 0.25 < θ ≤ 1, the dosage of Dexrazoxane is less than 200 [D], and is basically uniform. With the 

Table 2 
Test results of different efficacy parameters.  

Toxicity reduction drug Efficacy rate (θ) J2 (max) Average value Improvement 

None 0% 16.79641 16.79641 0 
Dexrazoxane 5% 31.16389 31.16389 85.54% 

10% 31.16389 
25% 31.16389 
50% 31.16389 
75% 31.16389 
100% 31.16389  

Table 3 
Average values of control and state variables in cancer chemotherapy optimization under different efficacy rates.  

Efficacy rate (θ) Average value of u1(t) Average value of u2(t) Average value of x1(t) Average value of x2(t) Average value of x3(t) J2 (max) 

0% 8.747 0 10.98 22.3 1064 16.79641 
5% 15.78 657 17.31 46.32 256.1 31.16389 
10% 15.78 391.6 17.31 46.32 125.6 31.16389 
25% 15.78 167.4 17.31 46.32 44.75 31.16389 
50% 15.78 89.55 17.31 46.32 29.55 31.16389 
75% 15.78 60.98 17.31 46.32 16.52 31.16389 
100% 15.78 45.67 17.31 46.32 13.07 31.16389  

Table 4 
Results comparison of different cancer chemotherapy optimization methods.  

Author Journal Year Method J2 (max) N(T) 

Martin et al. [4] Automatica 1992 CPAG 16.836 48,777 
Luus et al. [5] Hungarian Journal of Industrial Chemistry 1994 DSO-RNRC 17.4760 25,720 
Banga et al. [6] Journal of Biotechnology 2005 AH-CVP 17.4811 25,589 
Li et al. [8] Nonlinear Dynamics 2014 TS-CVP 17.4852 25,484 
Karar et al. [13] Biomedical Signal Processing and Control 2020 IFS-IWO 27.63 0.806 
Current work – 2023 GPM 31.16389 0.0292 

Notes: CPAG—Control parametrization and analytical gradients; DSO-RNRC—Direct search optimization based on random numbers and region 
contraction; AH-CVP—Alternative stochastic and hybrid techniques based on the control vector parameterization; TS-CVP—Control vector param-
eterization and time-scaling transformation; IFS-IWO—Intuitionistic fuzzy sets and invasive weed optimization; GPM—Gauss pseudospectral method. 
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increasing of θ, the overall dosage of Dexrazoxane decreases gradually. Therefore, in clinical practice, the efficacy of Dexrazoxane can 
determine its dosage in the process of chemotherapy, which will greatly affect the cost of chemotherapy. Besides, as it can be seen in 
Fig. 4, under the work of the anticancer drug, tumor cells will be gradually killed by the input drug. Since the value of x1 is negatively 
correlated with the number of tumor cells, the value of the conversion variable x1 will gradually increase with the decreasing of tumor 
cells. And when Dexrazoxane is not used, the value of x1 increases step by step and changes relatively slowly. But when Dexrazoxane is 
used, the value of x1 increases in the same straight-line trend no matter how effective Dexrazoxane is. It can be seen from the above that 
as long as there is the effect of Dexrazoxane in the process of chemotherapy, tumor cells can be reduced to a greater extent regardless of 
its efficacy. 

Fig. 2. Anticancer drug curves of cancer chemotherapy optimization under different efficacy rates.  

Fig. 3. Dexrazoxane drug curves of cancer chemotherapy optimization under different efficacy rates.  

Fig. 4. Conversion variable curves of cancer chemotherapy optimization under different efficacy rates (Due to the limitation of input symbols, 
replace x1 with ×1). 
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Meanwhile, results in Fig. 5 reveal that when Dexrazoxane works, the concentration of the anticancer drug in the body is basically 
maintained at about 50 [D], while without the work of Dexrazoxane, the overall concentration of the anticancer drug in the body is less 
than 50 [D], which indicates that the effect of Dexrazoxane will increase the overall concentration of anticancer drugs in the body. 

Furthermore, as it can be seen from Fig. 6, the cumulative drug toxicity increases rapidly with the increase of time and reaches 2100 
[D] at the end of treatment when θ = 0. While, with introducing Dexrazoxane, a relatively stable change trends of toxicity occur with 
the increase of time, and no matter how effective Dexrazoxane is, the final cardiotoxicity is less than 800 [D]. Based on above findings, 
even a weak efficacy rate of the toxicity reduction drug can still result better cancer chemotherapy property, revealing that the 
improved model has a very significant effect on reducing the tumor size and inhibiting drug toxicity. Numerical simulation of this work 
has a very positive effect on the development of cancer chemotherapy in the future. 

6. Conclusion 

In this work, an improved optimal drug scheduling model with considering the anticancer drug scheduling and toxicity reducing. 
Gauss pseudospectral method is employed for cancer chemotherapy to achieve the least cancer cell and the least drug toxicity 
simultaneously after chemotherapy by changing the dosage of the anticancer drug and the toxicity-reducing drug. There are two main 
novel concepts contributed by this work: 1) an improved optimal drug scheduling model of cancer chemotherapy is proposed, where 
the Dexrazoxane drug is introduced as the second input in the improved model to reduce cancer cell and drug toxicity simultaneously; 
2) optimization treatment strategies of drugs under 7 different toxicity reduction efficiency rates are studied to verify the performance 
of the proposed model by employing Gauss pseudospectral optimization method. Numerical test results reveal that 66.54% 
improvement of performance index is achieved when compared with the traditional model and drug toxicity that have not been dealt 
with by predecessors are greatly reduced. This is a great progress for the optimal drug scheduling of cancer chemotherapy, and plays a 
great positive role for the future cancer chemotherapy. Meanwhile, the research finding provides a good reference for further study of 
the toxicity reduction efficiency of Dexrazoxane in the treatment. The current limitations of this study include the temporary lack of 
clinical trials to verify the clinical effectiveness of the drug delivery strategy proposed in this study. In addition, the precise phar-
macodynamic value of Dexrazoxane in the model also needs to be determined by the clinical experiment combined with the simulation 
results in the study. Therefore, conducting preclinical experiments of the developed model to verify the drug delivery strategy will be 

Fig. 5. Concentration curves of the anticancer drug in cancer chemotherapy optimization under different efficacy rates.  

Fig. 6. Concentration curves of the cumulative drug toxicity in cancer chemotherapy optimization under different efficacy rates.  
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the further work. Also, using specific efficacy rate of Dexrazoxane with clinical complex conditions in the improved optimization 
model will be considered in the future studies. Besides, the uncertainty analysis and sensitivity analysis of the proposed drug 
scheduling model will be conducted in our further research. 
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