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ABSTRACT

Single cell RNA-seq (scRNA-seq) techniques can re-
veal valuable insights of cell-to-cell heterogeneities.
Projection of high-dimensional data into a low-
dimensional subspace is a powerful strategy in gen-
eral for mining such big data. However, scRNA-seq
suffers from higher noise and lower coverage than
traditional bulk RNA-seq, hence bringing in new com-
putational difficulties. One major challenge is how to
deal with the frequent drop-out events. The events,
usually caused by the stochastic burst effect in gene
transcription and the technical failure of RNA tran-
script capture, often render traditional dimension re-
duction methods work inefficiently. To overcome this
problem, we have developed a novel Single Cell Rep-
resentation Learning (SCRL) method based on net-
work embedding. This method can efficiently imple-
ment data-driven non-linear projection and incorpo-
rate prior biological knowledge (such as pathway in-
formation) to learn more meaningful low-dimensional
representations for both cells and genes. Benchmark
results show that SCRL outperforms other dimen-
sional reduction methods on several recent scRNA-
seq datasets.

INTRODUCTION

High-throughput RNA sequencing is widely used for study-
ing transcriptomes. Since the traditional bulk RNA-seq can
only detect the average gene expression of a cell popula-
tion, this technique is unable to quantify cell-to-cell hetero-
geneity. With the advent of new single-cell high-throughput
RNA sequencing (scRNA-seq) technology (1–3), valuable

insights into cell heterogeneity and transcriptional stochas-
ticity can now be obtained.

Along with the technological breakthrough of scRNA-
seq, it also raises new computational and analytical chal-
lenges. Due to the small amount of RNA transcripts in each
cell, low capture efficiency and stochastically transcrip-
tional bursts, scRNA-seq data contains excessive amount
of drop out events (resulting in zero or near-zero transcript
counts), which can complicate data analysis and biological
discovery. Until now, many existing methods (4–6) origi-
nally developed for bulk RNA-seq data are still being widely
used in single cell studies. However, these methods cannot
account for the unique features of scRNA-seq data. Dimen-
sion reduction of high-dimensional gene expression data is
an essential step for visualization and downstream anal-
ysis. Nowadays, principal component analysis (PCA) (7)
and t-distributed stochastic neighbor embedding (t-SNE)
(8) are the two most widely used methods in gene expres-
sion data analysis. PCA, an eigen-decomposition analysis of
data covariance matrix, finds a linear transformation of the
originally high-dimensional data that maximizes the vari-
ance of the projected data. The assumption about the data
is that it is normally distributed. t-SNE finds a non-linear
low-dimensional space that preserves the similarities of the
high-dimensional data. It models the similarity among data
points by a probability distance based on Gaussian kernel
rather than a Euclidean distance. So the assumption of t-
SNE is that the local proximity can be measured by the
Student’s t-distribution in the low-dimensional space. Both
of them do not account for the effects of drop-out events
which occur frequently in scRNA-seq data. A recently pro-
posed method ZIFA (9) explicitly models drop-out events,
which uses zero-inflated factor analysis to do dimension re-
duction. This method shows advantages over the traditional
dimensional reduction methods for analyzing scRNA-seq
data. However, the assumption behind ZIFA is that a drop-
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out event results in zero count, so it models exact zero rather
than near-zero found in real scRNA-seq data. In addition,
ZIFA assumes that the projection between the reduced sub-
space and the original data space is linear. The assumption
about the data is that it is zero inflated Gaussian distributed.
All of these three widely used methods have specific assump-
tions about the data. However, these assumptions imposed
on the real data may result in a loss of power and accuracy.

In order to better learn the meaningful features from
scRNA-seq data, we developed a data-driven and non-
linear dimension reduction method named Single Cell Rep-
resentation Learning (SCRL) based on network-based em-
bedding technique (10). SCRL learns more meaningful rep-
resentations for scRNA-seq data by considering the prior
gene–gene association (such associations can be, for in-
stance, derived from annotated pathways, protein–protein
interaction networks or gene co-expression networks con-
structed from some related bulk RNA-seq data, etc.). In this
way, even if the expression of a gene is dropped out as zero
or near-zero, the low-dimensional representations can still
provide some signals from its associated or covariant genes.
We conducted experiments on several scRNA-seq datasets
to demonstrate that SCRL can significantly outperform
those existing methods. SCRL provides two unique advan-
tages: (i) it can integrate both scRNA-seq data and prior
biological knowledge for more insightful low-dimensional
representations; and (ii) it can simultaneously learn a shared
low-dimensional representation for both cells and genes.
Consequently, the associations of cell clusters and genes can
be explored by examining their correlations in the shared
subspace.

MATERIALS AND METHODS

Overview

The basic idea of SCRL is to learn low-dimensional rep-
resentations by preserving the cell-to-cell proximity and by
integrating with the prior gene–gene network. The cells with
similar gene expression patterns (constraint by the prior
gene–gene network) should be projected to neighbor re-
gions in the reduced subspace. As shown in Figure 1, the
method SCRL consists of two steps, the first step is network
construction: we construct a Cell-ContextGene network
based on the scRNA-seq data and a Gene-ContextGene
network based on pathway annotations. The context-genes
are introduced in both networks for considering the shared
information from the gene expression data and the path-
way priors. This formulation is adapted from the concept of
‘context’ in natural language processing (10). In the second
step, we combine these two networks and implement joint
bipartite network embedding to learn low-dimensional rep-
resentations for both the cells and the genes.

Model

Network construction.

Cell-ContextGene network. Given a scRNA-seq dataset
with C cells and A context-genes, a bipartite Cell-
ContextGene network Eca was constructed as follows: an

edge was added between the i-th cell and the j-th context-
gene, if the corresponding expression yij > 0 (the weight of
the edge is equal to yij).

Gene-ContextGene network. We constructed a bipartite
Gene-ContextGene network Ega based on the prior gene–
gene interaction or the correlation knowledge (IntPath (11)
in this study): an edge with weight 1 was added between the
j*-th gene and the j-th context-gene, if the two genes directly
connected according to the prior knowledge.

Joint bipartite network embedding. Joint bipartite net-
work embedding aims to learn a mapping function from
the original network space to a low-dimensional vector
space through embedding multiple bipartite networks (Cell-
ContextGene network and Gene-ContextGene network in
this study).

Let C be the number of cells, A be the number of context-
genes, G be the number of genes. c is a cell, a is a context-
gene, g is a gene, we use i = 1,2,. . . ,C to index over the
cells, j = 1,2,. . . ,A to index over the context-genes, j∗ =
1, 2, . . . , G to index over the genes. The low-dimensional
representation of ci is �ui , the low-dimensional representa-
tion of a j is �h j , the low-dimensional representation of g j∗

is �v j∗ , yi j is the expression level of the context-gene j in
the cell i, w j∗ j is the weight between the gene j∗ and the
context-gene j. �ui , �h j , �v j∗ ∈ RL, where L is the dimension of
the low-dimensional representations. For most applications,
L varies from 100 to 500, for a balance of the computational
time and the memory requirement.

We define the conditional probability that a context-gene
a j in a cell ci as the following softmax function:

p1(a j |ci ) = exp(�hT
j .�ui )∑|A|

k=1 exp(�hT
k .�ui )

(1)

According to the observed data, its corresponding empirical
distribution is:

p̂1(a j |ci ) = yi j

λi
(2)

λi =
∑A

k=1
yik (3)

In this way, we can get the conditional probability distri-
bution of the cell ci over all the context-genes p1(·|ci ) and the
corresponding empirical conditional distribution p̂1(·|ci ).

For preserving the cell-to-cell similarity, naturally we
would wish that the conditional distribution p1(·|ci ) of the
cell ci , which is specified by the low-dimensional represen-
tation, should be close to the empirical conditional distri-
bution p̂1(·|ci ).

Therefore, our goal is to minimize the following ob-
jective function by using the Kullback–Leibler diver-
gence(omitting some constants):

Oca = ∑
i∈C λi DK L ( p̂1(·|ci ), p1(·|ci ))

= −∑
(i, j )∈Eca

yi j log p1(a j |ci )
(4)
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Figure 1. Overview of SCRL. (A) Input data. The left matrix is the scRNA-seq data and the right matrix is the pathway data. (B) Network construction.
SCRL builds a Cell-ContextGene network (left) based on the scRNA-seq data and a Gene-ContextGene network (right) based on the pathway annotations.
In these two bipartite networks, the cells are colored blue, the context-genes are colored green and the genes are colored red. The context-genes are shared in
the two networks. Then, SCRL combines these two bipartite networks to learn the low-dimensional vector representations for cells, genes and context-genes.
(C) The low-dimensional representation matrixes for cells (blue), context-genes (green) and genes (red). Each row in the matrix represents a low-dimensional
vector representation. (D) Visualization of the low-dimensional representations of the cells learned from SCRL.

Similarly, we can also get the objective function of the
Gene-ContextGene network:

Oga = −
∑

( j∗, j )∈Ega
w( j∗ j )log p1(a j |g( j∗)) (5)

In order to integrate these two sources of information, a
straight forward way is to embed the two bipartite networks
simultaneously. This can be achieved by minimizing the lin-
ear combination of Oca and Oga .The final objective func-
tion is therefore:

Ojoint = Oca + β · Oga (6)

Finally, we can get the low-dimensional representations for
both the cells and the genes. Here, β is the weight for
the Gene-ContextGene network. Experiments show that the
performance is similar for a wide range of β. So we set β =
1 in the following analysis. However, directly optimizing
the softmax term (Equation 1) is computationally expen-
sive, as it needs summing over all context-genes, which could

be very large. Hence, we adopted sampling-based strate-
gies ‘Negative sampling’ (12) to overcome this problem.
Negative sampling transforms the originally computation-
expensive loss function into a binary classification proxy ob-
jective, which has the same parameters but with much lower
computational complexity. The binary classification func-
tion aims to discriminate the genuine samples from the real
data (the empirical distribution) versus the multiple ran-
dom samples generated by the noise distribution. Specifi-
cally, the Equation (6) can be rewritten as the following ob-
jective function:

ONS = − ∑
(i, j )∈Eca yi j

{
log σ

(−→
h T

j · −→u i

)
+ ∑K

k=1 Ean∼Pc (a)

[
log σ

(
−−→

h T
n · −→u i

)]}

−β · ∑
( j∗, j )∈Ega w j∗ j

{
log σ

(−→
h T

j · −→v j∗
)

+ ∑K
k=1 Ean∼Pg (a)

[
log σ

(
−−→

h T
n · −→v j∗

)]} (7)

where, σ (x) = 1/(1 + exp(−x)) is the sigmoid function,
K is the number of the negative samples (the default
setting of K is 5). Pc(a) ∝ (

∑C
i = 1 yia)0.75 and Pg(a) ∝

(
∑G

j∗= 1 w j∗a)0.75 are the noise (background control) distri-
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Table 1. A list of scRNA-seq datasets

Dataset Cells Context genes Genes

Guo (13) 330 14 807 5734
Petropoulos (14) 1529 19 651 5734
Pollen (15) 301 17 277 5734

bution of the context-genes, which can be used to generate
the negative samples.

We used asynchronous stochastic gradient descent algo-
rithm to optimize the loss function (7). For a random sam-
pled edge (i, j), the gradient will be multiplied by the weight
of the edge. There would potentially be a serious problem if
the weights of any edges had a large variance, which could
have led to ‘gradient explosion and vanishing problem’. To
overcome this, we used the edge sampling technique pro-
posed previously by Tang (10). The basic idea is to split the
weighted edge into several binary edges. For example, if the
weight of edge (i, j) is 10, then we can transform this edge
into 10 binary edges.

The algorithm can be summarized as follows:

In practice, the iteration number T should be propor-
tional to the maximum number of the edges of the two net-
works.

Performance comparison. We compared the performance
of our method SCRL with PCA, t-SNE and ZIFA for cell
type identification on three publicly available scRNA-seq
datasets. Their cell types are known apriori, providing a
golden standard. The datasets used in this study are listed
in Table 1. Specifically, we compared our method SCRL
with others from both aspects: ‘unsupervised’ (visualization
and clustering) and ‘supervised’ (classification). Here, by
default, we set the final dimension for the low-dimensional
representation learnt by SCRL to be 200 (which may be ad-
justed by the user).

In the unsupervised comparison, we firstly showed the
cells in 2D, so that we can explore the data structure vi-
sually. For SCRL results, we used PCA to project the 200
dimensional representations to 2D for visualization. Then
we used the WB-ratio metric (the ratio of average distance
within/between clusters) to evaluate the cell separation,
where ci , c j represent different cells, Ck represents the cells
within the same cluster k, we use k = 1,2,. . .K to index over
all clusters.

μwithin = mean
(
dist

(
ci , c j

))
, i, j ∈ Ck, k ∈ [1, K ] ,

μbetween = mean
(
dist

(
ci , c j

))
, i ∈ Ck1 , j ∈ Ck2 , k1 	= k2, k1, k2 ∈ [1, K ] ,

WB − ratio = μwithin

μbetween
.

In the supervised comparison, we calculated the classi-
fication accuracy. For a fair comparison, we projected the
data from the initial dimensions to 10 dimensions (the initial
low-dimensional representations learnt by SCRL was 200

dimensions, so we used PCA to get the most important 10
principle components for the following analysis). Then we
random sampled a certain proportion of the cells to train
the classifiers using one-versus-the-rest linear SVM, and
calculated the accuracy rate for the remaining test dataset.
We repeated the process 20 times and got the final averaged
accuracy rate.

At last, we found several significant pathways corre-
sponding to each cell type on Guo’s dataset. First, we fil-
tered several cancer and drug-related pathways. Then we
calculated the Spearman correlations between one cell type
and the genes in each pathway in the low-dimensional rep-
resentations. We can get some significant pathways among
the top 10 percentage ranked pathways for each cell type
according to the absolute value of Spearman correlation.

Datasets. We applied our method to three publicly avail-
able datasets (Table 1). Guo dataset (13) was from 330 single
cells including primordial germ cells (PGC cells), somatic
cells (SOMA cells) and inner cell mass cells (ICM cells).
Petropoulos dataset (14) was from 1529 single cells repre-
senting continuous different embryonic stages (E3–E7) of
88 human preimplantation embryos. Pollen dataset (15) was
from 301 single cells that including pluripotent cells, blood
cells, skin cells and neural cells from 11 cell lines.

RESULTS

How to characterize the cell heterogeneity is a key ques-
tion in single cell data analysis. So we compared our
method SCRL with PCA, t-SNE and ZIFA for the
cell type identification from the following two aspects:
clustering/visualization and classification.

Clustering and visualization

We visualized the results of these datasets in 2D so that the
structure of the data can be intuitively explored. Results in
Figure 2A show that SCRL can separate the three clusters
clearly on the Guo dataset. However, other dimension re-
duction methods mix the three clusters together. Especially
for the rare ICM cells, only SCRL can distinguish them
from other cell types. In addition, SCRL with gene–gene
information shows better performance than SCRL without
it. In the results of SCRL without prior information, ICM
cells are still close to several SOMA cells. However, with the
prior information, they are well separated. Results in Figure
2B show that for the Petropoulos dataset, SCRL can sepa-
rate the cells more clearly than the other methods. In the
results of SCRL, E6 and E7 cells are obviously separated
comparing to other methods. Despite the five cell types are
still somewhat mixed, it is expected as those cells used in the
study representing a temporal progression, which is more
apt to be a continuous time series than discrete cell types.
In the low-dimensional space, we also showed the labels
of cells which are picked several hours later than E4 cells
(marked as E4.late) and several hours earlier than E5 cells
(marked as E5.early) in the results, for a better understand-
ing of the developmental process. We can observe that the
cells are clearly ordered in agreement with the developmen-
tal time. In Figure 2C, for the four cell types in the Pollen
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Figure 2. Performance comparison of the four-dimensional reduction methods for visualization on the three datasets. (A) Guo dataset. (B) Petropoulos
dataset. (C) Pollen dataset. Each point represents a cell and the cell is colored according to its known cell type label. SCRL (no prior) represents the method
without using the pathway information.
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Figure 3. Performance comparison of the four-dimensional reduction
methods for within-cluster and between-cluster (WB) ratio on the three
datasets. The x-axis represents different datasets and the y-axis represents
WB-ratio (smaller ratio means better performance).

dataset, all the methods have similarly good performances
expect for ZIFA which behaves relatively worse.

In order to measure the cell separation more quantita-
tively, we used the metric WB-ratio (ratio of average dis-
tance within/between clusters) to assess the cell separation
in 2D, a smaller ratio means a better performance. As show
in Figure 3, the quantitative results are indeed consistent
with the intuitive visualization. The value of SCRL’s WB-
ratio is the best comparing with the other three methods
for these three datasets. Overall, these results indicate that
SCRL has a superior unsupervised performance.

Classification

In general, the results in Figure 4 show that SCRL always
has a better classification performance than PCA, t-SNE
and ZIFA on these three datasets, when the proportion of
training cells varies from 1 to 10%. The performance of
SCRL is persistently better than others even as the propor-
tion of training data decreases, which indicates that SCRL
is more robust to the change in the number of training
samples. More specifically, for the Guo dataset and the
Petropoulos dataset, SCRL shows obvious improvements
than PCA, t-SNE and ZIFA. For the Pollen dataset, these
four methods have comparable performances, except that
ZIFA had worse behavior for the lower proportion of train-
ing dataset. Regarding to the prior gene–gene information,
the SCRL with the prior information consistently outper-
formed that without. All these results suggest that the prior
biological network information can improve the cell classi-
fication performance. When the proportion of training cells
varies from 5% to 95%, we can observe that t-SNE has
poor performances even when 95% cells were used as train-
ing dataset. The other methods show comparable perfor-
mances for the Guo and Pollen datasets when more than
50% cells were used for training(see Supplementary Figure
S1). For the two datasets, we can see different cell popu-
lations can be easily separated based on the visualization

results (Figure 2). However, for the Petropoulos dataset,
the cells in some developmental stages are mixed. In that
dataset, SCRL shows consistent better performances than
the other methods. These results indicate that SCRL can
better represent the heterogeneities when the differences be-
tween different cell populations are small.

In addition, we tested the dimension sensitivity of SCRL
on the three datasets. We set the percentage of training
data as 10%. The dimension ranged from 10 to 1280. Given
a fixed dimension of low-dimensional representations, we
learned the low-dimensional representation for each cell.
We randomly sampled 10% of cells to train the classifier
by using the one-versus-the-rest linear SVM, and calculated
the accuracy rate for the left 90% test cells. We repeated the
process 20 times and got the final accuracy rate. The results
of classification accuracy were shown in Figure 5A. Before
the step of training the classifier, we used PCA to project
the initial dimensional representations to 10D for classifi-
cation, the results were shown in Figure 5B. We can observe
that the classification accuracy of SCRL is not sensitive to
the dimension number from 100 to 200 dimensions.

Finding the significant pathways for each cell type

SCRL gets the low-dimensional representations for both
the genes and the cells simultaneously. By calculating the
similarity between cell types and pathways based on the
low-dimensional representations of the cells and the genes,
we can extract the significant pathways corresponding to a
specific cell type as a supplement to the GO enrichment.
First, we calculated the mean representation of this cell type
and the mean representation of each pathway. Then we cal-
culated the Spearman correlation between them. Here we
take the Guo dataset as an example, which aims at studying
the development and regulation of human primordial germ
cells (PGCs). They generated 11 ICM cells from the blasto-
cysts, 233 PGCs (84 female PGCs and 149 male PGCs) and
86 SOMA cells. We extracted several interesting pathways
among the top 10% ranked pathways for each cell type. As
shown in Table 2, in ICM cells, we found the Wnt signal-
ing pathway, the cell cycle pathway and the MAPK signal-
ing pathway were among the top-ranked pathways. Among
them, the Wnt signaling pathway is known to play an im-
portant role in regulating pluripotency (16). The cell cycle-
related pathways are essential for the self-renewal and pro-
liferation of ICM cells (17). The estrogen signaling pathway,
the GnRH signaling pathway, the Wnt signaling pathway
and the TGF Beta signaling pathway were ranked on top
for the female PGCs, so were the GnRH signaling pathway
and the Wnt signaling pathway for the male PGCs. Among
them, the Wnt signaling pathway is essential in affecting
PGC’s fate (18), and the TGF Beta signaling pathway is es-
sential in modulating PGC mitosis (19). The GnRH signal-
ing pathway and the gonadal hormones-related pathway are
important in PGC cells (20). For SOMA cells, the B-cell re-
ceptor signaling pathway, the T-cell receptor signaling path-
way and the Oocyte meiosis pathway were identified. For
the Oocyte meiosis pathway, as reported in a recent study
(21), SOMA cells could secrete Retinoic Acid, which is the
key signal for induction of meiosis.
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Figure 4. Performance comparison of the four-dimensional reduction methods for classification accuracy on the three datasets. (A) Guo dataset. (B)
Petropoulos dataset. (C) Pollen dataset. The x-axis corresponds to the percentage (from 1 to 10%) of the cells for training classifier, each color represents
one method. The y-axis represents the classification accuracy for the test data.
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Figure 5. Dimension sensitivity of SCRL on the three datasets. (A) Dimension sensitivity of SCRL. (B) Dimension sensitivity of SCRL after PCA. Each
color corresponds to one dataset, the x-axis represents different dimensions, the y-axis represents the classification accuracy.

Table 2. Significant pathways corresponding to each cell type

Cell type Significant pathway Rank

ICM cell Wnt signaling pathway 9
Cell cycle 12
MAPK signaling pathway 13

Female PGC cell Estrogen signaling 8
GnRH signaling pathway 19
Wnt signaling pathway 35
TGF beta signaling pathway 37

Male PGC cell GnRH signaling pathway 30
Wnt signaling pathway 44

SOMA cell B cell receptor signaling pathway 10
T cell receptor signaling pathway 16
Oocyte meiosis 19

In addition, we projected several marker genes and all
cells in the same space. As shown in Supplementary Figures
S2 and 3, interestingly, we could observe that the pluripo-
tency marker genes POU5F1 and NANOG, the germline
marker genes KIT, ALPL, SOX17 and CD38 were closely
linked to the PGCs (The details are in the Supplementary
File). As shown in Supplementary Table S1, the Euclidean
distance between the selected marker gene and the cell type
is consistent with the visualization. This result further sup-
ports the utility of the joint embedding for both the cells
and the genes.

DISCUSSION

In summary, our results demonstrate that SCRL outper-
forms other existing dimensional reduction methods based
on different criteria in the study of the cell heterogeneity.
In addition, the edge-sampling based optimization method
ensures the efficiency and the effectiveness, which is able to
handle large datasets (the detailed runtime comparison is
shown in Supplementary Figure S5). Furthermore, SCRL
offers a novel integrative framework for the comprehensive
single cell heterogeneity analysis. It can simultaneously in-
tegrate multiple sources of network information for learn-
ing low-dimensional representations, hence overcoming the
high noise of scRNA-seq data. For a proof of principle,
here we combined scRNA-seq data and pathway informa-
tion. This framework may be extended to integrate scRNA-
seq data with bulk RNA-seq data, mass cytometry data,
etc., which is specially promising in future single cell multi-
omics data analysis. In addition, SCRL can project cells and
genes into a common (shared) subspace, therefore provid-
ing a novel way to further explore the relationship between
genes and cells.

Bringing in prior pathway information can help reduce
the effects of drop-out events to some extent. However, just
as every coin has two sides, the gene pair information that
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IntPath has provided only includes a subset of the full ref-
erence genes, so the low representations learnt for the genes
are incomplete. This incompleteness could reduce the power
of SCRL for finding marker genes and significant pathways.
After getting the low-dimensional representations for both
the genes and the cells, we adopted a simple straightforward
way to explore the relationship between them. Further ex-
periments would be required to narrow down and validate
any predicted marker genes and significant pathways.

DATA AVAILABILITY

A C++ based software implementation of SCRL is made
freely available online via https://github.com/SuntreeLi/
SCRL.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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