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Abstract

Coated paper is an example of a multi-layer porous medium, involving a coating layer along
the two surfaces of the paper and a fibrous layer in the interior of the paper. The interface
between these two media needs to be characterized in order to develop relevant modeling
tools. After careful cutting of the paper, a cross section was imaged using focused ion beam
scanning electron microscopy. The resulting image was analyzed to characterize the coating
layer and its transition to the fibrous layer. Such image analysis showed that the coating layer
thickness is highly variable, with a significant fraction of it being thinner than a minimum
thickness required to keep ink from invading into the fibrous layer. The overall structure of
the coating and fibrous layers observed in this analysis provide insights into how the system
should be modeled, with the resulting conclusion pointing to a specific kind of multi-scale
modeling approach.

Keywords Coated paper - Interface - Transition zone - Pore-scale modeling - FIB-SEM -
Thin layer - Characterization

1 Introduction

Cellulose-based papers are the main substrate for the printing industry as well as the main
component of a new generation of “biodegradable” medical diagnostic devices. Similar con-
siderations apply to microfluidic kits for diagnostic devices (cf. Lopez-Marzo and Merkoci
2016), where movement of water into and between cellulose fibers is largely controlled by
the hydrophilic property of the fibers. In inkjet printers, a cartridge delivers tiny droplets of
ink (Pico-liter in size) on the paper surface. As soon as a pico-liter size droplet of ink reaches
the paper, it starts penetrating into the porous substrate.

Uncoated paper is an anisotropic porous medium, which consists of bundles of fibers
crossing over each other in a planar orientation. The fibrous medium is commonly impreg-
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nated by granular mineral materials as filler. Observations have shown that penetrating liquid
in a fibrous layer first follows the direction of fibers and wets them. Then, the pore space
between fibers is filled up with the liquid (Aslannejad and Hassanizadeh 2017).

In order to reduce the ink penetration into the fibrous layer and produce a high print quality,
coated papers are often used. The added coating material is normally an isotropic granular
medium, which has pores in the range of only a few hundred nano-meters. The small pores
produce suitable conditions for sucking in the droplet from the surface of paper in a relatively
uniform penetration and spreading pattern. A uniform final pattern is desirable from the point
of view of print quality.

Paper surface roughness and application of the coating layer on different basesheets have
been studied previously. Gane et al. (1991) used optical imaging techniques to study the effect
of fiber furnish on the coating structure, roughness and coverage of the paper. They reported
that the aqueous coating color caused a relaxation in surface profile of the thermomechanical
pulp basesheet and yielded an uneven coating distribution and rough uncalendered coated
paper. The ground wood basesheet retained stability in its surface profile during the coating
process, although the basesheet itself is a rough basesheet. In case of using pressurized ground
wood basesheet, a smooth coated sheet resulted with a relatively uniform distribution of the
coating layer.

In another work, Gane and Hooper (1989) used coating thickness analysis and frequency
transform procedures to study basesheet surface profile change during paper coating appli-
cation. They showed that the relaxation of the basesheet depends on the type of coating
pigments, their size distribution, their rheology and dewatering interaction between the coat-
ing and basesheet. They also concluded that dewatering characteristics were determined by
base absorbency, pigment particle packing, and suspension of the fluid viscosity.

The print quality is partly determined by the spatial variation of paper properties and ink
density. If they have irregularities, it leads to non-uniform ink absorbency across the surface
of the paper, which is referred to as mottle in printing. Gane (1989) used Walsh transform
spectrum to identify the main reason for mottle in a printed sample. He established that the
binder migration (i.e., the redistribution of binder by penetrating ink) is the main cause of
mottle. He showed that binder migration depends on coating distribution and variations in
the basesheet absorbency.

Lamminméki et al. (2011a, b) tried to clarify the effect of ionic charge distribution in the
coating layer on dye fixation properties. They chose surface inert organosilica and modi-
fied calcium carbonate as model coating structure. Non-ionic polyvinyl alcohol (PVOH) and
anionic polymer were added as binder. Then, the surface was treated by applying a cationic
polymer. The ab/adsorption of the colorant part of ink was evaluated using UV-VIS spec-
troscopy. They showed that addition of PVOH and anionically dispersed coating increased
colorant fixation. In addition, cationic additive application slowed down the ink imbibition
into paper. Altogether, this resulted in less bleeding and improved water fastness properties.

In high speed inkjet printing process, the pore network of the coating layer plays an
important role in ink uptake. Lamminmiki et al. (2011a, 2012) studied the possibility of
lowering the thickness of the coating layer and reducing bleeding, which is when the ink
spreads during setting. They showed that at the early stage of ink arrival on the surface of
coated paper, capillary flow is dominant. Nevertheless, just four milliseconds after application
of ink, permeability plays a more important role. Moreover, the pigment type and binder
amount in the coating layer were found to have no influence on results.

In the case of coated paper, we should characterize not only the two different thin porous
layers—the coating layer and the fibrous layer—but also the interface between them. In the
case of the fibrous layer, some studies were done using X-ray microtomography imaging
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techniques to extract the paper’s three-dimensional (3D) pore space (du Roscoat et al. 2005,
2008). The extracted domain has been used in direct simulations using Lattice Boltzmann
methods (Hyviluoma et al. 2007; Ramaswamy et al. 2004; Rosenholm 2015; Jarnstrom et al.
2010). In some simpler approaches, the fibrous layer has been considered as an array of
similar structure units representing the real pore space (Salmas et al. 2001; Washburn 1921,
Schoelkopf et al. 2002).

Ghassemzadeh and Sahimi (2004a) reported a method to determine the size distribution
and connectivity of fibrous layers of paper using two-dimensional (2D) cross-sectional SEM
images. They used the results to conduct pore-network simulations of fluid flow into paper
during coating (Ghassemzadeh and Sahimi 2004a).

In another work, Ghassemzadeh and Sahimi (2004b) developed a statistical approach to
characterize paper structure using the distribution of radius and length of pores between fibers.
Based on extracted data, the paper layer was represented by a 3D network of interconnected
channels. Then, they used the network to determine the effective permeability tensor of paper.

Ridgway et al. (2002) and Kettle et al. (2010) studied the effect of pore-network structure
on dynamic imbibition into paper. They used the Bosanquet equation in a 3D network sim-
ulator (called Pore-Cor). In their work, film flow along the fibers was not considered. They
concluded that over a short time interval, smaller pores were filled faster than larger pores,
which is not in agreement with Washburn equation. In addition, they found that the aspect
ratio of a pore, defined as the ratio of length to radius, plays an important role in the filling
rate of the pore.

In an earlier work, using X-ray microtomography, the 3D structure of a fibrous layer was
extracted and reconstructed (Aslannejad and Hassanizadeh 2017). Then, a pore-morphology
method was used to obtain the pore size distribution, and curves of capillary pressure and
relative permeability, as a functions of fluid saturation. Recently, focused ion beam scanning
electron microscopy (FIB-SEM) imaging techniques were used to acquire and reconstruct
the 3D pore network of the coating layer (Aslannejad et al. 2017). The extracted network was
used for pore-network modeling and determination of hydraulic properties of the coating
layer. Pore size distribution of the coating and fibrous layers were determined. Using the
pore-morphology method, capillary pressure—saturation curves of the two layers were also
determined. Graphs of pore size distribution and capillary pressure—saturation curves are
showninFig. 1. As expected, capillary pressure—saturation curves show much higher capillary
pressure values for the coating layer. This is related to much smaller mean pore size of the
coating layer (Fig. 1a). To the best of our knowledge, an imaging of the transition from
coating layer to the fibrous layer in a coated paper has not been done up to now. Therefore,
here we are focusing on not the coating and fibrous layer but on the transition area from the
coating to the fibrous layer.

In the case of multi-layer porous media, like the coating layer—fibrous layer system, there
is always a contact interface between the two layers. Depending on the details of the spatial
structure of this interface, it might be modeled as a uniform planar surface of discontinuity in
material properties, a zero-thickness interface with its own properties, or as a finite-thickness
transition zone between the layers.

In this paper, we focus on understanding the characteristics of the interface between the
coating layer and the fibrous layer in a coated paper system and its effect on ink absorption into
the coated paper. We first present a brief overview of the pore space and properties of coating
and fibrous layers. Then we provide information about the interface between the two layers.
We have obtained this information with the aid of imaging techniques and image analysis.
This includes measurement of the coating layer thickness as a function of location along
the interface. From that analysis, we generated a coating thickness histogram for a relatively
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Fig. 1 a Pore size distribution of the coating and fibrous layers, and b capillary—pressure—saturation curves of
the coating and fibrous layers (Aslannejad et al. 2017; Aslannejad and Hassanizadeh 2017)

large cross section of the coated paper. Based on this information, we discuss whether the
coating layer and the interface with basesheet can be simulated by traditional macro-scale
modeling approaches. We also provide suggestions for including the effect of variation of the
coating layer thickness in computational models. Finally, we have estimated the minimum
thickness of coating layer required in order to ensure that water does not reach the fibrous
layer. Identifying this minimum layer thickness is a novel contribution to the understanding
of the role of coating layer in print quality.
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Fig. 2 Cross-sectional view of the coated paper showing the coating layers and part of the fibrous layer

2 Materials and Methods
2.1 Paper Samples

In this work, we studied samples of a coated paper (Magno glass, Sappi, Germany), which
is primarily an offset printing grade and is not usually used in inkjet printing. However, as
we are interested in studying the coating-basepaper interface and liquid transfer through it,
we have used it to illustrate our characterization method and analysis approach. Our results
and approach can be used to study papers that are optimized for inkjet printing. The paper
cross-sectional view is shown in Fig. 2. As seen in the figure, the coated paper has a base layer
made of cellulose fibers covered (on both sides) with coating layer consisting of a pre-coat
and a topcoat, these are clearly delineated by particle size. In addition, the space between
the pigment particles in the pre-coat is largely filled by soluble binder, whereas the topcoat
contains particulate binder. This is typical of double coated gloss offset papers. The coating
layer is mainly (88% mass fraction) made of compressed CaCO3 powder with an average
thickness of 15 pwm, porosity of 34%, and mean pore size of 180 nm. The amount of binder
present in the layer is about 8% by mass, or 20% by volume. This is a significant volume and
will affect the connectivity of the coating layer pore structure (Aslannejad et al. 2017).

In order to compare the coated and uncoated papers, samples of an uncoated printing
paper, Ziegler Z-Plot 650 (Ziegler papier AG, Germany), were analyzed. The paper consisted
of a single layer with an average thickness of 150 wm, made of filler-free cellulose-based
fibers. This paper has a porosity of 50% and mean pore size of 12 um (Aslannejad and
Hassanizadeh 2017). It should be mentioned that in fibrous layers, normally there are two
directions, machine and perpendicular directions. Most of the fibers lie in the plane of these
two sheet directions, with the majority aligned in the machine direction. This is also the case
in the sampled analyzed. Table 1 shows detailed information about the samples used in this
study.
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Table 1 Properties of coating layer, coated paper, and uncoated paper

Thickness Porosity ~ Mean pore Permeability* Grammage References
(jum) size (mDarcy) (gr/m2)
Coating layer 15 34% 180 nm 0.1 - Hk
Coated paper 85 - - - 115 HAE
Uncoated 150 50% 12 pm 5500 90 HEEE

paper

*In thickness direction

**Aslannejad et al. (2017)
*E*khttps://www.sappi.com/magno
*#*%%Aslannejad and Hassanizadeh (2017)

Coating
material

Fig. 3 3D domain of coated paper showing coating layer as well as the connection to the fibrous layer (Obser-
vation domain has dimensions of 20 x 15 x 15 pm)

2.2 Imaging

The imaging of coated paper was done using a Nova Nanolab 600 focused ion beam scanning
electron microscope (FIB-SEM) (FEI Company, Eindhoven, Netherlands). Typical imaging
conditions were 2 kV and 0.21 nA. The FIB acceleration voltage was 30 kV for all processes
(e.g., deposition, rough cutting, polishing); the current density was varied according to the
required process. For more details, readers are referred to Aslannejad et al. (2017).

Note that the FIB-SEM could not be used for imaging the full thickness of fibrous layer.
The maximum practical domain size to be imaged by FIB-SEM is a cube of 20 x 15 x
15 wm? (the cube in Fig. 3). As shown in Fig. 3, the imaged domain contained not only
coating material but also some fibers of the fibrous layer.
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Fig. 4 Cross section of a piece of coated paper 4 mm long, obtained by SEM imaging

2.3 Image Analysis

From the acquired images and using Avizo software (Fire edition, FEI, Oregon, US), we
reconstructed the paper pore space. First, a median filter was applied to remove the imaging
noise. Then, alignment and thresholding modules with appropriate adjustments were applied
to extract binary three-dimensional (3D) structure of the solid phase. In the extracted images
shown in Fig. 3, coating material, fibers and pores can be distinguished.

2.4 Determination of Coating Layer Thickness Along Paper Cross Section

In order to study thickness of the coating layer along the coated paper cross section, the paper
sample was cut using a microtome (Clamp-able Manual Microtome MT.5503). This resulted
in a sharp cross section of sample without mixing layers of paper or damaging any fiber.
Then, the cut edge was imaged using FIB-SEM. In total, 20 cross-sectional locations were
imaged, each about 200 wm long. Then, the images were put together to obtain a relatively
long cross-sectional view of coated paper, about 4 mm long. Figure 4 shows the resulting
cross-sectional view of the coated paper.

2.5 Print Quality

To study the role of the coating layer and its required minimum thickness for keeping the
ink inside it and preventing it from reaching the fibrous layer, two different printing qualities
were considered: 600 and 1200 Dots per Inch (DPI). In inkjet printing, each printed character
on the paper is made of several ink droplets. The spacing of droplets forming a character is
usually given as DPI. In the case of 600 DPI, droplets of ink with diameter of about 10 pm
are jetted onto the paper with center-to-center distance of about 18 pm (Lamminmaki et al.
2009).

@ Springer



150 H. Aslannejad et al.

1200 DPI

600 DPI

Fig. 5 Schematic representation of droplet spacing jetted on paper for the cases of 600 and 1200 DPI print
qualities

Fig. 6 Snapshots of water movement injected into a fibrous layer. Images of penetration are obtained using a
confocal laser microscope (Nikon A1%) (Aslannejad and Hassanizadeh 2017). Numbers indicate time steps;
green and orange colors represent dry and wet fibers, respectively; yellow color shows intermediate saturation.
The arrows are pointing to an area of high saturation ahead of the main water front; the water moves on and
into fibers and then fills the pore space between fibers

In the case of 1200 DPI, droplets are usually jetted closer to each other, which results
in higher print resolution. For instance, droplets of ink with diameter of 10 wm are jetted
with spacing of 9 pm. Figure 5 shows a schematic representation of 600 and 1200 DPI print
qualities. As seen in the figure, the droplets usually have small overlap in the case of 1200
DPL

In order to understand the consequences of water-based ink reaching the base layer (fibrous
layer), water movement into the fibrous base layer needs to be studied (as, e.g., in Aslannejad
and Hassanizadeh 2017). Fibers are highly hydrophilic and as soon as water reaches any of
them, water starts to creep on their surfaces and penetrates them. This is shown in Fig. 6,
where snapshots of images of penetration of water injected into a fibrous layer are shown.
Water was introduced from the right side and images were obtained using a confocal laser
microscope (Nikon A1%). We see that saturation has gone up in fibers (dark orange color)
ahead of the main front (yellow color).

For a better print quality, all fibers should be sufficiently covered with the coating layer;
otherwise ink may come into contact with fibers and get transported into the fibrous layer.
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The main detrimental effect of ink penetrating the fibrous layer is that the film flow along the
fiber surface leads to wicking and a spider-leg like effect on the print. The swelling of fibers
is another important effect, which may change the thickness of paper; this could potentially
cause tray blockage during the printing process. Since the fibrous layer is made of elongated
fibers, its surface commonly has a relatively significant roughness. The roughness has a major
effect on the thickness and quality of the coating layer. As seen in Fig. 4, tiny particles of the
coating material cover the fibrous layer and form a relatively smooth coating layer. Rougher
fibrous layers need larger coating layer thickness to cover all fibers.

Although the permeability value of the coating layer is low (Aslannejad et al. 2017) and
the droplet stays for a while on the paper surface and evaporation plays a role, the coating
layer should have enough thickness to keep all the remaining ink liquid within the layer. The
required minimum thickness of coating layer for absorbing the liquid part of ink depends
on the volume of ink in the droplet: a larger volume needs more thickness to handle the
liquid part. For example, if we ignore evaporation, in the case of 600 DPI printing, where an
ink droplet has a diameter of 10 pm, the coating layer should have a thickness of 18 pwm.
In making this rough estimate, we have assumed that the droplet has a spherical shape and
invades the coating layer (with porosity of 34%) cylindrically. The assumption that the liquid
penetrates cylindrically was made only in order to make a rough estimate. We know from
previous works that the liquid absorbs via a preferred pathway and many of the coating layer
pores remain unfilled prior to the liquid reaching the base paper [see, e.g., Ridgway and Gane
(2002), Schoelkopf et al. (2002) and Aslannejad et al. (2018)].

3 Results and Discussion

In this section, the results of the image analysis are presented. This includes the spatial
distribution of the coating layer thickness, its associated spatial correlation structure, and
the frequency of occurrence of coating thicknesses below the estimated minimum required
thickness. We refer to locations with thickness below the minimum amount as “weak points.”
In addition to the spatial analysis, we also discuss an approach for modeling all layers of the
coated paper.

3.1 Distribution of Paper Coating Layer Thickness and Weak Points

The cross-sectional images were analyzed to identify the thickness of the coating layer along
the entire length of the cross section. This provides thickness as a function of location. That
function is plotted in Fig. 7a, with a summary histogram of the data plotted in Fig. 7b. These
data show a maximum thickness of 30 wm and a minimum thickness of one micron, with
a distribution weighted toward the lower thickness values. The data show that most of the
thickness values fall below the estimated target value of 18 pm. This indicates that the paper
fails to satisfy the requirements of coating thickness to produce high quality printing results
for a 10-pwm-diameter droplet. However, we must note that this failure was expected for
this the paper type studied in this work, as it was designed for offset printing and not inkjet
printing technology.

In order to estimate the spatial correlation structure of the thickness function, a semi-
variogram was calculated, with the results shown in Fig. 8. The variance is 40 pm while the
correlation length is around 200 wm. This shows that the thickness has significant spatial
variability and there is some level of spatial structure in the variability of the thickness
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Fig. 7 a The coating layer thickness as a function of (one-dimensional) spatial location and b coating layer
thickness histogram

function. The correlation length of 200 wm could well relate to the floc site of fibers due to
the sheet formation. The correlation length, as described by Gane et al. (1996), is a primary
property of a basesheet when designing a suitable coating strategy for both coverage and print
uniformity. In addition to that, all of these might be useful parameters in building models to
analyze fluids flow in such complex structures.

3.2 Modeling of Ink Imbibition into Coated Paper

There are two main modeling approaches for modeling ink imbibition into a layer of coat-
ing material. One is the traditional three-dimensional macro-scale (or continuum) model
of unsaturated flow. The other one is pore-scale modeling, including direct simulation or
pore-network modeling methods.

For macro-scale models to be applicable, it is commonly stated that one should be able to
identify a Representative Elementary Volume (REV), over which average quantities can be
defined. An REV is required to contain a large number of pores in each direction. In addition,
its size must be much smaller than dimensions of the domain that is to be modeled. In the
case of (coated) paper, the two criteria are mutually excluding; if the REV is to be much
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larger than the pore size, it cannot be much smaller than the layer thickness. This is even
more so in the case of coated paper studied here.

As explained in Sect. 2.1, the coating layer consists of a pre-coat and a topcoat, whose
average thicknesses are 10 and 2 pm, respectively. Thus, even though the mean particle sizes
is 100 nm, it is not feasible to consider the coating layer as a three-dimensional continuum,
as the basic criteria for the definition of average macroscopic quantities cannot be satisfied.

In addition to that, there are places where the coating thickness is very small. This may
happen if the coating penetrates into the basepaper and/or is shunted away from high points,
leaving fibers wholly uncoated. Then, as explained earlier, as soon as liquid reaches any fiber,
it will be absorbed and the fiber will start to swell. Therefore, in modeling the coated paper,
it seems necessary to model individual fibers embedded in the coating layer. This, however,
will not be straightforward in the framework of a macro-scale modeling. Alternatively, a full
pore-scale description, resolving pores in both the coating layer and the fibrous layer, could
be pursued. The swelling behavior of the fibers is important, so special attention needs to
be paid to the detailed topology, geometry and structure of the fibers. For example, as fibers
have a micro-porosity; this probably leads to a kind of dual-porosity approach. Overall, with
this level of detail and the complex spatial structure of the coating layer and the fibers, this
is a major modeling challenge and represents an important and interesting area for further
research.

4 Conclusions

The thickness of the coating layer of a sample of coated paper was analyzed by precisely
cutting the sample and then imaging the resulting cross section using FIB-SEM technologies.
Subsequent analysis of the images provided a detailed quantification of the spatial structure
of the coating layer. The thickness of the coating layer is highly variable, with a significant
fraction (80%) showing a thickness below the estimated minimum thickness required to
prevent ink from reaching the fibrous layer. Analysis of the variability and spatial structure
of the thickness showed a variance of 40 wm and a correlation length of 200 pm. This is
a primary property of a coated paper when designing a suitable coating strategy for both
coverage and print uniformity.

This kind of analysis provides detailed insights into the effectiveness of the coating layer,
and can form the basis of detailed modeling studies for this kind of layered system. Because
the coating layer is made of two thin layers, each containing limited pores in the cross-
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sectional direction, a continuum-scale simulation does not seem appropriate for the coating
layer. Similarly, the complex nature of the fibrous layer also fails to satisfy criteria for con-
tinuum equations. In both the coating and fibrous layers, enough REVs along the thickness,
which is needed for the applicability of continuum-scale modeling, cannot be identified.
However, a pore-scale model should be able to include details of the fluid flow through the
coating layer of paper and to couple that with the fibrous layer below. The discrete nature of
the fibers and their importance in the definition of the overall geometry of the system suggests
that these fibers, and the pore spaces between them and within them, need to be modeled
discretely. Because swelling of fibers when contacted with the invading wetting fluid is an
important consideration, the micro-porous fibers themselves need proper resolution, leading
to a multi-scale model. This will be a significant and very interesting modeling challenge.

This approach of detailed imaging with associated image analysis can also be useful for
other layered system, where it can also be used to guide in the development of appropriate
modeling tools. Based on layer thicknesses, their REV sizes, and their connection (with
or without overlap), a proper modeling approach can be identified, based on appropriate
measures that come directly from the image analysis.
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