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Statistical learning (SL), the process of extracting regularities from the environment, is a
fundamental skill of our cognitive system to structure the world regularly and predictably.
SL has been studied using mainly behavioral tasks under implicit conditions and with
triplets presenting the same level of difficulty, i.e., a mean transitional probability (TP) of
1.00. Yet, the neural mechanisms underlying SL under other learning conditions remain
largely unknown. Here, we investigated the neurofunctional correlates of SL using triplets
(i.e., three-syllable nonsense words) with a mean TP of 1.00 (easy “words”) and 0.50
(hard “words”) in an SL task performed under incidental (implicit) and intentional (explicit)
conditions, to determine whether the same core mechanisms were recruited to assist
learning. Event-related potentials (ERPs) were recorded while participants listened firstly
to a continuous auditory stream made of the concatenation of four easy and four hard
“words” under implicit instructions, and subsequently to another auditory stream made
of the concatenation of four easy and four hard “words” drawn from another artificial
language under explicit instructions. The stream in each of the SL tasks was presented
in two consecutive blocks of ∼3.5-min each (∼7-min in total) to further examine how ERP
components might change over time. Behavioral measures of SL were collected after the
familiarization phase of each SL task by asking participants to perform a two-alternative
forced-choice (2-AFC) task. Results from the 2-AFC tasks revealed a moderate but
reliable level of SL, with no differences between conditions. ERPs were, nevertheless,
sensitive to the effect of TPs, showing larger amplitudes of N400 for easy “words,”
as well as to the effect of instructions, with a reduced N250 for “words” presented
under explicit conditions. Also, significant differences in the N100 were found as a
result of the interaction between TPs, instructions, and the amount of exposure to the
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auditory stream. Taken together, our findings suggest that triplets’ predictability impacts
the emergence of “words” representations in the brain both for statistical regularities
extracted under incidental and intentional instructions, although the prior knowledge of
the “words” seems to favor the recruitment of different SL mechanisms.

Keywords: statistical learning, transitional probabilities, implicit learning, explicit learning, exposure time,
electrophysiological correlates, word segmentation, artificial language

INTRODUCTION

The environment in which we live is characterized by a
series of sounds, objects, and events that do not occur
randomly. The ability to pick up these regularities in time
and space is a fundamental skill of our cognitive system to
structure the world in a regular and predictable way, and to
constantly develop adaptive responses to it (see Reber, 1989,
2013; Thiessen et al., 2013; Erickson and Thiessen, 2015).
The mechanism by which we are capable of extracting those
regularities, even without intention and/or awareness of doing
it, is called statistical learning (SL). This term was coined
by Saffran et al. (1996a) in a article showing that 8-month-
old infants were capable of computing the probability of a
given segment (i.e., a syllable) to be followed by another
segment (another syllable) in a continuous stream made up of
the concatenation of three-syllable nonsense words generated
from an artificial language (e.g., ‘‘tokibu,’’ ‘‘gikoba,’’ ‘‘gopila,’’
‘‘tipolu’’) repeated in random order with no pauses between
each other (e.g., ‘‘gikobatokibutipolugopilatokibu’’), and to use
these computations, known as transitional probabilities (TPs), to
discover word’s boundaries. Note that in that artificial language,
as in natural languages, the TPs between syllables composing
a given ‘‘word’’ (e.g., ‘‘tokibu,’’ ‘‘gikoba’’) were higher than the
TPs of syllables overlapping two ‘‘words’’ (e.g., ‘‘bugiko’’), hence
making TPs a reliable cue for words’ segmentation.

Since this seminal study, several other studies using the same
task, also known as triplet embedded task, have shown that SL
can also be observed in younger infants (e.g., Kirkham et al., 2002;
Teinonen et al., 2009; Bulf et al., 2011), older children, and adults
(e.g., Saffran et al., 1996b, 1997, 1999; Fiser and Aslin, 2002;
Saffran and Wilson, 2003; Turk-Browne et al., 2005; Endress
and Mehler, 2009; Arciuli and Simpson, 2012), and not only
with syllables as stimuli, but also with tones, geometric shapes,
and symbols. Nonetheless, even though these studies provide
strong evidence for the view that individuals from different ages
are sensitive to the statistical properties embedded in different
inputs (see, however, Frost et al., 2015; Siegelman and Frost,
2015 for modality and stimulus specificities in SL), such findings,
obtained mainly from standard SL experiments, provide little
evidence about both the process of learning and the nature of the
representations that arise from the SL tasks (see Batterink and
Paller, 2017; Batterink et al., 2019 for recent discussions).

In a typical SL experiment, participants are asked to
perform a familiarization phase, followed by a two-alternative
forced-choice (2-AFC) task in which participants are asked to
choose the most familiar stimulus out of pair composed by
a ‘‘word’’ from the artificial language and a foil made up of

the same syllables but never presented during the exposition.
Above-chance performance indicates that SL had occurred, but it
does not inform about the processes by which participants track
the statistical regularities embedded in the input as exposition
unfolds. A good strategy to assess this learning process could
be using online measures as event-related potentials (ERPs)
registered during the familiarization phase, as they are highly
sensitive to the time course of processing (millisecond precision),
and are less affected by other meta-cognitive or strategic factors
that might affect SL results (for a discussion see Daltrozzo and
Conway, 2014; and also Siegelman et al., 2017a).

Thus, it is not surprising that recent studies have been using
online (neural) and not only post-learning offline measures of
SL (e.g., 2-AFC) to study the processes and mechanisms that
underlie the extraction of the statistical regularities embedded
in the input and also to shed light on other controversial
issues largely unexplored in the SL literature, as the nature
of representations that arise from SL tasks (e.g., Batterink
et al., 2015a, 2019; Batterink and Paller, 2017; Batterink et al.,
2019; Kóbor et al., 2018, 2019; Batterink, 2020; Horváth et al.,
2020; see Batterink et al., 2019; and Daltrozzo and Conway,
2014 for recent reviews). This strongly contrasts with what
has been investigated in the related implicit learning field
(see Perruchet and Pacton, 2006, and also Christiansen, 2019)
where a significant amount of research has been devoted to
examining the type of representations and the (implicit vs.
explicit) nature of the knowledge emerging from tasks such as
the artificial grammar learning (AGL) task (Reber, 1967) or the
serial reaction time (SRT) task (Nissen and Bullemer, 1987) or
any version of it, either using subjective confidence scales [see for
instance Jiménez et al., 2020 or Soares (under review) for recent
examples] or dissociating these two types of knowledge through
the manipulation of the instructions. Although studies using
AGL and SRT tasks have yielded somewhat contradictory results
regarding the effects of explicit instructions on learning, with
studies showing either detrimental (e.g., Reber, 1976; Howard
and Howard, 2001), null (e.g., Dulany et al., 1984; Dienes
et al., 1991; Jiménez et al., 1996; Song et al., 2007; Sanchez
and Reber, 2013), or beneficial effects (e.g., Howard and Ballas,
1980; Reber et al., 1980), accumulated evidence suggests that
explicit instructions might enhance performance, particularly
when the stimuli are not presented at a high speed when the to-
be-learned regularities are simple, and when specific information
about these regularities is provided to the participants before the
familiarization phase (e.g., Howard and Ballas, 1980; Reber et al.,
1980, see Arciuli et al., 2014 for a discussion). Note that even
though in the implicit learning field the terms ‘‘incidental’’ and
‘‘intentional’’ are often used to refer to participants’ passive vs.
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active orientation toward the encoding and retrieval processes,
whereas the labels ‘‘implicit’’ and ‘‘explicit’’ are reserved to
the description of the resulting representations (see Shanks,
2005), for simplicity we will stick to the same labels for
both uses, using implicit vs. explicit conditions to refer to
task-instruction manipulations, even without assuming a one-
to-one correspondence between the type of instructions and
resulting outcomes (i.e., explicit instructions do not immediately
qualify the outcomes as explicit, and vice versa).

In the SL literature, the few studies conducted so far on the
type of representations emerging from sequential learning tasks
either in the auditory or visuomotor modality suggest that both
implicit and explicit representations might arise from SL tasks
(e.g., Turk-Browne et al., 2009, 2010; Franco et al., 2011; Bertels
et al., 2012, 2015; Batterink et al., 2015a,b; Kóbor et al., 2018,
2019; Horváth et al., 2020). For instance, Batterink et al. (2015a)
recorded behavioral (RTs/accuracy) and ERP responses while
participants performed two post-learning tasks: a speeded target
detection task, aimed to assess SL indirectly as it asks participants
to detect as fast and accurately as possible a specific syllable
within a continuous speech stream, and the abovementioned
2-AFC task combined with a remember/know procedure to
assess SL directly under either implicit or explicit conditions.
In the implicit group, participants were instructed to listen to
the auditory stimuli, whereas in the explicit group participants
were informed they would listen to a nonsense language and
their task would be to discover where each word began and
ended since they would be tested afterward on their knowledge
about that language. Results from the target detection task
failed to show any significant difference between the implicit
and the explicit groups both at behavioral and brain levels.
However, participants from both groups were faster at detecting
syllables occurring in the later ‘‘word’’ positions than in the initial
‘‘word’’ position, indicative of the triplet onset effect observed in
previous behavioral SL studies (e.g., Turk-Browne et al., 2005;
Kim et al., 2009; Franco et al., 2015; Siegelman et al., 2018).
Note that, because TPs within triplets are higher than TPs across
triplets’ boundaries, the final syllables within a triplet become
more predictable than the syllables at the onset, hence giving
rise to faster reaction times (RTs) to the second and third
syllables relative to the first one as SL accrues. Consistently,
the neural data from the speeded target detection task showed
facilitation attributable to SL in the processing of the syllables
in the middle and final positions compared to initial syllables.
Results from the 2-AFC task showed that accurate responses
were associated with subjective feelings of stronger recollection,
although explicit stimulus recognition did not correlate either
with RTs or electrophysiological effects. These findings led the
authors to conclude that dissociable implicit and explicit forms
of knowledge accrued in parallel during SL tasks. Even though
the failure to observe differences between implicit and explicit
conditions is in line with previous findings pointing to null effects
of the instructions on a diversity of implicit learning tasks (e.g.,
Dulany et al., 1984; Dienes et al., 1991; Jiménez et al., 1996; Song
et al., 2007; Sanchez and Reber, 2013), these results may also
arise from the fact that the information provided in the explicit
condition was too vague to impact SL performance positively.

Indeed, in a subsequent study with extensive training of the
nonsense words used by Batterink et al. (2015a,b), the authors
reported significant behavioral and neural differences in words’
processing as a function of the training condition: participants in
the explicit condition were faster at detecting predictable targets
and marginally slower to detect less predictable targets, relatively
to the participants in the implicit condition. In the same vein,
ERP results indicated greater involvement of controlled, effortful,
processes when the information was acquired explicitly.

Although providing some insights into the extent to which SL
recruits the same core mechanisms under implicit and explicit
conditions, these ERP studies left open several important issues.
For example, because in these studies behavioral and ERP data
were collected after the familiarization phase, they reflect more
the outcome of SL than the processes underlying that learning.
Previous ERP studies provided a fine-grained measure of how
SL occurs in the brain. Sanders et al. (2002; see also Sanders
et al., 2009) reported some of the first studies that collected
ERPs while participants were familiarized with a continuous
stream made of three-syllable nonsense words. They found
that initial syllables elicited larger N100 and N400 potentials
than syllables in latter positions, which was interpreted as an
index of the triplet onset effect in the brain. Subsequent studies
(e.g., Cunillera et al., 2006, 2009; De Diego Balaguer et al.,
2007; Abla et al., 2008; Abla and Okanoya, 2009; Teinonen
et al., 2009; François et al., 2014; Mandikal-Vasuki et al., 2017a)
found similar results, which provide further evidence to interpret
these ERP components, particularly the N400, as reflecting the
neural signature of ‘‘words’’ segmentation in the brain. Other
ERP components have also been reported in response to SL
tasks during the familiarization phase. For instance, François
et al. (2017) and also Mandikal-Vasuki et al. (2017b) recently
reported a negative ERP component peaking at ∼250 ms (N250)
as indexing the recruitment of greater attentional resources from
triplet onsets. Kóbor et al. (2018) have also reported an effect
on N2, correlated both to statistical and sequence learning in an
SRT-like task. The effect consists of an attenuated N2 amplitude
in pattern (vs. random) presentations, which has been also
related to the deployment of more attentional resources. In
the same latency range, Koelsch et al. (2016) and Tsogli et al.
(2019) recently reported an analog of the mismatch negativity
(MMN) wave, called the statistical MMN (sMMN), to index
the automatic change detection processes based on implicit
extraction of statistical regularities embedded in the input.

Furthermore, it is important to note that the vast majority
of previous ERP studies did not provide information regarding
the changes that the neural correlates of SL might undergo as
exposition to the stream unfolds (for exceptions see Abla et al.,
2008; François et al., 2014; Batterink and Paller, 2017). This is
particularly important because recent studies suggest that the
learning of the statistical regularities embedded in the input
occurs during the first trials/few minutes of familiarization (see
De Diego Balaguer et al., 2007; Turk-Browne et al., 2009). Thus, if
the time of exposure is not considered, potential neurofunctional
differences between implicit and explicit learning conditions
might become undetectable. Indeed, in one of the few ERP
studies examining how these components change as exposition
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to the auditory stream unfolds, Abla et al. (2008) reported that
participants who showed the best SL results in the 2-AFC task
(i.e., M = 90.24% of correct responses; min: 81.37%) revealed
an earlier and larger triplet onset effect in the N100 and
N400 ERP components, as compared to participants with
moderate SL results (i.e., M = 72.5% of correct responses; range:
67.38–81.37%) who showed this effect only in the last block of the
task, whereas low learners (i.e., M = 58.62% of correct responses;
max:<67.38%) failed to show any effect.

Finally, following the seminal work of Saffran et al. (1996a),
most SL studies have tested SL not only under incidental
(implicit) conditions but also using triplets with the same level
of difficulty (i.e., TPs = 1.00). Note that a triplet with a TP
of 1.00 means that a given syllable only occurs in a word
and in a fixed position, thus removing all signs of uncertainty
from the input. However, in natural languages, syllables do
not follow each other with 100% certainty. For instance, the
syllable ‘‘cur,’’ can appear in different words in different positions
as in cur.va.ture, in.cur.sion or re.oc.cur, and this change in
distributional proprieties can affect SL in important ways (see
Thiessen et al., 2013 and also Hasson, 2017 for reviews). Notably,
few SL studies have manipulated the TPs of the triplets to test
how the brain processes different types of statistical structures
(see however Siegelman et al., 2017a). Although lowing TPs
will probably make triplets harder to learn, studying how SL
occurs under more uncertain conditions, which mimic more
closely what occurs in natural environments, will contribute to
deepening our understanding of how SL works in a wide range
of conditions. Testing how the type of instructions (implicit vs.
explicit) provided to the participants modulates the recruitment
of different neural processes will also contribute to that aim.
Some previous studies by Batterink et al.’s (e.g., Batterink et al.,
2015a,b) have tested this effect, but they did it in a between-
subject design. However, as Siegelman et al. (2017a; see also
Siegelman et al., 2017b) recently pointed out, there is a lot of
variability in how different individuals respond to SL tasks, and
this makes it advisable to analyze the impact of instructions in a
within-participants design.

The current work aimed to directly address these issues
by examining the neural (ERP) responses elicited during the
familiarization phase of an auditory SL task modeled from
Saffran et al. (1996a). The task was performed by the same
participants under both incidental (implicit) and intentional
(explicit) instructions to determine whether the same core
mechanisms are recruited to extract the statistical regularities
embedded in the continuous auditory stream as the exposition
unfolds. If SL under implicit and explicit conditions elicited the
same neural responses, this would provide further evidence to
the view that they probably rely on the same core mechanisms.
In contrast, if a different pattern emerges in each condition, this
would support the view that explicit and implicit representations
might be mediated by different mechanisms operating in parallel
to allow more effective processing. It is also possible that,
even though the same basic pattern of results will emerge,
differences in the learning dynamics across time will still be
observed, with effects arising earlier under explicit than under
implicit instructions. Additionally, words’ predictability was also

manipulated by using three-syllable nonsense words with a TP of
1.00 (easy ‘‘words’’) or 0.50 (hard ‘‘words’’) presented randomly in
two blocks of ∼3.5-min each (i.e., 30 repetitions of each ‘‘word’’)
to examine how ERP components might change over time. This
exposure time (i.e., ∼7-min in each of the SL tasks) was chosen
because previous studies (e.g., De Diego Balaguer et al., 2007;
Turk-Browne et al., 2009), suggested that the learning of the
statistical regularities embedded in the input occurs during the
first trials/few minutes of familiarization as mentioned, and also
because we have used a within-subject design meaning that each
participant performed both SL tasks, which made the procedure
necessarily longer. Behavioral evidence of SL was obtained
through a 2-AFC task presented after the familiarization phase
of each of the SL tasks (implicit and explicit) as it is one of the
most frequent measures of SL adopted in the studies conducted
so far (e.g., Saffran et al., 1996b, 1997, 1999; Saffran and Wilson,
2003; Turk-Browne et al., 2009; Arciuli and Simpson, 2012;
Batterink et al., 2015b; Batterink and Paller, 2017). Following
the reviewed literature, we hypothesized that participants would
respond more accurately under explicit than implicit conditions.
Differences in behavioral performance under implicit vs. explicit
conditions were expected to be greater for the hard than for
the easy ‘‘words.’’ Regarding neural responses, we also expected
easy and hard ‘‘words’’ to elicit different ERP modulations.
Based on the assumption that N100 and N400 enhancements
index ‘‘word’’ segmentation, easy ‘‘words’’ were expected to elicit
larger amplitudes than hard ‘‘words.’’ Specifically, this amplitude
enhancement would be expected to occur selectively in the
implicit task, since the higher predictability of the easy ‘‘words’’
would allow the brain to build up representations of these triplets
more rapidly than they would do for the hard ‘‘words.’’ This
difference could be expected to vanish as the exposure time
unfolds. In contrast, in the explicit condition, as participants
can take advantage of prior knowledge about the structure and
content of the stimuli, ERPs could be similarly elicited to both
hard and easy ‘‘words,’’ and the same would be expected to occur
at the behavioral level.

MATERIALS AND METHODS

Participants
Thirty-two undergraduate students (25 women, Mage = 23.4,
SDage = 5.66) from the University of Minho were recruited
for the experiment in exchange for academic credits. All
participants were native speakers of European Portuguese, with
normal hearing, normal or corrected-to-normal vision, and
with no history of disabilities and/or neurological problems.
Twenty-nine of the participants were right-handed and three
left-handed as assessed by the Edinburgh Handedness Inventory
(Oldfield, 1971). Written informed consent was obtained
from all participants. The study was approved by the local
Ethics Committee (University of Minho, Braga, Portugal,
SECSH 028/2018).

Stimuli
For this experiment, two syllabaries (syllabary A and syllabary
B) with 16 unique auditory CV syllables each (e.g., ‘‘tu,’’ ‘‘ci,’’
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‘‘da,’’ ‘‘mi,’’ ‘‘ge,’’ ‘‘do’ from syllabary A; and ‘‘ga,’’ ‘‘pa,’’ ‘‘be,’’
‘‘me,’’ ‘‘gu,’’ ‘‘pi’’ from syllabary B) were created to generate
the nonsense words to be used in the implicit and explicit
versions of the SL task. Note that, because we used a within-
subject design, using syllables coming from two different artificial
languages (i.e., without any syllable overlap, although vowels
were necessarily repeated across syllabaries) was mandatory to
minimize interference effects of the first language over the
second language, as observed in other studies (e.g., Gebhart
et al., 2009; Franco et al., 2011; Shaqiri et al., 2018). Syllables
were produced and recorded by a native speaker of European
Portuguese with a duration of 300 ms each. Syllables in each
syllabary were organized into eight 3-syllable nonsense words:
four easy ‘‘words’’ (MTPs = 1.0; SD = 0.03), and four hard
‘‘words’’ (MTPs = 0.50; SD = 0.03) following Siegelman et al.’s
(2017b) procedure. For instance, the nonsense word ‘‘tucida’’
from syllabary A and the nonsense word ‘‘todidu’’ from syllabary
B correspond to easy ‘‘words’’ as the syllables they entail only
appear in those ‘‘words’’ in the same syllable positions, while
the nonsense word ‘‘dotige’’ from syllabary A and the nonsense
word ‘‘pitegu’’ from syllabary B correspond to hard ‘‘words’
as the syllables they entail appear in three different words in
each of the three-syllable positions (‘‘tidomi,’’ ‘‘migedo,’’ ‘‘gemiti’’
and ‘‘tepime,’’ ‘‘megupi,’’ ‘‘gumete,’’ respectively). See Table 1 for
other examples.

The nonsense words were concatenated in a continuous
stream with the Audacityr software (1999–2019) with no
pauses between syllables (900 ms per nonsense word). Each
nonsense word was repeated 60 times in two different blocks
of 30 repetitions each (Block 1 and Block 2). In each block,
the nonsense words were presented binaurally in random order
with the restriction that the same nonsense word or the same
syllable will never appear consecutively. The TPs across ‘‘word’’
boundaries were therefore of 0.14. The speech stream was
edited to include a randomly superimposed chirp sound (a
0.1 s sawtooth wave sound from 450 to 1,450 Hz) to provide
participants with a cover task (i.e., a chirp detection task) to
ensure adequate attention to the stimuli as in previous SL
studies (e.g., Turk-Browne et al., 2009; Arciuli and Simpson,
2012; François et al., 2014; Bertels et al., 2015; Mandikal-
Vasuki et al., 2017a,b). The target sound was programmed
to appear in the stream intervals between 2 and 10 s, to
prevent it from being used as a word segmentation cue.
Depending on the variability of the interval, the stream could
contain a total of 43 or 44 chirp sounds to detect during the
familiarization phase.

For the test phase (2-AFC task), eight three-syllable foils were
also created for each syllabary (see Table 1). The foils were made
up of the same syllables used in the easy and hard ‘‘words’’ in
each syllabary, although they were never presented together in
the stream presented during exposure (MTPs = 0.00). Syllables
in the foils were presented with the same frequency and syllable
positions (initial, medial, and final) as the syllables in the easy and
hard ‘‘words’’ to avoid frequency and position confounds. Four
lists of materials were created in each syllabary to counterbalance
syllables across positions in each type of nonsense words (easy
and hard). Participants were randomly assigned to the lists. For

TABLE 1 | Three-syllable nonsense words and three-syllable nonsense foils from
Syllabary A and Syllabary B.

Syllabary

A B

Nonsense words easy tucida todidu
bupepo cegita
modego gapabe
bibaca bomaco

hard dotige pitegu
tidomi tepime
migedo megupi
gemiti gumete

Nonsense foils easy tumica tomeco
bugego cegube
modopo gapita
bitida botedu

hard dobage pimagu
tidemi tepame
mipedo megipi
geciti gudite

convenience, Table 1 presents only the stimuli used in List 1 from
Syllabary A and List 1 from Syllabary B.

Procedure
Participants were first presented with the implicit version of the
auditory SL task and, subsequently, with the explicit version, each
of them comprising a familiarization phase and a test phase. In
the implicit task, participants were instructed to pay attention to
the sounds (presented at 60 dB SPL via headphones binaurally)
because occasionally a ‘‘click’’ sound would appear and they had
to detect it as soon and accurately as possible by pressing a button
in the keyboard. Following familiarization, participants were
informed that the sequences of syllables they had just listened
corresponded to a foreign language and were asked to complete a
2-AFC task, i.e., to choose which of the two-syllable sequences
(the first or the second) resembled most what they have just
heard, by pressing respectively the ‘‘z’’ or the ‘‘m’’ buttons in the
keyboard. In half of the trials, the correct ‘‘word’’ was presented
firstly while in the other half it was presented second. Participants
were informed about the test phase only after completion of
the familiarization phase to ensure that learning was implicit.
The test phase comprised 64 trials in which each of the eight
trained ‘‘words’’ were paired with each of the eight foils from
the same syllabary. The 64 trials in the 2-AFC were presented
in a random order for each participant. Each trial began with
the presentation of a fixation cross for 1,000 ms, after which
the first stimulus (‘‘word’’/foil) was presented. A 500 ms inter-
stimulus interval separated the presentation of both sounds. The
next trial begins as soon as participants made a response or 10 s
had elapsed.

After a short rest interval, which in no case exceeded 5 min,
participants underwent the explicit version of the SL task. This
task mimicked the procedure adopted in the implicit SL task
except that, before listening to the auditory stream, participants
were informed about each of the eight ‘‘words’’ from another
foreign language (i.e., the four easy and four hard ‘‘words’’
drawn from the syllabary not used in the implicit version of the
task). Specifically, in this phase, each of the eight ‘‘words’’ was
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presented individually and participants were asked to repeat it
correctly before another ‘‘word’’ was presented. At the end of
the training phase, participants were asked to pay attention to
the auditory stream and to perform a click detection task as
in the implicit SL task. Following familiarization, participants
performed a 2-AFC task, similar to the one used in the implicit
version. The procedure took about 90 min to be completed
per participant. Figure 1 depicts a visual summary of the
experimental design.

EEG Data Acquisition and Processing
Data collection was performed in an electric shielded, sound-
attenuated room. Participants were seated in a comfortable
chair, one meter away from a computer screen. During
the familiarization phase, EEG data was also recorded with
64 channels BioSemi Active-Two system (BioSemi, Amsterdam,
The Netherlands) according to the international 10–20 system
and digitized at a sampling rate of 512 Hz. Electrode impedances
were kept below 20 k�. EEG was re-referenced off-line to
the algebraic average of mastoids. Data were filtered with a
bandpass filter of 0.1–30 Hz (zero phase shift Butterworth).
ERP epochs were time-locked to the nonsense words’’ onset,
from −300 to 1,000 ms (baseline correction from −300 to
0 ms). Independent component analyses (ICA) were performed
to remove stereotyped noise (mainly ocular movements and
blinks) by subtracting the corresponding components. After
that, epochs containing artifacts (i.e., with amplitudes exceeding
±100 µV) were excluded. EEG data processing was conducted
with Brain Vision Analyzer, version 2.1.1. (Brain Products,
Munich, Germany).

Data Analysis
Behavioral and ERP data analyses were performed using
IBM-SPSS software (Version 21.0. Armonk, NY, USA: IBM
Corporation). For behavioral data, the percentage (%) of correct
responses was computed for each of the 2-AFC tasks and
separately for the easy and hard ‘‘words.’’ One-sample t-tests
against the chance level were conducted to determine whether
performance in each SL task (implicit vs. explicit) and type of
‘‘word’’ (easy vs. hard) was significantly different from chance.
Repeated-measures analysis of variance (ANOVA) was then
conducted considering a 2 (instructions: implicit vs. explicit) × 2
(the type of ‘‘word’’: easy vs. hard) within-subject factors design,
to analyze if 2-AFC performance was significantly different
across conditions. One participant was excluded from the
behavioral analyses due to problems in data recording.

Individual ERPs were averaged separately per condition.
Grand averages waveforms were then calculated across
individuals in each SL task (implicit vs. explicit), type of
‘‘word’’ (easy vs. hard), and exposure time (Block 1 vs. Block
2). Four participants were excluded from the EEG analyses,
one because performed below the chance level in both 2-AFC
tasks and three due to artifact rejection (rejected more than 70%
of trials). Based on previous literature, mean amplitudes were
measured for the following time windows: 80–120 ms (N100),
230–270 ms (N250), and 350–450 ms (N400). To account
for the topographical distribution of the abovementioned

EEG deflections, mean amplitudes’’ values were obtained for
the topographical regions where amplitudes were maximum,
namely: fronto-central region of interest (ROI; F1, Fz, F2,
FC1, FCz, FC2, C1, Cz, and C2) for N100 and N250, and
central ROI (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, and
CP2) for N400.

Both for behavioral and ERP data, only main or interaction
effects that reach statistical or marginal significance levels in
comparisons of interest are reported. The Greenhouse–Geisser
correction for nonsphericity was used when appropriate. Post
hoc tests for multiple comparisons were adjusted with Bonferroni
correction. Measures of effect size (Eta squared, η2

p) and observed
power (pw) for a single effect are reported in combination with
the main effects of the condition.

RESULTS

Behavioral Data
The mean percentage of correct responses (% hits) in the 2-AFC
task for the easy and hard ‘‘words’’ per learning condition
(implicit vs. explicit) is presented in Figure 2.

The results from the one-sample t-tests against chance level
showed that, in the implicit task, performance for the easy
‘‘words’’ was 57.1% (SD = 14.66) and for the hard ‘‘words’’ was
56.8% (SD = 13.94), both differing significantly from chance
(easy: t(30) = 2.714, p = 0.011; hard: t(30) = 2.718, p = 0.011). In
the explicit task, performance for the easy ‘‘words’’ was 60.1%
(SD = 15.15) and for the hard ‘‘words’’ was 63.0% (SD = 9.23),
both also above-chance levels (easy: t(30) = 3.704, p = 0.001;
hard: t(30) = 7.826, p < 0.001). Although the performance was
numerically higher in the explicit than in the implicit SL task for
both types of ‘‘words,’’ as expected, the results from the repeated
measures ANOVA showed that no main or interaction effects
reached statistical significance.

ERP Data
N100
The ANOVA for the N100 failed to reveal any significant main
effect. Although a significant three-way interaction was found,
F(1,27) = 4.825, p = 0.037, η2p = 0.152, the pairwise comparisons
revealed to be nonsignificant. However, we found a tendency
for hard ‘‘words’’ to exhibit a larger N100 amplitude in the
implicit vs. explicit condition in the second block (p = 0.059)
and a tendency for the easy ‘‘words’’ to exhibit a reduced
N100 amplitude in the second vs. the first block in the implicit
condition (p = 0.058). Further Bayesian analyses (JASP Team,
2020), conducted to test whether these results were more
consistent with the existence or with the absence of an effect,
provided moderate evidence in favor of its existence both for
the first (B10 = 1.08) and the second (B(10) = 1.09) pairwise
comparisons. Figure 3 depicts the grand-averaged ERPs for the
easy and hard ‘‘words,’’ in each learning condition, in Block 1 and
Block 2, separately.

N250
In the N250 latency window, there was a main effect of learning
condition, F(1,27) = 4.775; p = 0.038; η2p = 0.150. This effect
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FIGURE 1 | Visual summary of experimental design. Note: Box (A) illustrates the timeline of the experimental procedure in which one implicit and, subsequently,
one explicit auditory statistical learning (SL) tasks were administered. Each task of the two tasks comprised of three parts: instructions, familiarization phase, and test
phase. As can be observed in Box (B), each task was initiated with specific instructions that determined the conditions under which SL occurred: implicit instructions
(i.e., without knowledge of the stimuli or the structure of the stream—Implicit task) or explicit instructions (i.e., with explicit knowledge or pre-training on the “words”
presented in the stream—Explicit task). In the familiarization phase of both tasks, participants were presented with a continuous auditory stream of four easy and four
hard “words,” with chirp sounds (depicted as a speaker icon on the Figure) superimposed over specific syllables. The chirp sounds could emerge at any of
three-syllable positions of the “words,” which precluded its use as a cue for stream segmentation. During this phase, participants had to perform a chirp detection
cover task. Then, a test phase consisting of a two-alternative forced-choice (2-AFC) task asked participants to indicate which of two syllable-sequences (a “word”
and a foil) sounded more familiar considering the stream heard on the familiarization phase.

showed that the N250 amplitude was reduced in the explicit
relative to the implicit condition, as can be observed in Figure 4.

N400
The only significant effect in this time window was that of
the type of ‘‘word,’’ F(1,27) = 4.260; p = 0.049; η2p = 0.136,
showing greater N400 amplitude for easy vs. hard ‘‘words’’
(see Figure 5).

DISCUSSION

The present study aimed to examine how SL occurs under
conditions of high vs. low words’ predictability and to test
whether the same core mechanisms are recruited to extract
word-like units from continuous auditory streams under implicit
vs. explicit learning conditions. ERP data were recorded while
participants performed either an auditory triplet embedded

SL task in which statistical regularities had to be abstracted
through passive exposure to a continuous ‘‘word’’ stream
(implicit condition) or a similar task in which the ‘‘words’’
were explicitly taught before exposure (explicit condition).
The TPs between the ‘‘words’’ syllables were respectively
of 1.00 or 0.50, thus creating ‘‘words’’ that were easily or
hardly predictable in the context of a continuous stream. The
‘‘word’’ stream was presented in two separate blocks of ∼3.5-
min each to further examine how ERP components might
change over time. Behavioral data were collected using a
2-AFC task after the familiarization phase of each SL task.
Using a within-subject design aiming to obtain results less
affected by individual differences, the current study contributed
to shed new light on the processes underlying SL under
different learning conditions, involving implicit or explicit
instructions, and two degrees of uncertainty (i.e., easy vs.
hard ‘‘words’’).
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FIGURE 2 | Percentage of correct choices (% hits) for the easy- and hard-nonsense words in the 2-AFC tasks performed under implicit and explicit conditions.

The results obtained were clear-cut and can be summarized
as follows: (i) participants showed a moderate but reliable level
of SL, although behavioral performance was neither modulated
by words’ predictability nor by the conditions under which they
were learned; (ii) the neural responses showed a larger N100 for
hard ‘‘words’’ in the later phase of exposition (second block) of
the implicit (vs. explicit) condition, while it was reduced in the
second block (vs. the first block) for the easy ‘‘words’’ in the
implicit condition; (iii) easy ‘‘words’’ elicited larger N400-like
amplitudes than hard ‘‘words;’’ and (iv) ‘‘words’’ that have been
previously taught (explicit condition) elicited a general reduced
N250 relatively to ‘‘words’’ that were completely unknown to the
participants (implicit condition).

These findings provide supportive evidence in favor of
our hypotheses. Indeed, although the 2-AFC task was not
sensitive either to the type of nonsense word or to the learning
condition in which they were presented (implicit vs. explicit),
the ERP results indicated that both TPs and instructions affect
the electrophysiological correlates of SL in different latency
windows. The absence of statistically significant differences
across experimental conditions in the 2-AFC tasks indicate that
the prior knowledge of the to-be-learned regularities or about
the structure of the auditory stream do not suffice to promote
a boost in SL performance, as observed in previous studies (e.g.,
Howard and Ballas, 1980; Reber et al., 1980; Song et al., 2007;
Turk-Browne et al., 2009, 2010; Franco et al., 2011; Bertels et al.,
2012, 2015; Sanchez and Reber, 2013; Batterink et al., 2015a,b).
This might be closely tied to the strength of contingencies of
the SL task used in the current article such as the use of a

higher number of ‘‘words’’ (eight) when compared to previous SL
studies (four in Cunillera et al., 2009; Batterink and Paller, 2017,
or Saffran et al., 1996a, and six in Abla et al., 2008; Batterink et al.,
2015a,b, or Sanders et al., 2009), that were repeated fewer times
(60 repetitions-30 per block) as compared to the abovementioned
SL studies (i.e., over 100 repetitions of each ‘‘word’’ in most of
the cases). The use of ‘‘words’’ with different TPs might also
have contributed to making behavioral effects across the distinct
learning conditions harder to find. Indeed, as mentioned in the
Introduction, lower TPs introduce a higher level of uncertainty
in the input as the same syllable can occur in different ‘‘words’’
in different positions, which could have made the triplets more
difficult to extract. Moreover, it is also important to note that the
presentation of ‘‘words’’ with TPs of 1.00 and TPs of 0.50 in the
same auditory stream might also have contributed to making SL
more challenging in general as it introduces important changes
in the distributional properties of the input. Note that, besides
the different TPs, the fact that a given syllable might occur,
or not, in different ‘‘words,’’ as in the case of the hard and
easy ‘‘words,’’ also creates a greater variability in the stream, as
compared to that created when all the words present TPs of 1.00.
If we consider that SL also occurs through the integration of
information across exemplars, the higher the diversity of these
exemplars in the stream, the more difficult the integration will
be, which might also have hampered SL in our procedure (see
Thiessen et al., 2013; and also Hasson, 2017). Nevertheless, the
low sensitivity of the 2-AFC tasks to capture the effects of words’
predictability and task instructions converge with an increasing
number of studies showing that this recognition task might not
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FIGURE 3 | Learning effects on N100 Peak. Note: (A) grand average ERPs
at the fronto-central ROI (solid line: hard; dotted line: easy). Gray shaded
boxes over the event-related potentials (ERPs) indicate the analyzed time
window (80–120 ms). (B) Voltage maps of each condition: fronto-central
distribution of the N100 peak. (C) Graphical depiction of the averaged
amplitudes for the pairwise comparisons of the triple interaction between SL
task, type of “word,” and exposure time.

be well-suited to assess SL. Indeed, since it asks participants to
make explicit judgments about regularities that are expected to
be acquired implicitly (i.e., without intention and awareness),
this might create not only a mismatch between the ‘‘mode of
learning’’ and the ‘‘mode of assessing’’ this knowledge but it also
leaves room for other meta-cognitive or strategic factors to affect
the results (for a discussion see Siegelman et al., 2017a).

The use of the ERP methodology has proven to be a
particularly useful tool to cope with these limitations and also
to shed light on the issues under investigation. Specifically, the
neural results obtained throughout the familiarization phase
showed that the type of nonsense word, the type of instructions,
and the amount of exposure to the auditory stream modulated
specific ERP components. Previous studies suggested the N100 as
a possible ‘‘marker’’ of online segmentation (e.g., Sanders and
Neville, 2003; Sanders et al., 2002; Abla et al., 2008), which is
complemented with the observation of an enhancement of the
N100 amplitude in the first element of a successfully segmented
triplet (triplet onset effect). However, no effects of type of ‘‘word’’
or task instructions were found in our results, but a significant
effect emerged from the triple interaction between the type of
‘‘word,’’ instructions, and exposure time. The sensitivity of the
N100 component to various factors present in SL tasks could be

the reason why the literature has yielded divergent results (e.g.,
De Diego Balaguer et al., 2007; Buiatti et al., 2009; Cunillera
et al., 2009). On the one hand, the N100 amplitude reductions
have been found in tasks with short stimulus onset asynchrony
(e.g., Pereira et al., 2014) or in continuous speech presentations
compared with non-predicted words (e.g., Astheimer and
Sanders, 2011), whereas other studies have failed to observe the
N100 effects, showing a moderated learning performance and
a reliable N400 effect, but no modulations of the N100 (e.g.,
Cunillera et al., 2006). This suggests that the N100 might be
sensitive to certain features of the task or stimuli. On the other
hand, SL studies that found significant N100 modulations also
considered the effect of other variables, such as individuals’
learning level (accuracy scores) or the amount of exposure to
the stimuli (i.e., initial vs. final task blocks), and they found
increased N100 amplitude in ‘‘expert learners’’ during the first
part of the learning phase, while ‘‘middle learners’’ only showed
an enhanced N100 amplitude in the last part of the task (e.g.,
Abla et al., 2008). Interpreting our results in the light of Abla
et al.’s (2008) discussion, it is possible to hypothesize that the
cross-over effect of learning condition, type of ‘‘word,’’ and block
(but not each main factor separately) would be explained by a
transient learning effect, by which the N100 effects would evolve
during the familiarization phase. The N100 attenuation might
only be emerging for easy ‘‘words’’ in the implicit task, since the
sequences with higher TPs may be more easily segmented when
there is no a priori knowledge of the stimuli or the structure
of the stream. As for the enhancement found over the second
block for the hard ‘‘words’’ in the implicit condition, this could
also be interpreted as showing that lower TP ‘‘words’’ would
need more repetitions to-be-learned, so that they would start
evoking larger amplitudes later in time under implicit conditions.
However, this difference would not arise in the explicit condition,
in which the prior instructions would tend to limit the differential
impact of practice and level of difficulty. These results match our
hypothesis of the N100 is a learning index whose effects evolve
during the familiarization phase and support previous claims of
temporal N100 effects as marking the discovery of the structure
in a continuous stream (see Abla et al., 2008).

In the N400 ERP component, we found, however, an effect
of type of ‘‘word’’ showing that easy ‘‘words’’ elicited larger
amplitudes as compared to hard ‘‘words’’ (see Figure 4),
which might suggest facilitated access to these specific words’
representations in memory and/or more successful integration
of those representations in higher-order language structures (for
a review see Lau et al., 2008). The present study is one of
the first reporting electrophysiological evidence that word-like
units characterized by higher TPs become more easily extracted
than units with lower TPs in the context of a continuous,
structured speech stream. Also, it corroborates the idea that
electrophysiological responses can reflect the brain’s ability to
compute TPs and that they can be reliably used to track
the online assimilation of statistical regularities embedded in
the input. Since the N400 is sensitive to the frequency of
occurrence of units and their degree of contextual predictability
(e.g., Lau et al., 2008), this finding also shows our capacity to
disentangle highly predictable from low predictable sequences,
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FIGURE 4 | Effect of instructions on the N250 response. Note: grand average ERPs at the fronto-central region of interest (ROI; solid line: explicit; dotted line:
implicit). Gray shaded box over the ERPs indicates the analyzed time window (230–270 ms). Voltage maps of each condition: fronto-central distribution of the
N250 peak.

FIGURE 5 | Effect of type of “word” in the N400 Time Window. Note: effect of type of “word” in the N400 time window at the central ROI (solid line: hard; dotted
line: easy) and voltage maps of the difference between easy and hard “words.”

even in the absence of other cues (e.g., stressed syllables, pauses).
However, this electrophysiological effect of the type of nonsense
word contrasts with the absence of significant differences in
the behavioral indices of recognition of easy vs. hard ‘‘words’’
in the explicit assessment of SL. On one hand, this evidence
indicates that behavioral measures of SL, as obtained from the
2-AFC task, might not inform on the nature and extent of
the cognitive processes underlying SL. Even though our results
showed that the average performance level of recognition is close
to the score of the low learners in Abla et al. (2008; 58.62%),
our results did show significant N400 differences. On the other
hand, this shows that the capacity to decode word-like units
from a continuous auditory input, and the capacity to explicitly
retrieve these units from long-term memory, may represent two
interrelated but distinct processes. The divergent results between

the indirect (i.e., online ERP responses) and direct (i.e., offline,
behavioral responses) measures of SL might also indicate that the
two measures might tap into different neurocognitive processes,
and highlight the advantage of combining both approaches in
SL research.

The fact that the N400 effect was independent of the learning
conditions did not support our hypotheses. This result seems
to suggest that the emergence of a pre-lexical trace of words’
representation in the brain based on the extraction of TPs is
reached regardless of conscious processes (i.e., the fact that
participants have or not prior knowledge about the to-be-learned
regularities). Furthermore, we did not observe a significant effect
of the block (or any interaction with it), which contradicts
the results of Abla et al. (2008). As discussed above, a short
exposure time would be a limitation of our design, so a possible
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block effect could be hindered by a short number of repetitions
during the familiarization phase, leading to weak statistical
effects. Nonetheless, and together with the N100 results, we could
consider an alternative explanation based on the assumption that
implicit and explicit instructions lead to word segmentation but
relying on different mechanisms (see Daltrozzo and Conway,
2014). Under that hypothesis, larger N400 amplitudes would
index the result of the word segmentation process (by tracking
the implicit statistical probabilities embedded in the input
stream), but without being sensitive to these implicit/explicit
mechanisms in which the process is based on. Again, the
conclusion of whether N400 effects are sensitive to the learning
mechanisms and their temporal courses is precluded by the short
familiarization phases.

In the 200–300 ms latency range, we found a reduced N250 in
the explicit vs. implicit learning condition (see Figure 4). A
negative deflection in this latency range has been occasionally
reported in the SL literature (e.g., Mandikal-Vasuki et al.,
2017b), although with divergent functional interpretations. That
is probably because these negative waves might encompass
overlapped subcomponents, present or absent depending on task
demands (Näätänen and Picton, 1986). As far as the SL tasks
used in this article involved the exposition to auditory streams
made of the repetition of nonsense words, the results found here
cannot be directly compared to those of other studies revealing
earlier N2 components related with word-context relations (e.g.,
van den Brink et al., 2001). It is not plausible that the N250 effect
found here is related to deviant stimuli processing (mimicking
the traditional MMN effects; see Koelsch et al., 2016), nor
linked to the tracking of TPs since the effect only emerges from
the comparison of implicit vs. explicit conditions. However,
variations of the N250 amplitude have been found as a function
of sound complexity and familiarity (e.g., Čeponiené et al.,
2001; Vidal et al., 2005). For example, Čeponiené et al. (2001)
found a larger N250 for complex sounds than for pure tones.
Hence, it is reasonable to anticipate that explicit instructions
about the to-be-learned ‘‘words’’ make syllables’ sequences of
the auditory stream more familiar, and, thus, less complex
as compared to the sequences presented without any further
information (implicit condition). Besides, the auditory stream
presented during the exposure phases of each of the SL tasks
used in our work implies the repetitive presentation of stimuli.
This type of presentation elicits a negative wave around 250 ms
after stimulus onset, the ‘‘basic’’ N2 ERP (Näätänen and Picton,
1986), a component sensitive to attention deployment, as is
reported in the early N2 in Bertoli and Probst (2005). Indeed, in
their study, repetitive syllable’ presentations during the detection
task-evoked a larger N250 reflecting stimuli inhibition, whilst
a greater attention deployment would imply a reduction of the
component. That is also the case for the N2 effect reported
in Kóbor et al. (2018), in which an N2 reduction related to
sequential and SL was found. Interestingly, and of special interest
to this discussion regarding SL, the authors found that N2 effects
were not necessarily dependent on explicit knowledge. Thus,
in the context of our experiment, it is not possible to directly
explain the effect on the N250 amplitude by the mere instruction
factor. However, possibly the transition from the implicit to the

explicit SL task made individuals aware that ‘‘word’’ information
was relevant for the task even though that information was not
provided, causing the syllable stream to recruit more attention
resources in the explicit than in the implicit condition, thereby
accounting for the N250 reduction in the explicit SL task.
Challenging this interpretation, Mandikal-Vasuki et al. (2017b),
who investigated auditory SL abilities in children, found that
the N250 was increased in musicians relative to non-musician
children. They considered that one possible interpretation is that
the N250 is affected by the deployment of attention in the first
tone, indicating a correct word segmentation. They proposed
that the N250 reflects a prediction process involving higher-
order recruitment of attentional resources. The present results
can provide an additional interpretation if considered together
with the results of Mandikal-Vasuki et al. (2017b): the prediction
of the third tone (vs. the first tone) and explicit instructions
(vs. implicit condition) would result in a reduced N250, possibly
caused by the recruitment of attentional resources. Explicit
instructions and awareness that a recognition test will be surely
presented at the end of the explicit familiarization task, as it was
presented in the previous implicit condition, might have made
this stream more relevant for the participants and may have led to
the allocation of greater attentional resources and, consequently,
to a reduction in the N250 amplitude.

CONCLUSION

We investigated the relationship between the cognitive
mechanisms underpinning SL and the higher-order evaluative
processes characterizing the overt responses in post-learning
tasks. We also intended to clarify the role of explicit instructions,
the relative difficulty of the ‘‘words’’ as defined by the TPs
between their component syllables, and the impact of the
practice on the neural correlates of SL. Limitations of the 2-AFC
tasks to assess learning suggest that other measures should be
used to complement behavioral assessments, like the Rapid
Serial Visual Presentation task (RSVP; Kim et al., 2009), that
allows a reliable distinction of participants as a function of
behavioral performance.

We provided evidence that ERPs can be effective online
indices of word segmentation that bring to light some effects
of the learning conditions that otherwise would be impossible
to grasp. Specifically, modulations of the N400 indicate more
efficient segmentation for ‘‘words’’ with higher TPs, whilst
effects on the N250 component indicate that instructions lead to
deploy more attentional resources. Together, the results suggest,
on the one hand, that explicit instructions have no direct
effects in improving learning in those conditions in which the
extraction of statistical regularities is more difficult, as during
the processing of ‘‘words’’ with lower TPs and, on the other
hand, that awareness is not crucial for the process of word
extraction to occur. Despite the existence of conflicting findings
in the N100 literature, we found moderate evidence suggesting
that the transient effect in the N100 is an indicator of the
moment in which learning occurs. Future research may benefit
from this evidence to better understand which experimental
conditions facilitate SL (for example, ‘‘words’’ with high TPs as
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compared to ‘‘words’’ with low TPs), as well as if it might be
sensitive to individual differences (e.g., high vs. low learners).
Future experimental designs should also include longer exposure
times to elucidate if the N100 is indeed a reliable learning
index and how N400 amplitude modulations reflect the time
course of SL.
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