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Recent research has demonstrated the diverse relationship between tumour

metabolism and the tumour microenvironment (TME), for example, abnormal

serine metabolism. This study investigated the role of serine metabolism in

papillary renal cell carcinoma (pRCC) focusing on the prognostic value and

regulatory mechanisms. Gene expression profiles and clinical data of patients

with pRCC were obtained from The Cancer Genome Atlas (TCGA) database

and Gene Expression Omnibus (GEO) database. Kaplan–Meier curves were

used for survival analysis and consensus clustering for tumour serine metabolic

signatures extraction. Functional analysis, including the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA), was

applied to explore the biological characteristics. The gene set variation analysis

(GSVA), single-sample GSEA (ssGSEA), and Estimation of Stromal and Immune

cells in Malignant Tumour tissues using Expression data (ESTIMATE) methods

were utilised to estimate the immune infiltration in the various subtypes. Five

serine metabolic genes (SMGs) were used to classify patients with pRCC, with

four clusters identified with diverse prognoses and immune features based on

these survival-related SMGs. Further analysis of the best and worst clusters (B

and D clusters) revealed variations in survival, clinical progression, oncogenic

pathways, and TME, which included immune infi ltration scores,

immunosuppressive cell infiltration, and expression of immune checkpoints.

In addition, SMGs, especially SHMT2, exacerbated the carcinogenesis and

immunosuppressive cells in pRCC, thus promoting tumour proliferation. In

conclusion, higher SHMT2 gene expression and higher serine metabolism in

tumour cells are associated with poorer clinical outcomes in pRCC. SHMT2 is a

potential novel target gene for targeted therapy and immunotherapy in pRCC.
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Introduction

Abrupt changes in metabolism frequently occur during

tumourigenesis and tumour progression (1, 2). This major

shift depends on the metabolic reorganisation of cancer cells.

Owing to higher demands for bioenergy and biosynthesis, cancer

cells normally alter their metabolic pathways (3), initiated by

cancer-driven gene mutations and the effectiveness of

environmental nutrients (4). Under these circumstances,

abnormal metabolic accumulation occurs, which influences

tumour microenvironment (TME) (5, 6), thus promoting the

tumour. Therefore, exploring the regulatory mechanism of

tumour metabolic abnormalities is essential for targeted

cancer treatment.

Among these metabolic pathways, the amino acid–related

pathways have received wide attention, such as serine that has

important implications in tumourigenesis (7). Serine supplies a

one-carbon unit when converted to glycine (8, 9), which then

participates in the methionine cycle, either generating the primary

methyl donor S-adenosylmethionine (SAM) or involved in ATP

synthesis (10). Serine metabolism is also vital in redox

homeostasis. When serine is converted to glycine, it indirectly

promotes the synthesis of GSH, a major redox regulator (11).

Cancer cells require NAD(P)H-reductive equivalents (12, 13).

Serine could also provide NAD(P)+ in the folate cycle, thus

acting as a tumour facilitator (14). Many studies have revealed

an increased concentration of serine in breast cancer and

melanoma due to excessively activated serine anabolism (15),

but serine metabolism has not been investigated in papillary renal

cell carcinoma (pRCC). Therefore, this study systematically

evaluated the serine metabolic atlas in pRCC and classified

patients into four subtypes, which represented different

prognostic and microenvironment characteristics. In addition,

we filtered the most vital serine metabolism regulators in pRCC,

which were closely related to the immune microenvironment and

immune checkpoints. The metabolic subtypes and SHMT2

expression levels are promising novel targets for immunotherapy.
Methods

Data acquisition

The comprehensive transcriptome expression matrix of

patients with pRCC together with the clinical data was

extracted from The Cancer Genome Atlas (TCGA-KIRP;

https://www.cancer.gov/tcga) (Table 1). Five genes associated

with serine metabolic pathways identified in a previous study

(14) were defined as serine metabolic genes (SMGs). Three

datasets (GSE26574 (16), GSE2748 (17), and NIHMS1737783

(18)) were acquired from the Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/) database and National
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Center for Biotechnology Information to validate the

consistency between the key gene SHMT2 and pRCC clinical

outcomes, and the immune microenvironment and immune

checkpoints. The dataset NIHMS1737783 was submitted by

Motzer et al. and included 886 patients’ clinical data and 726

tissue samples (18). The Human Protein Atlas (HPA) database

(https://www.proteinatlas.org) was utilised to analyse the protein

expression in pRCC and normal tissues.
Differential gene analysis

TheWilcoxon test and R package Limma were used to detect

variations in SMGs expression between tumour and normal

samples. The significance criterion was set as a false discovery

rate (FDR) <0.05 and an absolute value of log2 fold change >1.5.
Survival analysis

To obtain the best cutoff point to classify samples into high

and low expression groups, the “surv_cutpoint” command was

utilised according to the mRNA expression. Then, a log-rank test

was applied to examine the outcome results by the Kaplan–

Meier method. R packages KMsurv, survival, and survminerwere

used to conduct prognostic analysis. A P-value <0.05 was

considered statistically significant.
Cluster analysis

The subtypes of pRCC samples were obtained by the R

package ConsensusClusterPlus (19). The datasets were clustered

by the Euclidean squared distance metric and the K-means

algorithm with k from 2 to 9. The results were displayed in

the form of heatmaps of the consistency matrix using the R

package pheatmap. The most optimal subtypes were screened

following these criteria: high consistency of clustering, a

moderate sample size for each cluster, a significant difference

in survival rate and clinical characteristics, and no significant

increase in area under the cumulative distribution function

(CDF) curve.
Immune microenvironment assessment

Estimation of the Stromal and Immune cells in Malignant

Tumour tissues using Expression data (ESTIMATE) analysis

was performed to quantify the TME of each sample with R

package estimate, including the ESTIMATE score, immune

score, stromal score, and tumour purity. Single-sample gene

set enrichment analysis (ssGSEA) was used to calculate the
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relative abundance of immune cells with the R package GSVA

based on the gene sets from the study of Charoentong et al. (20)

The Student’s t-test was used to evaluate differences in the above

parameters between clusters, and a P-value <0.05 was defined as

statistically significant.
Biological pathway enrichment analysis

Gene set variation analysis (GSVA) was performed to

evaluate pathway enrichment for different clusters with the R

package GSVA and “c2.cp.kegg.v7.4.symbols” from the

Molecular Signatures Database. On the basis of the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (http://

www.genome.jp/kegg), enrichment of KEGG pathways was

performed by R package clusterProfiler. Pathways characterised
Frontiers in Oncology 03
by a nominal P-value <0.05 and a FDR <0.05 were identified as

significant pathways.
Correlation analysis

On the basis of the SHMT2 median expression, the pRCC

samples were classified into SHMT2 high expression and low

expression groups. The correlation analysis of the key gene

expression with clinical characteristics was performed in the

TCGA-KIRP samples and was validated in the GSE26574 and

GSE2748 cohorts. To identify the relationship between SHMT2

expression and the TME, ESTIMATE and the ssGSEA algorithm

were used to analyse the proportion of tumour-infiltrating

immune subsets. The Pearson correlation coefficient (R) and

P-value were calculated, in which |R| > 0.3 and p < 0.05 were
frontiersin.org
TABLE 1 Clinical characteristics of included patients in the study.

Variables Total (n = 289) Cluster A (n = 100) Cluster B (n = 68) Cluster C (n = 90) Cluster D (n = 31)

Age (year)

<65 173 (59.86%) 54 (54.00%) 38 (55.88%) 57 (63.33%) 24 (77.42%)

≥65 113 (39.10%) 45 (45.00%) 30 (44.12%) 31 (34.44%) 7 (22.58%)

Unknown 3 (1.03%) 1 (1.00%) 0 (0.00%) 2 (2.22%) 0 (0.00%)

Gender

Female 77 (26.64%) 39 (39.00%) 10 (14.71%) 13 (14.44%) 15 (48.39%)

Male 212 (73.36%) 61 (61.00%) 58 (85.29%) 77 (85.56%) 16 (51.61%)

Stage

I 172 (59.52%) 50 (50.00%) 45 (66.18%) 65 (72.22%) 12 (38.71%)

II 22 (7.61%) 8 (8.00%) 3 (4.41%) 6 (6.67%) 5 (16.13%)

III 51 (17.65%) 20 (20.00%) 11 (16.18%) 11 (12.22%) 9 (29.03%)

IV 15 (5.19%) 10 (10.00%) 1 (1.47%) 1 (1.11%) 3 (9.68%)

Unknown 29 (10.03%) 12 (12.00%) 8 (11.76%) 7 (7.78%) 2 (6.45%)

T stage

T1 193 (66.78%) 58 (58.00%) 51 (75.00%) 72 (80.00%) 12 (38.71%)

T2 33 (11.42%) 13 (13.00%) 5 (7.35%) 8 (8.89%) 7 (22.58%)

T3 59 (20.42%) 28 (28.00%) 11 (16.18%) 9 (10.00%) 11 (35.48%)

T4 2 (0.69%) 0 (0.00%) 1 (1.47%) 1 (1.11%) 1 (3.23%)

TX 2 (0.69%) 1 (1.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

N stage

N0 49 (16.96%) 16 (16.00%) 10 (14.71%) 17 (18.89%) 6 (19.35%)

N1 24 (8.30%) 9 (9.00%) 4 (5.88%) 5 (5.56%) 6 (19.35%)

N2 4 (1.38%) 4 (4.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

NX 211 (73.01%) 70 (70.00%) 54 (79.41%) 68 (75.56%) 19 (61.29%)

Unknown 1 (0.35%) 1 (1.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

M stage

M0 95 (32.87%) 42 (42.00%) 15 (22.06%) 30 (33.33%) 8 (25.81%)

M1 9 (3.11%) 6 (6.00%) 0 (0.00%) 0 (0.00%) 3 (9.68%)

MX 171 (59.17%) 47 (47.00%) 48 (70.59%) 57 (63.33%) 19 (61.29%)

Unknown 14 (4.84%) 5 (5.00%) 5 (7.35%) 3 (3.33%) 1 (3.23%)
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considered statistically significant.
Verification of expression level

The expression of SHMT2 at the translation level was

validated by the HPA online database (https://www.

proteinatlas.org/). The freely available HPA database

provides the protein expression profi les, as well as

immunohistochemistry (IHC) images for a wide variety of

cancer tissues. The IHC analysis in the HPA database is also

presented for many protein-coding genes in patients with

respective cancer, and the antibody information used for

each IHC analysis can also be obtained in the HPA database.

The IHC score is mainly classified into strong, moderate, weak,

and negative based on the staining intensity and fraction of

stained cells (21, 22).
Response prediction of anti-tumour
drugs

To evaluate SHMT2 for pRCC treatment, the IC50 of

commonly administered anti-tumour drugs in the TCGA

project of the pRCC dataset was calculated using the algorithm

developed by Geeleher et al. (23) and the related R package

pRRophetic (24). This algorithm can create statistical models

from the gene expression and drug sensitivity data from cell lines

in the Cancer Genome Project, which allows users to predict the

clinical therapeutic response using only the baseline tumour

gene expression data. The guidelines of the American Joint

Committee on Cancer recommend 30 common anti-tumour

drugs, such as Axitinib, Bortezomib, and Elesclomol, for cancer

treatment. The difference in the IC50s of these common anti-

tumour drugs between the high– and low–SHMT2 expression

groups was compared, and the results are shown as box plots.

The Wilcoxon rank sum test was conducted, and p < 0.05 was

considered statistically significant.
Statistical analysis

All analyses were performed using R 4.1.3. All statistical tests

were two-sided, and a P-value <0.05 was considered statistically

significant unless otherwise noted. Continuous variables that

conformed to normal distribution were compared using an

independent t-test for comparison between groups, whereas

continuous variables with skewed distribution were compared

with the Mann–Whitney U-test. The relationship between hub

genes and overall survival (OS) was analysed through the

Kaplan–Meier curve that was evaluated by a log-rank test.
Frontiers in Oncology 04
Results

The expression pattern and prognostic
effect of serine metabolism genes
in pRCC

The levels of intracellular serine are regulated by various

genes participating in its synthesis, transformation, and

transport. A total of five serine metabolism genes were used in

this study, of which four had significantly different expression

between tumour and normal tissues (Figure 1A). The expression

of PSPH and SHMT2 was significantly higher in tumour tissues,

whereas PHGDH and PSAT1 were reduced. An estimation of

the relationship between SMGs and the prognosis of patients

with pRCC revealed that a higher expression of PHGDH,

PSAT1, PSPH, and SHMT2 was significantly associated with

worse clinical outcomes (Figures 1B–E). On the contrary, a

higher expression of SHMT1 was closely related to better OS

(Figure 1F). These findings suggested that the serine metabolism

genes had aberrant expression in pRCC and may play distinctive

roles in tumourigenesis.
Serine metabolism subtypes with distinct
prognosis and biological features
in pRCC

Given that all five SMGs might have synergistic effects in

patients with pRCC, a cluster analysis was conducted on the basis

of the expression of these SMGs. As shown in Figure 2A, k = 4 was

considered optimal, as confirmed by the CDF plot and delta area

plot (Figures 2B, C). To test the correctness of the clustering results,

the prognostic correlation was evaluated by Kaplan–Meier curves

(Figure 2D). The differences in clinical stage composition between

the different groups are shown in Figures 2E, F. The proportion of

patients with advanced clinical stages was higher in both group A

and group D, which indicated a higher susceptibility to the

deve lopment of end-s tage tumours . The genera l

clinicopathological characteristics were illustrated by the heatmap

(Figure 2G). To further investigate the biological mechanism of

prognostic divergences between different subgroups, two extreme

subtypes (cluster B: n = 68 and cluster D: n = 31) were selected for

further study. The ESTIMATE analysis showed that patients in

cluster B had a higher StromalScore, ImmuneScore, and

ESTIMATEScore. Likewise, there was higher tumour purity in

patients in cluster D that represented a lower ESTIMATEScore

(Figure 3A). Furthermore, immune cell infiltration analysis

demonstrated that effector immune cells including dendritic cells,

monocytes, and type 17 T helper cells were more enriched in cluster

B than that in cluster D, leading to better immune scores in cluster B

(Figure 3B). Moreover, the expression of immune checkpoints
frontiersin.org
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B

C D

E F

A

FIGURE 1

Differentially expressed serine metabolic genes (SMGs) in papillary renal cell carcinoma (pRCC) and normal tissues and their relationship with
prognosis. (A) The expression profiles of SMGs in pRCC and normal tissues. Yellow, tumour; blue, normal. The upper and lower ends of the
boxes represent the interquartile ranges, and the lines in the boxes represent the median values. Adjusted p < 0.05 and |log2 fold changes (FC)|
> 1.5 were used as the criteria for screening differentially expressed SMGs; *p < 0.05, **p < 0.01, and ***p < 0.001. (B–F) Survival analyses for
each differentially expressed SMG based on 289 patients with pRCC from TCGA cohorts. Kaplan–Meier curves with log-rank p < 0.05 showed a
significant survival difference between the high expression and low expression groups. The shaded area represents the 95% confidence interval.
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D E
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FIGURE 2

Identification and clinical correlation of various serine metabolic molecular patterns of pRCC. (A) Delta region graph showing the relative
change in the area under the CDF curve for K = 2–9. (B) Consensus clustering cumulative distribution function (CDF) for K = 2–9. (C)
Consensus clustering matrix for K = 4. (D) Kaplan–Meier overall survival (OS) curve for 289 patients with pRCC in the cluster A/B/C/D
subgroups. Patients in cluster B had the best OS (p = 0.012). (E, F) Difference in the proportion of cases with different pathological stages (Chisq
Test, p = 0.003), T stage (Chisq Test, p < 0.001), M stage (Chisq Test, p = 0.001), and N stage (Chisq Test, p = 0.086) from TCGA among A, B, C,
and D clusters. (G) On the basis of the results of the cluster analysis, the heatmap showed the correlation with clinicopathological
characteristics. Red represents a high expression of SMGs, and blue represents a low expression.
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FIGURE 3

Variations of TME immune-related characteristics and metabolic molecular patterns between cluster B and D. (A) Samples in cluster B
demonstrated higher stromal, immune, and ESTIMATE scores and lower tumour purity than those in cluster D. (B) The abundance of the main
immune-infiltrating cells in TME in the two serine metabolic patterns. Cluster D was classified as the immunosuppressive phenotype,
characterised by immune suppression. (C) Differences in the expression of LAG3, one common immune checkpoint, between clusters B and D
(P = 0.046). (D) GSVA enrichment analysis revealed the activation level of biological pathways in distinct serine metabolic modification patterns.
The heatmap was utilised for visualisation, in which red represents activated pathways and blue represents inhibited pathways. (E) Differences in
tumour-related pathways including the p53 signalling pathway and glycosphingolipid biosynthesis pathway between the two serine metabolic
patterns; *p < 0.05, **p < 0.01, and ***p < 0.001. (F) KEGG pathway enrichment of differentially expressed genes between clusters B and D. The
improved items were analysed using gene counts, gene ratio, and adjusted p-values.
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LAG3 was significantly higher in cluster D (Figure 3C). These

results indicated that cluster D represented an immunosuppressive

group, which might be the reason for the poor prognosis. In

Figure 3D, the GSVA results showed that gene sets in cluster B

were significantly enriched in snare interactions in the vesicular

transport pathway and histidine metabolism pathway. Notably,

GSEA analysis revealed that the p53 signalling pathway and

glycosphingolipid biosynthesis were enriched in cluster D, both of

which contributed to tumour proliferation (Figure 3E). As further

validation, KEGG enrichment analysis suggested that the

dysregulated genes in cluster D mainly participated in cellular

processes and environmental information processing pathways,

including biosynthesis of cofactors; one-carbon pool by folate;

and glycine, serine, and threonine metabolism (Figure 3F).
Clinical and prognostic features of
SHMT2 in the TCGA database and GEO
validation datasets

Because of its significant overexpression in tumour tissues and

poor prognosis in survival analysis, it was hypothesised that

SHMT2 might play a role in the tumourigenesis and

progression of pRCC (Figures 1A, E). To demonstrate the

accuracy of a single-gene SHMT2 prognostic prediction, clinical

samples were divided into high and low groups with median

SHMT2 expression as the criteria. Samples with unknown

messages were deleted. The pie charts exhibited different

proportions of clinical characteristic distribution and suggested

that patients in the high–SHMT2 expression group tended to be in

a more advanced disease stage, such as pathological stage (p <

0.001), T stage (p < 0.001), and N stage (p < 0.001) (Figure 4A).

An evaluation of the correlation between SHMT2 expression and

clinical predictors revealed that, with the cumulative amount of

SHMT2 in tumour cells, the tumour would further deteriorate in

different aspects, including pathological stage (p < 0.001), T stage

(p < 0.001), N stage (p < 0.001), and M stage (p < 0.05)

(Figures 4B, C). In addition, data from GSE26574 showed

higher SHMT2 expression in tumour cells than that in normal

cells, whereas data from GSE2748 revealed a consistent

relationship between SHMT2 expression and clinical predictors

(Figure 4D). To confirm whether the expression of SHMT2 was a

reliable prognostic indicator, the Receiver Operating

Characteristic (ROC) was plotted and the AUC value was 0.812,

which meant that SHMT2 expression had good sensitivity and

specificity in predicting tumourigenesis (Figure 4E).
The potential role of SHMT2 in the
tumour immune microenvironment

To further examine the relationship between SHMT2 and

TME, correlation analyses of SHMT2 expression with tumour-
Frontiers in Oncology 08
infiltrating immune cells (TICs) from the ESTIMATE algorithm

and ssGSEA signatures were performed. The ESTIMATE results

showed that patients with high SHMT2 expression had a higher

StromalScore (p = 0.038), ImmuneScore (p = 0.0013), and

ESTIMATEScore(p = 0.0066; Figure 5A), representing the

larger amount of the immune or stromal components in the

TME. Figures 5B–D show the results of ssGSEA from different

data sources, suggesting that SHMT2 was significantly positively

correlated with the infiltration of regulatory T cells (Tregs)

(TCGA: R = 0.35, p < 0.001; NIHMS1737783: R = 0.19, p <

0.001; GSE26574: R = 0.36, p = 0.0026) and myeloid-derived

suppressor cells (MDSCs) (GSE26574: R = 0.35, p = 0.0036).

Consistent with the results above, there were significantly more

infiltrated immunosuppressive cells in high SHMT2 expression

samples in the TCGA, NIHMS1737783, and GSE26574 cohorts

(Figures 5E–G). The HPA database was used to confirm the

protein expression in pRCC and normal tissues. In IHC images,

SHMT2 was expressed more in tumour tissues and mainly

located in the cytoplasm of pRCC cells. The comparison of

staining with two different antibodies “HPA020543” and

“HPA020549” is displayed in Figures 6A, B. In the KEGG

analysis, the p53 signalling pathway; glycine, serine, and

threonine metabolism pathway; and extracellular matrix

(ECM) receptor interaction pathway were proved enriched in

the high–SHMT2 expression group (Figure 6C).
Comparison of the sensitivity to anti-
tumour drugs between patients with
different SHMT2 expression levels

Clinical decisions should be based on the different molecular

subtypes of pRCC; therefore, sensitivity to the 30 common anti-

tumour drugs was compared between the high– and low–

SHMT2 expression groups to determine potential treatment

modalities for pRCC. The results demonstrated that the IC50s

of the 22 anti-tumour drugs were significantly different in the

two SHMT2 expression groups (Figure 6D). Furthermore, the

IC50s of axitinib (p < 0.001), pazopanib (p < 0.001), sorafenib (p

< 0.001), and sunitinib (p = 0.0036), the four recommended anti-

tumour drugs for the renal cell carcinoma treatment, were lower

in patients with higher SHMT2 expression, which suggests that

increased SHMT2 expression level was accompanied by

increased sensitivity to these four drugs (Figure 6E). In this

context, these drugs have the potential to be applied in the

treatment of high SHMT2 expression pRCC in the future.
Discussion

During tumourigenesis and proliferation, tumour cells tend

to reshape the surrounding environment, which is defined as

reprogramming of TME (25). The rapid growth of tumour cells
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results in a relatively hypoxic cellular environment (26), leading

to tumour cells utilising anaerobic glycolysis as their main

metabolic mode. Excessive hydrogen ions in the tumour cells

drain into the extracellular matrix to form an acidic, oxygen-

deprived TME. The TME not only creates good conditions for

tumour cell growth but also inhibits immune cell infiltration and
Frontiers in Oncology 09
activation. Furthermore, it has been shown that amino acid

metabolism is second only to glucose metabolism in the

development of tumours. An adequate amino acid supply

provides tumour cells with sufficient amounts of anabolic

substrates, thereby promoting tumour growth. In this sense,

studies of amino acid metabolism may reveal the internal
B

C

D

E

A

FIGURE 4

SHMT2 expression is upregulated in advanced pRCC. (A) According to data from TCGA, patients with pRCC with high SHMT2 expression tended
to be in a more severe disease state, including pathological stage, T stage, and N stage. (B, C) There was a significant positive correlation
between SHMT2 expression and the pathological stage, T stage, N stage, and M stage. (D) Validation of the relationships between SHMT2
expression and clinical parameters in the GSE26574 and GSE2748 datasets. (E) Time-dependent ROC analysis of the TCGA-pRCC set. The AUC
value of 0.812 suggested that the forecasting ability of SHMT2 expression was sensitive; *p < 0.05, **p < 0.01, and ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.914332
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kong et al. 10.3389/fonc.2022.914332
molecular events of malignant tumours and provide new ideas

for tumour diagnosis and treatment.

As a non-essential amino acid, serine has been proved to be

enriched in tumour cells (27, 28). The one-carbon unit produced

during the conversion of serine to glycine is the preferred carbon

source for tumour cells, eventually becoming SAM through the

folate cycle and involved in nucleotide synthesis (29).

Simultaneously, the synthesis of serine is essential for

maintaining cell redox homeostasis (30). Herein, serine

metabolism was shown to be closely related to the occurrence,

development, and prognosis of pRCC. In Dr. Linehan’s study,

different types of patients with pRCC display variant metabolic

alterations, including glycolysis, Krebs cycle, electron transport

chain, and ribose metabolism. Meanwhile, the variability in

metabolism also leads to different OS (31). Similarly, our study

focused on serine metabolism that was closely related to these

metabolic pathways described above. According to the

transcriptome profiling, four pRCC subtypes were defined with

distinct clinical and biological characteristics. In essence,

through the de novo synthesis of serine, tumour cells could
Frontiers in Oncology 10
express proteins and synthesise lipids more easily. The

conversion of serine to glycine provides substrates for nucleotide

synthesis. In lymphoma, the upregulation of the serine synthesis

pathway is a metabolic marker of B-cell activation and the germinal

centre response. Overexpression of enzymes involved in serine

synthesis is a feature of germinal centre B-cell–derived lymphoma

(31). In addition, PSAT1 activation by PERK could promote

macrophage immunosuppressive activity through serine

biosynthesis and regulate the efficacy of immunotherapy in

melanoma (32). Furthermore, monoubiquitination-mediated

PHGDH activity enhancement promoted serine synthesis and

one-carbon unit metabolism and increased the content of

intracellular SAM, thus accelerating CRC liver metastasis (33).

The findings above suggest that serine metabolism participates in

the progression of various malignant tumours.

In the present study, the bioinformatic analysis revealed a

clear increase in SHMT2 expression in human pRCC samples,

which served as the most potent regulator of serine metabolism.

In previous research, the SHMT2 gene was defined as an

oncogene, which exerted its function in mitochondria (34),
B C D

E F G

A

FIGURE 5

SHMT2 was associated with the immunosuppressive microenvironment of pRCC. (A) Correlation analyses of SHMT2 expression with tumour-
infiltrating immune cells (TICs) from the ESTIMATE algorithm. High SHMT2 expression was associated with low ImmuneScores (p = 0.038),
StromalScores (p = 0.0066), and ESTIMATEScores (p = 0.0013). (B–D) Correlation analyses of SHMT2 expression with the proportion of primary
immunosuppressive cells in (B) TCGA samples, (C) NIHMS1737783 samples, and (D) GSE26574 samples. (E, F) High SHMT2 expression
corresponded with significantly higher Treg cell infiltration in (E) TCGA samples, (F) NIHMS1737783 samples, and (G) GSE26574 samples. In
addition, MDSCs were more easily enriched in the high–SHMT2 expression subgroup; *p < 0.05, **p < 0.01, and ***p < 0.001.
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mediating the conversion of serine to glycine and

tetrahydrofolate (THF) to N5, N10-methylated THF (MTHF).

MTHF is the main transportation form of the one-carbon unit

and contributes to the metabolism of proteins and nucleotides

metabolism, which corresponds with tumour cell growth. In the

folate cycle, MTHF is converted to formylated THF required for

the formylation of the initial methionine on mitochondrial

transfer RNAs for mitochondrial protein translation. Li et al.

demonstrated that SIRT5 could increase the activity of SHMT2

by desuccinylation modification, thus enhancing the serine

metabolism and promoting the rapid proliferation of tumour

cells (35). This study described possible therapeutic strategies to

inhibit tumour cell proliferation by restraining serine

metabolism. Similarly, another study showed that the

deacetylase SIRT3 could remove the acetylation modification

of SHMT2 K95, thus stabilising the intracellular expression of

SHMT2 and maintaining the high activity of SHMT2 (36). The

high activity of SHMT2 could help cells resist the pressure of

reactive oxygen species in the mitochondria and ensure the
Frontiers in Oncology 11
supply of biological macromolecules in cells, thereby aggravating

the malignant proliferation of cancer cells. In addition, another

study described that SHMT2 and BCL2 cooperated to promote

the occurrence of lymphoma through the silencing of epigenetic

inhibitors, as the enhancement of SHMT2 metabolic enzyme

activity was sufficient to convert normal B cells into B-cell

lymphoma (37). In general, the increase of SHMT expression

or activity drives serine metabolism and supports cancer cell

proliferation by supplying nucleotides, which may become a

novel molecular therapeutic target.

Furthermore, we found that SHMT2 may serve as an

immune regulator to promote the remodel l ing of

immunosuppressive TME. A growing number of studies have

shown that tumour metabolism not only plays a key role in

maintaining tumour progression and metastasis but also

remodelled the immune microenvironment by releasing

metabolites (38). Specifically, metabolites produced by tumour

cells were released into the TME, which could interfere with the

metabolic programme of immune cells, ultimately leading to the
B

C

D
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A

FIGURE 6

Validation of the role of SHMT2 at the translational level and in anti-tumour drugs. (A, B) Immunohistochemical images from the HPA database
show SHMT2 protein expression in normal kidney (pictures on the right) and pRCC (pictures on the left) tissues by different antibodies. (C) GSEA
analysis of KEGG in the high– and low–SHMT2 expression subgroups. Pathways such as the ECM receptor interaction pathway and p53
signalling pathway were upregulated in high–SHMT2 expression subgroups, which are recognised as the oncogenic pathways. (D) Estimated
drug sensitivity in patients with high and low SHMT2 expression. The IC50s of 22 anti-tumour drugs were significantly different in the different
SHMT2 expression groups. (E) The difference of anti-tumour drugs in IC50, including sunitinib (p = 0.0036), sorafenib (p < 2.22e-16), axitinib
(p < 1.6e-08), and pazopanib (p < 4.2e-06) between the high– and low–SHMT2 expression subgroups. IC50, the half inhibitory concentration,
and a P-value < 0.05 was considered statistically significant.
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emergence of an immunosuppressive microenvironment.

Similarly, Luo et al. showed that the expression of SHMT2 was

associated with tumour-infiltrating lymphocytes, including

activated type 1 T helper cells and natural killer cells (39).

Notably, the present study demonstrated that SHMT2 could

promote the infiltration of Treg cells and mediate immune

escape. Tregs are a subset of lymphocytes that maintain

peripheral tolerance and can induce antigen tolerance to

tumour cells through immunosuppression, which indirectly

accelerates tumour cell proliferation. Specifically, activated

Treg cells destroy tumour immunity by enriching a series of

costimulatory molecules (such as ICOS, CD27, 41BB, OX40, and

GITR) and immune checkpoints (PD-1, CTLA-4, LAG3, and

TIGIT) to promote tumour immune evasion (40–42). Currently,

there was no report on SHMT2 regulating Treg infiltration.

Kurniawan et al. explored the impact of serine metabolism on

Treg function (43), showing that de novo serine synthesis in

Tregs interfered with Foxp3 expression. Restriction of serine

availability by GSH preserved FoxP3 expression and Treg

function. Recently, immunotherapy is being increasingly

applied for cancer treatment, but the reshaping of TME makes

tumour tissues resistant to immunotherapy. In Burkitt

lymphoma, SHMT2 expression correlated significantly with

the effect of immunotherapy (44). Our findings suggested that

SHMT2 may be associated with the immunotherapy response in

patients with renal cancer; therefore, SHMT2 may be a potential

novel target for combination immunotherapy.

This study has some limitations. The results need to be

further validated by in vitro experiments, such as quantitative

real-time polymerase chain reaction and Western blotting.

Meanwhi le , s tudies on human tissue samples are

indispensable. Moreover, the biological mechanism of SHMT2

reconstructing the TME needs to be explored in vivo and in vitro.
Conclusion

In conclusion, we investigated the potential role of serine

metabolism in pRCC. Further, we explored the impact of

metabolism reprogramming on the remodelling of the
Frontiers in Oncology 12
immune microenvironment in pRCC based on the data

analysis of transcriptomics. Moreover, we demonstrated that

the probable immunosuppressive role of SHMT2 in TME may

be a promising therapeutic target in pRCC. Ultimately, serine

metabolism as a target of tumour therapy needs to be further

explored in the animal models and preclinical studies.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding authors.
Authors contributions

YY and YL designed this work. WK and NC wrote the

manuscript. ZW performed the bioinformatics analysis. YM

performed the data review. All authors contributed to the

article and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid
metabolism for cancer progression. Cell Mol Life Sci CMLS (2016) 73:377–92.
doi: 10.1007/s00018-015-2070-4

2. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections
between metabolism and cancer biology. Cell (2017) 168:657–69. doi: 10.1016/
j.cell.2016.12.039

3. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell
survival and growth. Nat Cell Biol (2015) 17:351–9. doi: 10.1038/ncb3124

4. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv
(2016) 2:e1600200. doi: 10.1126/sciadv.1600200
5. Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor
microenvironment for cancer immunotherapy. Mol Cell (2020) 78:1019–33.
doi: 10.1016/j.molcel.2020.05.034

6. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism.
Cell Metab (2016) 23:27–47. doi: 10.1016/j.cmet.2015.12.006

7. Vettore L, Westbrook RL, Tennant DA. New aspects of amino acid
metabolism in cancer. Br J Cancer (2020) 122:150–6. doi: 10.1038/s41416-019-
0620-5

8. Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism
in cancer. Biochim Biophys Acta Mol Basis Dis (2020) 1866:165841. doi: 10.1016/
frontiersin.org

https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.1016/j.cell.2016.12.039
https://doi.org/10.1016/j.cell.2016.12.039
https://doi.org/10.1038/ncb3124
https://doi.org/10.1126/sciadv.1600200
https://doi.org/10.1016/j.molcel.2020.05.034
https://doi.org/10.1016/j.cmet.2015.12.006
https://doi.org/10.1038/s41416-019-0620-5
https://doi.org/10.1038/s41416-019-0620-5
https://doi.org/10.1016/j.bbadis.2020.165841
https://doi.org/10.3389/fonc.2022.914332
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kong et al. 10.3389/fonc.2022.914332
j.bbadis.2020.165841

9. Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one−carbon
metabolism in cancer (Review). Int J Oncol (2021) 58:158–70. doi: 10.3892/
ijo.2020.5158

10. Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat
Rev Cancer (2016) 16:650–62. doi: 10.1038/nrc.2016.81

11. Bansal A, Simon MC. Glutathione metabolism in cancer progression
and treatment resistance. J Cell Biol (2018) 217:2291–8. doi: 10.1083/
jcb.201804161

12. Katsyuba E, Romani M, Hofer D, Auwerx J. NAD(+) homeostasis in health
and disease. Nat Metab (2020) 2:9–31. doi: 10.1038/s42255-019-0161-5

13. Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis CD, Marinari UM, et al.
Redox homeostasis and cellular antioxidant systems: Crucial players in cancer
growth and therapy. Oxid Med Cell Longevity (2016) 2016:6235641. doi: 10.1155/
2016/6235641

14. Geeraerts SL, Heylen E, De Keersmaecker K, Kampen KR. The ins and outs
of serine and glycine metabolism in cancer. Nat Metab (2021) 3:131–41.
doi: 10.1038/s42255-020-00329-9

15. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al.
Functional genomics reveal that the serine synthesis pathway is essential in breast
cancer. Nature (2011) 476:346–50. doi: 10.1038/nature10350

16. Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V, Whitten D, et al.
An antioxidant response phenotype shared between hereditary and sporadic type 2
papillary renal cell carcinoma. Cancer Cell (2011) 20:511–23. doi: 10.1016/
j.ccr.2011.08.024

17. Yang XJ, Tan MH, Kim HL, Ditlev JA, Betten MW, Png CE, et al. A
molecular classification of papillary renal cell carcinoma. Cancer Res (2005)
65:5628–37. doi: 10.1158/0008-5472.Can-05-0533

18. Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, et al.
Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma:
biomarker analysis of the phase 3 JAVELIN renal 101 trial. Nat Med (2020)
26:1733–41. doi: 10.1038/s41591-020-1044-8

19. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool
with confidence assessments and item tracking. Bioinf (Oxford England) (2010)
26:1572–3. doi: 10.1093/bioinformatics/btq170

20. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D,
et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep (2017)
18:248–62. doi: 10.1016/j.celrep.2016.12.019

21. Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al.
A subcellular map of the human proteome. Science (2017) 356(6340):eaal3321.
doi: 10.1126/science.aal3321

22. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu
A, et al. Proteomics. tissue-based map of the human proteome. Science (2015)
347:1260419. doi: 10.1126/science.1260419

23. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted
using baseline gene expression levels and in vitro drug sensitivity in cell lines.
Genome Biol (2014) 15:R47. doi: 10.1186/gb-2014-15-3-r47

24. Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PLoS One
(2014) 9:e107468. doi: 10.1371/journal.pone.0107468

25. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol CB
(2020) 30:R921–r925. doi: 10.1016/j.cub.2020.06.081

26. Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment. Technol
Cancer Res Treat (2021) 20:15330338211036304. doi: 10.1177/15330338211036304
Frontiers in Oncology 13
27. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek
NJF, et al. Modulating the therapeutic response of tumours to dietary serine and
glycine starvation. Nature (2017) 544:372–6. doi: 10.1038/nature22056
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