Chapter 3
Cell and Tissue Gene Targeting
with Lentiviral Vectors
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Abstract One of the main advantages of using lentivectors is their capacity to
transduce a wide range of cell types, independently from the cell cycle stage.
However, transgene expression in certain cell types is sometimes not desirable,
either because of toxicity, cell transformation, or induction of transgene-specific
immune responses. In other cases, specific targeting of only cancerous cells within
a tumor is sought after for the delivery of suicide genes. Consequently, great effort
has been invested in developing strategies to control transgene delivery/expression
in a cell/tissue-specific manner. These strategies can broadly be divided in three;
particle pseudotyping (surface targeting), which entails modification of the envelope
glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters
and/or inducible promoters; and posttranscriptional targeting, recently applied
in lentivectors by introducing sequence targets for cell-specific microRNAs.
In this chapter we describe each of these strategies providing some illustrative
examples.
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3.1 Introduction

Lentivectors can effectively transduce a wide range of cells [1, 2]. This property
allows gene correction of potentially any cell type. On the other hand, in some
circumstances transgene expression is desirable in only a limited number of
specific cell targets. For example, intravenous lentivector administration results in
gene transfer to hepatocytes in mouse models. However, this also leads to trans-
gene expression in professional antigen presenting cells such as plasmacytoid
dendritic cells (pDCs). These cells then trigger a transgene-specific immune
response that will result in elimination of transgene-expressing hepatocytes [3].
This “collateral transduction” limits the therapeutic efficacy of some gene therapy
protocols. Therefore, in this case DC transduction has to be avoided at all costs. In
other circumstances, transgene expression in immune cells is therapeutic. For
example, expression of particular mitogen activated protein kinase (MAPK)
constitutive activators in myeloid DCs can either enhance antitumor immune
responses or inhibit immune responses by modulating DC functions [4, 5]. On the
other hand, some of these MAPK modulators may favor cell transformation if
expressed in poorly differentiated cell types [6—8]. Therefore, restricted transgene
delivery to immune cells would increase biosafety. Finally, a transgene may be
toxic in a particular cell lineage but only at certain differentiation stages. This is
exemplified in the correction by gene therapy of globoid cell leukodystrophy, a
lysosomal storage disease caused by inactivating mutations in galactocerebrosi-
dase (GALC) [9]. While GALC expression is highly toxic in early hematopoietic
progenitors, it is therapeutic in mature cells from the hematopoietic lineage [9].
This is an interesting case in which specific transgene delivery was achieved
according to the cellular differentiation stage.

Hence, there are many circumstances in which specific targeting to cell types
and tissues has to be achieved. Therefore, the lentivector tropism has been mod-
ulated by many experimental approaches, and here we will focus on the best-
known examples.

3.2 Modification of Lentivector Tropism by Pseudotyping
(Surface Targeting)

Transgene delivery by lentivectors depends on the recognition of the target cell by
ENV, which is followed by entry into the cell. Therefore, the lentivector tropism is
first determined by specific binding to cell surface receptors. As discussed in
Chap. 2, lentivectors can acquire a wide range of different envelope glycoproteins
during budding at the plasma membrane from the producer cell. This process is
called pseudotyping because the resulting virions (pseudovirions) exhibit the
surface antigenicity provided by a heterologous ENV [10, 11].
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HIV-1 ENV can be used for “pseudotyping” lentivectors, although it does not
lead to high titer preparations. For this reason, one of the most widely used
envelopes for lentivector pseudotyping is the vesicular stomatitis virus glycopro-
tein (VSV-G) [2, 12-14]. VSV-G pseudotyping exhibits many advantages; firstly,
it stabilizes the vector particle, leading to high titer vector preparations, and allows
vector concentration by ultracentrifugation due to its stability [15]. Secondly,
VSV-G is a pantropic envelope, and confers a very broad host cell range [16]. In
fact, it is unclear whether VSV-G binds a specific ubiquitous cell receptor, or binds
to phospholipids in the plasma membrane [15, 17, 18].

However, in some cases restriction of lentivector tropism results in safer in vivo
gene delivery, and can also enhance the therapeutic effects by reducing the
lentivector dose. This is of interest since reaching high titer retrovirus vector
preparations is a major difficulty. For this reason, several strategies have been
applied to achieve specific transductional targeting by surface modification of
ENV as explained below.

3.2.1 Pseudotyping with Heterologous Viral Proteins

The availability of a broad range of existing viral ENVs combined with the
capacity of retrovirus/lentivirus vectors to accommodate heterologous ENVs
makes this strategy simple and straightforward. These lentivectors should exhibit
the same cell/tissue tropism of the virus from which the ENVs originated. The list
of available glycoproteins for lentivector pseudotyping is evergrowing [19].
Summarizing, viral glycoproteins from several viral families have been success-
fully used, including Retroviridae, Baculoviridae, Filoviridae, Flaviviridae,
Arenaviridae, Rhabdoviridae, Paramyxoviridae, and Coronaviridae [19, 20]
(Table 3.1). In this section we will provide key examples.

Lentivectors can be easily pseudotyped with y-retroviral ENVs such as mouse
leukemia virus amphotropic (MLV-A), gibbon ape leukemia virus (GALV), and
feline endogenous retrovirus (RD114) envelopes [21-23]. These envelopes rec-
ognize cellular receptors expressed in a wide range of human cell types, such as
phosphate cotransporters Pit2 for MLV A [24], Pitl for GALV, and the neutral
aminoacid transporter RDR for RD114 envelope [22, 25-27]. In particular cases,
lentivector pseudotyping requires certain modifications in these ENVs. For GALV
and RD114 ENVs, substitution of the cytoplasmic domain by that of the MLV
enhances their incorporation [23, 28, 29]. The substitution of RD114 cleavage site
with the site specific for HIV protease increases its activity [30]. Lentivectors
pseudotyped with y-retroviral envelopes effectively transduce CD34+ hemato-
poietic precursor cells, a requirement for the treatment of several human genetic
pathologies [31]. In fact, correction of severe combined immunodeficiency (SCID)
was achieved with GALV [32] and MLV-A [33] pseudotyped retrovirus vectors.
GALYV ENV was used again for the correction of X-linked chronic granulomatous
disease (CGD) and Wiskott—Aldrich Syndrome [34, 35]. In contrast, correction of
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Table 3.1 Some selected examples of virus envelope glycoproteins commonly used for
lentivector and retrovirus vector pseudotyping

Family Glycoprotein (species) References

Retroviridae Human T lymphotropic virus (HTLV)-1, [21, 50-53]
maedi-visna virus, gammaretroviruses

Togaviridae Semliki forest virus (SFV), venezuelan equine [38, 54-58]

encephalitis virus (VEEV), ross river virus (RRV),
and sindbis virus

Rhabdoviridae Vesicular stomatitis virurs, rabies virus, [59-61]
and mokola lyssavirus

Filoviridae Ebola, marburg virus [62, 63]

Orthomyxoviridae Influenza hemagglutinin [64]

Coronaviridae Severe acute respiratory syndrome (SARS) [20, 65]
coronavirus

Baculoviridae Baculovirus [40, 41]

Paramyxoviridae Measles virus [46]

Arenaviridae Lymphotropic choriomeningitis virus (LCMV) [42, 43, 66]

X-linked adrenoleukodystrophy and f-thalassaemia was achieved with VSV-G
pseudotyped lentivectors because of their superior transduction efficiency [36, 37].

Lentivectors can also be effectively pseudotyped with envelope proteins from
more distant virus families (Table 3.1). These include alphavirus envelopes (Ross
River virus and Semliki Forest virus) which exhibit specific tropism towards
mouse and human dendritic cells [38, 39]; baculovirus gp64, an insect virus
envelope which confers high particle stability and transduction efficiency. Lenti-
vectors pseudotyped with gp64 effectively transduce hepatocytes in vivo, but not
cells from the hematopoietic lineage (or very poorly) including DCs [40, 41].
This property can be exploited to prevent transgene-specific immune responses.
Lymphocytic choriomeningitis (L-CMV) virus ENV pseudotypes transduce cells
from the central nervous system (neurons, neuroblasts, and astrocytes), glioma
cells, and also insulin secreting f cells [42, 43].

The list of lentivector pseudotypes and their application is long. However, there
is one more case worth explaining in detail due to its relevance for T and B cell
human gene therapy. Gene modification of naive, nonactivated B, and T lym-
phocytes has always been a scientific challenge. Their efficient transduction
requires their activation usually with antiCD3/antiCD28 agonistic antibodies, or by
pretreatment with cytokines [44]. This activation alters their phenotype and
effector functions before they can be transduced. Even VSV-G lentivector
pseudotypes transduce nonactivated T cells inefficiently [44]. Interestingly, effi-
cient transduction of naive, nonactivated human lymphocytes is achieved with
measles virus H and F ENV (H/F) pseudotypes [45, 46]. Measles virus H/F binds
to SLAM and CD46 leading to efficient virus entry, nuclear transport, and inte-
gration [47]. These lentivectors can also transduce some B cell lymphomas par-
ticularly resistant to lentivector transduction [48, 49].
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All these examples, especially the last one, demonstrate that it is possible to find
an adequate ENV pseudotype for any target cell type.

3.2.2 Pseudotyping with Modified Viral Glycoproteins

The binding function and tropism of ENV pseudotypes can also be altered by
modification of ENV residues involved in receptor binding. In some cases, their
original tropism can be completely abrogated without affecting their fusion
activities. Then, other molecules such as antibodies, cytokines, or receptor ligands
can provide an alternative binding method.

An example of altering the natural tropism of ENV to achieve specific DC
tropism is the introduction of selected mutations in the Sindbis virus envelope
proteins E1/E2. E1/E2 binds to heparan sulfate, present in most cell types, and also
to DC-SIGN, a DC-specific molecule. While E2 binds to the cell receptor,
E1 mediates membrane fusion. Interestingly, E1 fusion activity is independent of
E2 binding to the cell receptor [67]. Specific E2 mutations abolished binding to
heparan sulfate but not to DC-SIGN. This modification allowed specific lentivector
gene transfer to DCs in vivo [58]. The Sindbis E1/E2 envelope system is also
susceptible to other targeting strategies. In some cases, E2 binding capacities
have been completely abrogated, while providing alternative binding methods
alongside E1/E2 pseudotyping. For example, cell-specific antibodies conjugated
to E2 conferred specific tropism towards P-glycoprotein-expressing melanoma
cells [68], prostate cancer [69], endothelial cells [70], and CD34+ hematopoietic
progenitor cells [71]. Strong antibody conjugation was achieved by introducing the
Z7 domain of protein A in E2. Incorporation of antibodies or any other surface
molecule alongside modified Sindbis ENVs can effectively target lentivectors to
specific cell types [72].

A major setback from the Sindbis-based modification strategies is the
dependence on endocytosis for pH-dependent fusion to occur. Physical retar-
geting of lentivectors does not guarantee their endocytosis. Fortunately,
pseudotyping with measles virus F/H envelope glycoproteins circumvents this
hurdle. While the H subunit mediates cell binding, the F protein triggers pH-
independent fusion [73]. Therefore, F/H lentivector pseudotypes can gain access
by direct fusion with the plasma membrane [74]. Similarly to the Sindbis virus
E1/E2 system, the measles virus H subunit binding residues can be mutated, and
bound to different molecules targeting specific ligands. For example, fusion with
either the epidermal growth factor (EGF) or with a CD20-specific single-chain
antibody resulted in specific lentivector transduction of EGF receptor expressing
cells and CD20+ B lymphocytes, respectively [75]. Of note, the authors of this
study remark the high B cell transduction efficiency. However, it is possible that
the measles virus H/F envelope system itself is the main determinant for B cell
modification [46, 47].
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Engineering of retargeted envelope proteins by covalent fusion to natural
ligands such as cytokines has proved to be a challenge [76]. These strategies have
limited success as the inclusion of a ligand usually inhibits viral entry, with some
limited exceptions such as the Sindbis and Measles virus envelope systems
[76, 77]. One of these examples is the fusion of influenza heamaglutinin with EGF
to target retroviral transduction to EGF receptor-expressing cells [78]. To over-
come the inhibition of vector entry, sequence targets for cellular proteases such as
metalloproteases (MMP) were introduced to release ENV from the fused ligand/
antibody. This strategy has also been applied for the targeting of MMP-expressing
tumors using retrovirus and lentivirus vectors [79-83].

3.3 Transcriptional Targeting

Selective targeting of transgene expression to specific cell types can be effectively
achieved with cell and tissue-specific promoters. In this situation lentivector
transduction is not prevented at cell entry, but rather transgene expression is
restricted to specific cell types. The large number of endogenous cellular pro-
moters potentially allows targeted expression to any cell type or tissue. In addition,
inducible promoters can also be incorporated in lentivector systems, leading to
controlled transgene expression by administration of a given drug. These strategies
add an additional control point for the development of cell-specific lentivectors.

3.3.1 Cell and Tissue Specific Promoters

Specific cell type expression can be achieved by incorporating promoters active in
these specific cells into the lentivectors. Endogenous cellular promoters are in
addition less sensitive to promoter silencing [84, 85]. This is key in human gene
therapy; silencing of the y-retroviral promoter and loss of transgene expression
could have contributed to patient death in the CGD clinical trial [86]. Using
endogenous cellular promoters results in improved stability and longevity of
transgene expression in the target cells. Consequently, a wide range of endogenous
promoters has been introduced in retrovirus and lentivirus transfer vectors.
Using this approach and sometimes by combining viral enhancers with
endogenous promoters, specific gene expression was achieved in a number of cell
types and tissues such as erythroid cells [8§7-89], endothelial cells [90], retinal
cells [91, 92], neurons [93, 94], glial cells [89, 95, 96], and several cell types in the
hippocampus [97]. Cells of the liver have also been targeted after intravenous
lentivector administration with the use of specific promoters which effectively
restricted expression to hepatocytes [84, 98]. In this particular case, the benefits of
cell-specific gene expression were clearly shown using the albumin promoter,
which resulted in long-term transgene expression in rat liver. In contrast, transgene
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expression with the cytomegalovirus promoter (CMV) was rapidly silenced
[84, 98]. Importantly, hepatocyte-specific promoters prevent transgene expression
in professional antigen presenting cells, which could raise transgene-specific
immune responses. This is exemplified in the correction of mucopolysaccharidosis
type I in a mouse model with lentivector gene therapy. This disease is caused by
o-L-iduronidase (IDUA) deficiency, which leads to toxic glycosaminoglycan
accumulation in a wide range of cells [99]. Its correction relies on expression of
IDUA in the liver by intravenous administration of a therapeutic lentivector.
However, IDUA is also expressed in antigen presenting cells, limiting the efficacy,
and durability of the correction. To prevent this, IDUA expression was controlled
by the albumin promoter, resulting in long-term expression in the liver, and
minimal transgene-specific immune responses [99].

Cancer cells have also been specifically targeted using “tumour cell-specific
promoters”. A lentivector containing a metalloprotease-specific promoter was
used to express proapoptotic genes Bax and tBID in MMP2-expressing cancer cell
lines [100]. The «-fetoprotein promoter was used to deliver suicide genes to
hepatocarcinoma cells [101, 102], and the prostate specific antigen (PSA) pro-
moter for targeting prostate cancer cells. In fact, a lentivector delivering the
diphtheria toxin A gene under the control of the PSA promoter has been used to
eradicate prostate cancer cells in culture and in a mouse tumor model [103].

In other experimental settings, transgene expression is required in immune
cells, particularly DCs. DCs comprise a group of specialized professional antigen
presenting cells, which regulate, and control immune responses [4, 104, 105]. DC-
specific expression has been achieved to induce antitumor immunity using HLA
DRua [106] and Dectin-2 promoters [107]. On the other hand, transcriptional tar-
geting to DCs has been applied to achieve immune suppression. For example,
transgene-specific tolerance was achieved by lentivector-mediated CD1l1c pro-
moter-controlled expression in transgenic mice [108]. Specific DC targeting to
achieve immunological tolerance widens the application of gene therapy approa-
ches for the treatment of autoimmune diseases and prevention of graft-versus-host
disease.

As mentioned above, possibly one of the most complex tissues/organs to target
is the central nervous system, exhibiting a high cellular diversity [109]. In this
instance, transcriptional targeting has proved to be a reliable technique. Many
cellular promoters are effective for expression in neurons, glial, and hippocampus
cells, such as the synapsin and synapsin-1 promoters [89, 93, 97], enolase
promoter [94], CD44 promoter, glial fibrillary acidic protein, and vimentin
promoters [89, 95]. In some of these cases, high and longlasting transgene
expression has been achieved [94, 97], while other promoters have been less
efficient [95]. In fact, it is often the case that endogenous promoters are not as
strong as those of viral origin. To boost endogenous promoters while retaining
their cell specificity, researchers have modified particular cell-specific promoters
by combination with other promoters or adding enhancers, and artificial tran-
scriptional activators. This is the case for bidirectional promoters in which a
minimal CMV promoter is positioned next to the cell-specific promoter leading to
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Fig. 3.1 Lentivector design for correction of human pf-thalassaemia. The design of the
therapeutic lentivector used for the correction of f-thalassaemia is shown. The lentivector
contains an expression cassette resembling the endogenous f-globin gene. This includes, apart
from the endogenous promoter, the 5’ and 3’ locus control regions (LCRs) placed upstream the
f-globin gene [110]. In addition, 5" and 3’ immediate flanking regions from the endogenous
p-globin gene are included and indicated with arrows. Additionally, chicken hypersensitive site 4
(cHS4) f-globin insulator sequences [113] were placed within the LTRs, which prevents
silencing of the expression cassette and transcriptional transactivation of adjacent host genes.
Please note that this lentivector is a self-inactivating construct (Chap. 2) and the minilocus is
placed within the lentivector construct in reverse orientation

transcription in the opposite direction. In this way, transgene expression in the
target cells was enhanced [89]. The combination of several promoters within the
same construct also allows cell-specific expression of more than one transgene. For
example, the interphotoreceptor retinoid binding protein promoter and the guan-
ylate cyclase activating protein promoters were evaluated together with the rho-
dopsin promoter. These combinations were aimed to achieve specific expression of
two trangenes in retinal cells [92].

There is a specific case in which the promoter design has been critical to
achieve therapeutic activities in a human gene therapy [37]. Patients suffering from
f-thalassaemia contain a nonfunctional allele of fS-globin, which results in a
marked reduction of its expression. These patients rely on life-long blood trans-
fusions. An obvious approach to correct the disease is to drive f-globin expression
in erythroid cells. Although straightforward from a theoretical point of view, the
accomplishment of relevant functional f-globin expression has been a challenge.
This has been achieved after carefully engineering a lentiviral vector to include the
f-globin gene under the transcriptional control of its endogenous promoter,
introns, and locus control regions [37, 110-112] (Fig. 3.1).

Summarizing, there is a long list of cell-specific promoters that have been
successfully applied in lentiviral vectors, which will surely improve their perfor-
mance and safety in gene therapy.

3.3.2 Regulatable Promoters

Transgene expression can also be controlled using regulatable promoters. The
capacity to regulate transgene expression is crucial for the treatment of genetic
diseases for which the timing or levels of expression is critical. A typical example
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of this is diabetes, in which high blood glucose levels trigger insulin secretion.
Many research groups have developed inducible promoters, and many of these
systems can be incorporated in lentivectors. Probably, one of the first and most
widely used systems utilize tetracycline induction [93, 114—116]. Briefly, there are
two main variations of the tetracycline system; tet-on, leading to inducible
transgene expression after tetracycline (doxycycline) delivery, and tet-off, which
needs constant antibiotic administration to prevent transgene expression [117]. For
obvious reasons, the tet-on system is preferred for gene therapy, and most
published lentivector systems belong to this category [100, 114, 115, 118, 119],
with a few exceptions [93, 120]. In any case, tetracycline-inducible systems are
also prone to inactivation and leaky transcription, and their in vivo application is
not straightforward [121].

To overcome the disadvantages of tetracycline-dependent inducible systems,
other systems have also been adapted to lentivectors, such as the Drosophila
ecdysone receptor system [122, 123]. This is based on the binding of either
ecdysone or synthetic analogs to a heterodimeric protein made of the herpex
simplex virus protein VP16 activation domain fused to the ecdysone receptor
(VgEcR) and the retinoid X receptor (RXR). VgEcR-RXR then binds to the
inducible promoter driving gene transcription [122]. However, this system depends
on the administration of multiple lentivector backbones [123]. More recently, it
has been successfully reduced to a single lentivector backbone by fusing the
tetracycline repressor with the Kruppel-associated Box (KRAB) domain repressor.
This novel fusion protein acts as the regulator. This system has achieved tightly
regulated conditional transgene expression in the brain, for a drug-inducible
transgenic mouse model, or gene silencing in hematopoietic cells [124, 125].

There are quite a number of other inducible systems also adapted to the
lentivector system such as the glucocorticoid inducible promoters and mifepri-
stone-inducible systems [126, 127].

3.3.3 Promoters Controlled by Activation State

There are also many promoters upregulated depending on the activation state of
different cell types. In most cases, these promoters have been utilized as reporter
constructs [4, 128]. An example of these, an NF-«B transactivatable promoter was
engineered by fusing NF-xB binding sites upstream of the minimal CMV pro-
moter, driving expression of reporter fluorescent proteins. Addition of toll-like
receptor (TLR) agonists such as LPS to DCs modified with these lentivectors
resulted in strong transcriptional upregulation of the fluorescent proteins. The
interferon f§ promoter also achieved similar results. These promoters could be
useful to express transgenes following DC activation, although they have not been
applied in a therapeutic setting yet [4, 128].
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3.3.4 Posttranscriptional Targeting

Without any doubt, the discovery of a regulatory system of gene expression based
on small noncoding RNAs (microRNAs or miRNAs) has revolutionized bio-
medical research. These small noncoding 20-24 nt RNAs, termed siRNAs, are
partially complementary to a wide range of mRNAs. They can post-
transcriptionally inhibit gene expression by either leading to mRNA degradation,
translational repression, or mRNA destabilization.

The miRNAs and their activities are regulated by complex mechanisms with
many variations depending on the species. Therefore, briefly and oversimplifying,
we will describe the main steps controlling miRNA regulation in animal cells.
Firstly, active siRNAs are encoded within large precursor RNA molecules called
miRNAs (Fig. 3.2) which are transcribed by the RNA polymerase II. These long
precursor miRNAs are recognized by a specialized enzymatic pathway (Pasha/
Drosha), which will release the siRNAs in the form of short hairpins (shRNA). The
siRNA refers to the hairpin stem together its complementary strand (in some
particular cases, the complementary strand can also play regulatory roles). This
shRNA is actively exported out of the nucleus to the cytoplasm where it will be
recognized by the enzyme complex Dicer (DCR), which will degrade most of the
shRNA leaving the stem containing the siRNA target and its complementary
sequence (MiRNA-miRNA* duplex). This duplex is loaded in the AGO complex
(Argonaut), forming the preRISC (RNA Interference Silencing Complex). Sub-
sequently, the miRNA strand is degraded, leaving its complementary miRNA*
intact within the RISC complex. The RISC complex will scan mRNAs and when
“sufficient” complementation is found between the target mRNA and the miRNA*
strand, the mRNA will be degraded. In some cases, the poly-A tail is removed,
leading to mRINA destabilization. Alternatively, mRNA translation may be stalled
(Fig. 3.2).

So, how has this mechanism been exploited for cell specific targeting of
transgene expression? In fact, it is strikingly simple. Different cell types express
different patterns of miRNAs, because they are intimately involved in regulation of
cell differentiation. Therefore, if a transgene delivered by the lentivector contains a
target that is complementary to an endogenously expressed miRNA in cell type A
but not cell type B, transgene expression will take place only in cell type B. The
transgene mRNA will be degraded in type A alone (Fig. 3.3). This system is called
miRNA tagging. However, this is a saturable system. High mRNA levels can
saturate RISC complexes, and the mRNA excess will be translated (although
resulting in reduced expression levels).

The miRNA tagging technology was quickly applied to solve a major problem
in lentivector gene therapy. Direct in vivo lentivector administration leads to rather
efficient transgene-specific immune responses, and while this is a desirable char-
acteristic to boost immunity [5, 107, 128—131], it is detrimental for gene therapy of
genetic/metabolic disorders. Transgene-specific immune responses dramatically
limit the therapeutic activity and survival of corrected cells [3, 99, 132]. To solve



3 Cell and Tissue Gene Targeting with Lentiviral Vectors 39

RNApol Il

NUCLEUS

EFFICIENCY DEPENDS ON THE RNA TARGET
THE SYSTEM CAN BE SATURATED

—_—rr  miRNA-miRNA* duplex

AGO1 pre-RISC @
Translational repression _
mRNA destabilization <::’ BlOlbes :> [eRNA degradation

Fig. 3.2 Simplified mechanism of microRNA (mIR) pathways. A simple scheme for the
production and function of miRNA-dependent control of gene expression is shown. In the cell
nucleus (upper part), miRNAs are encoded in large capped RNA molecules transcribed by the
cellular RNA polymerase II. These large precursors are recognized by a protein complex
containing Drosha and Pasha that will remove the siRNA segment of the short RNA hairpin,
which presents a specific stem-loop secondary structure. The shRNA is exported to the cytoplasm
and it is bound by Dicer (DCR-1), which will degrade the shRNA leaving a miRNA-miRNA*
duplex (miRNA* refers to the complementary sequence to the actual target sequence). This
duplex is loaded in a protein complex containing Argonaute (AGO1 pre-RNA Interference
Silencing Complex or pre-RISC), and the miRNA strand of the duplex is degraded. The AGO1
RISC contains the complementary strand to the target sequence, which is used to “scan” mRNA
molecules exhibiting total and partial complementarity. When matching occurs, the mRNA is
either degraded, destabilized or its translation is repressed

this problem, transgene expression was abrogated in cells of the hematopoietic
lineage by including four copies of a sequence target for the hematopoietic-spe-
cific miRNA 142 3p, downstream of the transgene coding sequence [133]. This
strategy ensured that the mRNA encoding the transgene would be degraded only in
cells from the hematopoietic lineage, such as lymphocytes, granulocytes and more
importantly, macrophages, and DCs. Consequently, intravenous administration of
142 3p-tagged lentivectors resulted in lack of transgene-specific immune responses
and sustained, long-term transgene expression in hepatocytes [133]. Interestingly,
this strategy resulted in transgene-specific tolerance, as shown by expansion of
Foxp3+ regulatory CD4 T cells (Tregs) [134]. Curiously, detargeting antigen
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Fig. 3.3 Mechanism of action of miRNA tagging applied to lentivectors. The upper panel shows
a simplified scheme of a chromosomal integrated lentivector in its “pro-virus” form. This
lentivector contains four copies of the target sequence for an ideal miRNA (target uR A, shown as
a red caption). After transcription, an mRNA is produced encoding the gene of interest followed
by the miRNA target sequences. The mRNA is transported out of the nucleus to the cellular
cytoplasm (lower panels). If the cell is expressing the miRNA A (left panel), an RNA silencing
complex (RISC) containing the miRNA A (blue comb) will bind to its complementary target
sequence present in the mRNA (red comb). This recognition will lead to disruption of gene
translation from that particular mRNA, either by degradation (as shown) or inhibition of
translation. If the cell does not express the miRNA A, gene expression will occur as normal by
translation (right panel)

expression in APCs resulted in Treg expansion [134], when in other experimental
settings antigen presentation plays a critical role for differentiation and expansion
of antigen-specific Tregs [4, 5, 135, 136]. Interestingly, the same authors dem-
onstrated by using the same miRNA-detargeting strategy that transgene expression
in hepatocytes was required for immunological tolerance [134]. Detargeting
transgene expression using miRNA 142 3p effectively allowed factor IX expres-
sion in liver without raising immune responses, leading to correction of hemo-
philia B in a mouse model [137].

Another application of miRNA tagging is transgene expression corresponding
to specific differentiation or activation stages, by utilizing targets for miRNAs with
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differentiation stage-dependent variable expression levels [138, 139]. For example,
transgene expression can be achieved in only immature DCs, or a combination of
different miRNA targets can achieve transgene expression in specific cell types
within a given tissue [138]. Another example of targeting expression to cells at
different differentiation stages is the introduction of the miRNA 126 target
sequence. This particular miRNA is expressed in endothelial, and some epithelial
cells, in addition to hematopoietic stem cells. This expression pattern was
exploited to target expression of GALC to mature cells from the hematopoietic
lineage for the correction of globoid cell leukodystrophy [9]. Curiously, GALC
expression in hematopoietic stem cells and early progenitors is highly toxic. In
contrast, it is therapeutic in mature cells from the hematopoietic lineage [9].
Therefore, to correct the disease, four copies of the miRNA 126 target sequence
were placed downstream GALC gene. Consequently, GALC was only expressed in
mature hematopoietic cells, leading to disease correction.

Finally, miRNA tagging can also be exploited to track differentiation pathways,
utilizing to the expression pattern of reporter genes containing distinct miRNA
target sequences [139].

3.4 Conclusions

The three main groups of lentivector targeting strategies have promising thera-
peutic applications. Surface targeting ensures the specific entry of the therapeutic
vector to targeted cells, while the use of specific promoters can restrict transgene
expression if transduction of nontarget cells occurs. Finally, miRNA tagging can
add another level of control of transgene expression. In fact, the three strategies
have been already applied for the treatment of hemophilia A. A baculovirus gp64-
pseudotyped lentivector driving expression of factor VIII from the albumin pro-
moter, in combination with miRNA tagging to avoid transgene expression in
APCs, was applied in a mouse model of hemophilia A. Strikingly, in this particular
case it was not sufficient to prevent factor VIII-specific immune responses even
though liver-specific expression was achieved. Macrophage depletion before
lentivector administration had to be performed to achieve therapeutic FVIII levels
[40]. The results from this experiment are difficult to explain, as miRNA tagging
alone was sufficient to correct hemophilia B without inducing FIX-specific
immune responses [137]. This last case demonstrates that even though combining
several targeting strategies to avoid transgene-specific immune responses looks
promising, specific targeting of viral vectors to cells and tissues is still a challenge.
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