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Abstract: Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic
changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating
this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here,
we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell inter-
actions, which may be either detrimental or supportive for functional recovery. We consider both
neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles
of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss
the controversial role of microglia in neural inflammation after injury and we conclude with the
description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these
sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury,
but also the experimental strategies which have targeted these interactions and that are inspiring
novel therapeutic strategies for clinical application.
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1. Introduction

Currently, adult disability caused by stroke is still one of the major problems for public
health organizations over the world. Indeed, the year 2017 saw 1.12 million of stroke
episodes in the European Union, with 0.46 million deaths and 7.06 million suffering from
disability, expected to increase by 27% by 2047 because of improved survival rates [1]. The
2021 Heart Disease & Stroke Statistical Update from the American Health Association states
that in 2019, 6.6 million deaths were attributable to cerebrovascular disease worldwide and
a total of 3.3 million individuals died of ischemic stroke [2]. Depending on the location,
ischemic stroke can potentially induce impairments affecting cognitive, sensory and/or
motor domains and, together with heart disease, represents 82% of disability-adjusted life
years (DALYs) due to cardiovascular disease [3], implicating a large degree of assistance.
In a narrow time window after ischemic stroke, administration of recombinant tissue
plasminogen activator (tPA) and thrombectomy are effective strategies which improve
recanalization and functional outcome. In the chronic phase, rehabilitation based on
sensory-motor stimulations is one of the most used and important strategies to improve
functional recovery [4].

Understanding cell-to-cell interactions, among different cellular counterparts, and
molecular mechanisms mediating both neuroprotection and plasticity, is fundamental for
designing effective pharmacological strategies to improve neural repair and widen the
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window of plasticity for functional recovery in the ischemic brain. When referring to
stroke, several neuroprotective, anti-inflammatory and anti-apoptotic drugs were tested
with the aim of limiting lesion size. Post-ischemic neuroprotective interventions were used
to delay the time limit for thrombolytic intervention in rodent models. Those interventions
may involve immunosuppressive agents [5], mediators of inflammatory response [6] and
NMDAR-mediated NO production [7], but also stem cells [8] and hypothermia [9]. Other
novel approaches aimed at targeting more specific factors of poor prognosis in stroke
patients, like those regulating water homeostasis and glymphatic clearance in brain tissues
(i.e., aquaporin channels) [10-12]. Unfortunately, according to the American Heart the
American Stroke Association Guidelines for the Early Management of Patients with Acute
Ischemic Stroke, up to now there are neither pharmacological nor non-pharmacological
treatments recommended as neuroprotective agents [13]. This evidence suggests the
necessity to go deeper inside the substrate of post stroke plastic rearrangements to identify
more effective cellular and molecular targets. Perilesional tissue, in particular, is the theatre
of a fundamental reorganization that can be the key for an improved functional recovery, if
properly guided. This reorganization involves almost the entire variety of cell populations
in the brain tissue, including excitatory and inhibitory neurons and glial cells. All of
these actors react to the infarct with a massive morpho-functional reorganization and
secrete specific neurochemical signals that change their interactions with nearby cells.
Understanding the consequences of these interactions and finding how to manipulate them
is an existing challenge for post stroke therapy.

In this review, we present a summary of the principal cellular players that medi-
ate neuroprotection after brain ischemia or, instead, have a toxic effect in the damaged
tissue. In particular, we focus on cell-to-cell interactions involving astrocytes, oligodendro-
cytes, microglia, neurovascular components and pyramidal cells/interneurons, mediating
support, plasticity or toxic effects to neurons in the damaged brain.

2. Cellular and Molecular Support from the Neurovascular Unit after Ischemia

The neurovascular unit (NVU) gathers together all the cellular and extracellular
components that are responsible for the maintenance of the blood brain barrier (BBB)
selectivity, cerebral homeostasis, as well as the control of cerebral blood flow [14]. The
NVU incorporates neurons, astrocytes, endothelial cells (ECs), pericytes (PCs), microglia,
and basement membrane. Each component shares intimate and reciprocal association
to each other, establishing an anatomical and functional whole, which results in a very
efficient system of cerebral homeostasis and blood flow regulation [15,16].

Additionally, NVU has roles in physiological conditions; increasing evidence showed
that vascular lineage components of the NVU (endothelial cells and PCs) have the potential
to promote post-stroke brain repair through neuroprotection, neural regeneration and by
the formation of the neurovascular niche [17].

Guo et al. demonstrated that vascular endothelial cells are capable to protect primary
cortical neurons against oxygen-glucose deprivation, oxidative damage, endoplasmic
reticulum stress, hypoxia, and amyloid neurotoxicity in vitro through BDNF secretion [18].

Moreover, in response to shear stress of the blood flow, ECs upregulate expression of
the neuroprotective molecule osteopontin, resulting in ischemic tolerance acquirement [19].

Furthermore, ECs showed the ability to promote BBB reconstruction directly by
increasing VE-cadherin expression after an ischemic insult in adult mice [20] and indirectly
by the recruitment of PCs expressing platelet derived growth factor receptor 3 (PDGFRf)
in the MCAO model [21,22]. Moreover, in the acute phase, PDGFRf positive PCs extend
from peri-infarct areas toward the ischemic core, secreting collagen type I and fibronectin,
resulting in fibrosis and reduction of the infarct area [23,24].

Interestingly, PCs seem also to be capable to acquire stem cells multipotency through
reprogramming [25] and differentiate into various cells including neural and vascular
cells [26-30]; indeed PCs extracted from ischemic regions of mouse brains and human brain
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PCs cultured under oxygen/glucose deprivation develop stemness in order to replace
major components of the NVU [31].

Nevertheless, it is known that ECs have a key role in vascular niches of the mi-
croenvironment of conventional neurogenic zones [32,33], such as the subventicolar zone
(SVZ) [34] and the sub granular zone (SGZ) [35]. In fact, the murine ECs line stimulate
embryonic-derived neural stem cells self-renewal when cocultured in vitro [36], while
cerebral ECs activated by ischemia (isolated from the stroke boundary) promote neuronal
differentiation and reduce astrocytic differentiation in SVZ neural progenitors [37].

A recent paper showed that neural stem/progenitor cells (NSPCs) could also originate
directly in the ischemic area of the adult murine brain, and can differentiate into electro-
physiologically functional neurons, astrocytes and myelin-producing oligodendrocytes,
participating to the post-stroke cortical reconstruction [38]. As reported by Nakagomi et al.,
ECs increase survival, proliferation and neuronal differentiation of ischemia-induced
NSPC when cotrasplanted with cortex-derived stroke-induced NSPC, onto adult mice that
have undergone MCAO [39]. In addition, transplanted bone marrow mononuclear cells
(BMMCs) seem to promote neurogenesis and functional recovery in the MCAO mouse
model through the proliferation of ECs, since treatments with endostatin (known to inhibit
ECs proliferation), following BMMCs transplantation, suppress proliferation of NSPCs,
neurogenesis and functional recovery [40].

Finally, while mature neurons and glia are very sensitive to ischemic insults, ECs and
PCs can survive for several days even within the ischemic area [20,41]. This could be crucial
for future therapies, since a lethal ischemia with neural cell death but without vascular
cell death (obtained in mice by an early reperfusion following 90 min MCAO), strongly
increases the healing process, neurogenesis, gliogenesis and functional recovery compared
to a lethal ischemia with both neural and vascular cell death (permanent MCAO) [42,43].

In conclusion, although the precise roles of vascular cells that survive within ischemic
areas in post-stroke conditions remains unclear, ECs and PCs seem to have the potential to
promote brain repair through several mechanisms.

3. Pathophysiological Role of Astrocytes and Reactive Gliosis after Brain Ischemia

An ischemic stroke is a devastating metabolic shock for brain tissue and potently
impacts not only on neuronal populations, but also on the organization of their supporting
system, i.e., glial cells and particularly astrocytes. The adult brain is responsible for the
consumption of 20% of oxygen (02) and 20-25% of glucose utilization [44,45]. Most of
neuronal energy consumption takes place at the synaptic level, where it was postulated that
astrocytes play a role in the neuronal metabolism of glucose. According to the astrocyte-
neuron lactate shuttle (ANLS) hypothesis postulated in 1994 [46], when neuronal synaptic
activity intensifies, astrocytes raise the rate of glucose uptake from the blood stream, activat-
ing the glycolytic pathway and the lactate production. This substrate, once released in the
extracellular space, is used by neurons as an alternative energetic source [46]. According
to this, astrocytes serve as a ‘lactate source’” whereas neurons serve as a ‘lactate sink” [47].
The ANLS theory has been challenged by Bak and colleagues, who alternatively proposed
that the metabolism of lactate in neurons is coupled to the activity of the malate-aspartate
shuttle (MAS), an enzyme involved in the reduction of the NADH produced by glycol-
ysis. MAS activity is limited by the raise in intracellular CaZ* following depolarization,
suggesting that lactate metabolism can take place only during repolarization (and in the
period between repolarization), instead of during neurotransmission activity as stated by
the previous theory [47,48]. However, numerous pieces of evidence in support of the ANLS
hypothesis have led to the wide acceptance of this theory [47].

In the healthy cortex, astrocytes also play a critical role in the brain physiology, such
as maintaining ionic homeostasis [49], mediating functional hyperemia [50], removing
glutamate released in the synaptic cleft to avoid excitotoxicity [51], and contributing to
neuronal electrical activity through stimulation of different G-protein coupled receptors
(GPCRs: [52-54]). Moreover, these cells participate with the ‘tripartite” synapse, where they
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can regulate gliotransmitters release in the synapses after an increase of intracellular Ca®*
levels in response to neurotransmitters [55,56].

After the onset of ischemia, the physiological functions of astrocytes begin to be
altered, eliciting several morphological and biochemical modifications which have a severe
impact on the brain region affected by stroke. For instance, it was demonstrated that
after ischemia astrocytes contribute to release glutamate in the synaptic cleft, due to
transporters running in reverse, leading to extracellular glutamate elevations and severe
excitotoxicity [57,58]. Moreover, one of the first astrocytic reactions to ischemic damage
is represented by enhanced Ca?* signaling [59]. Indeed, by means of calcium imaging in
brain slices, it has been found that calcium activity in astrocytes is quiescent under normal
conditions, but frequent Ca®* elevations are detectable in an oxygen-glucose deprivation
(OGD) model [60]. In the same work, the authors showed that OGD induced slow inward
currents (SICs) mediated by extrasynaptic NMDA receptors in CA1 pyramidal neurons. In
this way, enhanced Ca®* activity in the astrocytic network plays a key role in the activation
of extrasynaptic NMDA receptors in hippocampal neurons, heightening glutamatergic
signaling and brain damage during ischemia. Similar results were also found in an in vivo
setting: using in vivo two-photon imaging, Ding et al. (2009) found that astrocytes exhibit
intercellular Ca?" waves starting 20 min after a photothrombosis (PT)-induced ischemia.
The magnitude of theCa?" signal was greater in the ischemic core than in the perilesional
region, showing a different spatial activation of astrocytes in the lesioned region. Notably,
inhibition of astrocytic Ca* signal with BAPTA Ca?* chelator reduced infarct volume,
suggesting that the increased Ca2* signal in astrocytes contributes to ischemic damage [61].

Beyond enhanced Ca?* signaling, it was shown that astrocytes are also involved in the
development of edema following a traumatic brain injury or a stroke. Water homeostasis
in the brain is regulated by a family of cellular membrane proteins called aquaporins
(AQP) [62,63], of which the AQP4 is the principal isoform expressed in the CNS, abundant
especially in astrocytes [64,65]. Recently, it has been demonstrated that brain and spinal
cord edema is associated with increases in AQP4 expression in astrocytes and with their
subcellular translocation to the blood-spinal-cord-barrier (BSCB), raising the flux of water
in astrocytes [11]. Moreover, the same authors demonstrated that AQP4 membrane localiza-
tion is mediated by a calmodulin (CaM) and protein kinase A (PKA) mechanism. The use
of trifluoperazine (TFP), a CaM antagonist, helped in reducing edema in a rat spinal cord
injury model, promoting functional recovery of the sensory and locomotor deficit following
the injury [11]. This role was recently confirmed also in a photothrombotic stroke mouse
model, where authors showed that administration of TFP during the early acute phase of
stroke effectively reduced the cerebral edema and the AQP4 mRNA and protein expression
levels in the brain [12]. Moreover, using spectroscopy and X-ray fluorescence imaging,
authors showed that TFP significantly increases the level of glycogen in the peri-infarct
tissue, which may have a neuroprotective effect by providing supplemental metabolic
energy in the acute post-stroke phase [12].

The acute response of astrocytes comprises also morphological changes associated
with upregulation on the levels of the glial fibrillary acidic protein (GFAP), a mechanism re-
ferred to as reactive astrogliosis [66-69]. These dynamic modifications of reactive astrocytes
were measured in Mestriner et al. (2011), where the authors used immunohistochemistry
for GFAP protein in the penumbra region 30 days after ischemic and hemorrhagic stroke in
rats. Results showed an increased optical density of GFAP-positive astrocytes after stroke
and increased complexity of primary processes, measured as the number and length of
ramifications, compared to a sham control group [67]. A similar analysis was performed
by Wagner et al. (2013), where reactive gliosis was investigated 4 days after MCAO in
spontaneously hypertensive rats. Measurement of the GFAP staining in several brain
regions revealed that in the penumbral region the volume, diameter, length, and branching
of processes of reactive astrocytes were increased compared with the astrocytes in the
contralateral hemisphere and in remote regions away from the ischemic core. These data
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indicate a regionalization of reactive gliosis, depending upon the distance from the site of
brain injury [68].

Moreover, after ischemic stroke reactive astrocytes in the peri-infarct region form a glial
scar in the penumbra that demarcates the ischemic core from healthy tissue. Progression
of reactive gliosis and glial scar formation was described in detail by Li et al. (2014),
where authors examined GFAP expression in a mouse model of photothrombotic ischemia
at different time points after the induction of the lesion. The formation of the glial scar
starts at 6 days post stroke (dps), when reactive astrocytes shift their morphology from the
hypertrophic shape of the acute phase (observed from 1 to 4 dps) to a thinner shape with
elongated processes directed towards the ischemic core. After 10 dps, reactive astrocytes
in the perilesional region were stable, indicating complete maturation of the glial scar. In
the same study, the authors documented that gliosis is also characterized by proliferation
of a fraction of reactive astrocytes in the perilesional region. Using bromodeoxyuridine
(BrdU) labeling and immunostaining, they observed that the percentage of BrdU+ reactive
astrocytes significantly increased in the acute phase after PT, reaching their peak at 4 dps.
Finally, they also examined the functional deficit after ischemia through several sensory-
motor tasks: Schallert cylinder, hanging wire, pole, and adhesive removal tests. The largest
functional deficits occurred from days 2 to 4 after ischemia and significant functional
recovery starts after day 6 post stroke [69].

Following stroke, reactive astrogliosis has a controversial functional role since it may
participate in brain repair but could also limit neuronal outgrowth and recovery after the
lesion. Indeed, reactive astrocytes express a broad range of molecules that are inhibitory
for axonal regeneration, such as chondroitin sulfate proteoglycans (CSPGs) [70-72], thus
reducing neuroplasticity in the cortical tissue after ischemia. Along this line, a study
showed that ephrin-A5 is induced in reactive astrocytes in the peri-infarct cortex and
is an inhibitor of axonal sprouting and motor recovery in stroke in motor areas [73].
Indeed, pharmacological blockade of ephrin-A5 signaling determined robust sprouting of
axonal connections in motor, premotor and prefrontal perilesional regions, and mediates a
significant improvement in recovery of forelimb motor function as assessed by behavioral
tests (i.e., grid walk and Schallert cylinder tests). Interestingly, effects on axonal sprouting
were more evident when the blockade of ephrin-A5 was combined with the forced use
of the affected forelimb (via delivery of the synaptic blocker botulinum neurotoxin into
the ipsilesional forelimb) [73]. However, it was shown that mice double-knockout for
two major astrocytic intermediate filament proteins, glial fibrillary acidic protein (GFAP)
and vimentin (GFAP-/-Vimentin—-/—mice), develop less dense scars around the injury
site but they paradoxically display reduced motor recovery and axonal remodelling of
corticospinal fibers [71]. In another report, Hayakawa et al. (2010) used fluorocitrate, a
metabolic inhibitor of astrocytes, to reduce reactive gliosis. They showed a worsening of
the behavioral deficits in the treated animals, consistent with a restorative effect of the glial
scar [74].

Thus, reactive astrocytes clearly play a dual role post-stroke, as on one hand, they
inhibit sprouting and axonal growth, but they may also participate in repair by producing
or recycling neurotrophic factors, thus stimulating plasticity of spared networks. The glial
scar may also physically isolate the injury site from viable tissue, preventing a cascading
wave of uncontrolled tissue damage [75], and restrict diffusible factors secreted from the
damaged region.

Altogether, the available literature presents controversial data regarding the role
played by astrocytes in post-stroke functional recovery. Some reports indicate a block of
sprouting and plasticity by reactive astrocytes while other studies support the view that
astrocytes may play a role in aiding functional restoration after stroke.
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4. Role of Oligodendrocytes in Neural Support and Sprouting Inhibition

White matter (WM) myelin sheaths insulate axons, facilitating conduction of action
potentials and increasing bioenergetical efficiency [44]. In the central nervous system, WM
is formed and maintained by oligodendrocytes (OLGs) [76].

OLGs are highly susceptible to oxidative stress, trophic factors deprivation and glu-
tamate activity (Arai 2009), therefore WM lesions are a frequent consequence of ischemic
events in stroke patients and experimental animal models of cerebral ischemia [77,78].

Despite OLGs not proliferating in the adult [79], oligodendrocyte precursor cells (OPC)
may enable myelin sheath renewal by differentiating into oligodendrocytes throughout
all life [80]. After brain injury involving the WM, OPC proliferate in the SVZ [81] and
migrate to the perilesional area to become a myelinating OLG, attempting to restore the
damage [82-85]. This process of post-stroke oligodendrogenesis is influenced by complex
interactions among several cell populations, thus offering multiple targets for therapeutic
interventions aimed at increasing the recruitment of OPCs to enhance white matter repair
after injury.

Neuronal activity appears to have a direct role in regulating OPCs proliferation and
differentiation [86] and some patterns of activity are more likely to promote proliferation,
while others are more likely to promote differentiation [87]. Interestingly, OPCs receive
both excitatory and inhibitory synaptic inputs from neurons, which modulate several
pathophysiological processes. Glutamatergic synaptic contacts between neurons and OPCs
are mediated by AMPA receptors (AMPARs), and Ca?* permeability of AMPARSs at these
synapses could be a key mechanism in modulating the development of oligodendroglial
cells. Indeed, inducing expression of AMPARs with different Ca?* permeability in mouse
OPCs of corpus callosum during the peak of myelination deeply affects OPC proliferation
and differentiation [88]. Moreover, it seems that OPCs differentiation could be induced
directly by demyelinated neurons, as showed by the enhanced differentiation of OPCs into
myelinating OLGs, after recurrent or moderate optogenetic stimulation of neurons in the
corpus callosum in a mouse model of focal lesion. These results highlight the importance
of neuronal-OLG interaction even during post stroke recovery [89].

OLGs were proved to also have neuroprotective activity, as shown by the ability of
OLGs to sustain callosal axons, through gap junctions, after exogenous glucose deprivation
in ex-vivo brain slices [90]. Interestingly, even OPCs seems to have a neuroprotective role,
through secretion of the insulin-like growth factor-1 (IGF-1). Indeed, medium derived from
OPC cultures increase in vitro neuronal survival, while this effect is blocked by neutralizing
IGE-1 [91].

However, mature OLGs are predominantly considered impediments to post-stroke
neural regeneration. In 1988 Schwab and Caroni identified OLGs and the white matter as
non-permissive substrates for neurite outgrowth [92]. The molecules responsible for this
neurite outgrowth inhibition are collectively termed Myelin associated inhibitors (MAIs)
and include Myelin Associated Glycoprotein (MAG), Oligodendrocyte Myelin glycopro-
tein (OMgp) and Nogo A. These ligands mainly act through three primary receptors:
Nogo receptor 1 (NgR1), paired immunoglobulin-like receptor B (PirB) and Sphingosine-
1-phosphate receptor 2 (S1PR2) [93-95] and are generally associated with axonal growth
cones collapse and repair inhibition following CNS injury.

In fact, neutralizing Nogo-A in the presence of a middle cerebral artery occlusion
(MCADO) in rats results in enhanced cortico-efferent projections and functional improve-
ments [96,97]. Interestingly, administration of a monoclonal antibody against Nogo-A
after an ischemic lesion increases dendritic arborisation, suggesting a role of this molecule
also in limiting dendritic plasticity after stroke [98]. Exogenous inhibition of NgR1 with
peptide antagonists was shown to mitigate axonal damage, enhance axonal sprouting and
improve motor function following cortical injury in rodents [99]. Moreover, the use of
a NgR1 decoy protein [100] showed efficacy in the recovery of rats subjected to MCAO,
when administered 1 week post-injury for a period of 28 days [101]. Finally, a combination
of Nogo-A neutralization followed by rehabilitative training revealed an almost complete
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restoration of skilled forelimb functions in rats with large photothrombotic stroke, due
to an extensive and precise reinnervation of the stroke-denervated spinal hemicord by
midline-crossing fibers from the intact motor cortex and corticospinal tract [102].

Opverall, these studies underline the critical role of OLGs, and the importance of OPCs
maturation timing to avoid neurite outgrowth inhibition during stroke recovery.

As previously mentioned, OLGs and OPCs can offer neuroprotection and metabolic
support to vulnerable neurons, and indeed other cell types providing support to OLGs and
OPCs can be considered potential therapeutic targets for post-stroke neuroprotection.

In this context, astrocytes are known to support OLGs functions through gap junc-
tions [103] and protect OPCs from oxidative stress, starvation and hypoxia throughout
their secretome [104]. A main actor in this process is Erythropoietin (EPO), a glycoproteic
cytokine showing in vitro protective effect on OPCs subjected to hypoxia-reoxygenation
injury [105]. Moreover, administration of EPO following MCAO in rats results in increased
neurogenesis and oligodendrogenesis [106].

Additionally, astrocytes increase in vitro maturation of OPCs, subjected to hypoxia,
via a BDNF-dependent mechanism [107]. On the contrary, transgenic mice with reduced ex-
pression of BDNF from reactive astrocytes undergo increased damage and less myelination
following carotid stenosis [107]. Accordingly, post-stroke intravenous administration of
BDNF in rats increases oligodendrogenesis, remyelination and recovery after 4 weeks from
the treatment [108]. Finally, astrocytes react to an ischemic insult by secreting Leukemia
inhibitory factor (LIF), a protein that was found to promote OLGs survival and functional
recovery after MCAO [109].

OLGs are also supported by endothelial cells through trophic factors secretion, as
demonstrated in-vitro [110]. Endothelial secretome also enhance endothelial and OPCs
proliferation and potentiate OPCs maturation [111]. Furthermore, it increases vascular den-
sity, myelination and OLGs number, improving functional recovery after carotid stenosis
in mice [111].

Conversely, secretome of hypoxic OPCs increases tubular formation of endothelial
cells in vitro, and improves functional recovery and angiogenesis following MCAO in
mice [112]. However, it seems that Nogo-A plays a crucial role in the inhibition of post-
stroke vascularisation. Indeed, genetically deleting Nogo-A or its SIPR2 receptor results in
increased vascular spouting and in neurological deficit reduction following photothrom-
botic ischemia [113].

5. Microglial-Mediated Inflammation in Stroke: A Double-Edged Sword

Microglia are considered the resident macrophages of the central nervous system
and are the main effectors of brain immune function. Microglia are constantly sampling
the brain in search of damaged neurons and infectious agents. When pathogens cross
the blood-brain barrier, microglia cells react rapidly to increase inflammation, destroy-
ing foreign agents before they can damage tissue. On the basis of their vital functions
in regulating neuroinflammation, microglia are an important target for stroke therapy.
Neuroinflammation and microglial responses are involved in all phases of the ischemic
cascade, from the acute event, which leads to the first wave of neuronal cell death, to the
later stages involving phagocytosis and tissue remodelling.

Several pieces of evidence show that the immune response influences reparative mech-
anisms in the damaged brain. The influence of inflammation on adult neural stem cell
regulation and function has also received much attention. Although the details of immune
signaling in the central nervous system are not completely clear, it is known that the impact
of inflammatory signaling on adult neurogenesis is focused on the activation of microglia
as a source of proinflammatory cytokines, such as TNF-«, IL-6, and IL- 1f3. Studies have
shown that neural stem cells undergo apoptosis by TNF-« in vitro, suggesting that TNF-«
has a negative effect on post-stroke neurogenesis (losif et al., 2008). Glucocorticoid-induced
tumor necrosis factor (TNF) receptor (GITR), a multifaceted regulator of immunity belong-
ing to the TNF receptor superfamily, is expressed on activated CD4" T cells. Furthermore,
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GITR and its ligand GITRL are functionally expressed on brain microglia and it was shown
that stimulation of GITRL can induce inflammatory activation of microglia [114].

Studies in a mouse model of cortical infarction have shown that GITR, triggering
on CD4* T cells, increases post-stroke inflammation and decreases the number of neural
stem/progenitor cells induced by ischemia (iNSPCs). CD4* and GITR* T cells were prefer-
entially accumulated at the post-ischemic cortex and mice treated with GITR-stimulating
antibodies had increased post-stroke inflammatory responses with increased apoptosis
of iNSPCs. In contrast, blockade of the GITR-GITR ligand (GITRL) interaction abolished
inflammation and suppressed apoptosis of iINSPCs. These observations indicate that CD4*
T cells and GITR are the main modulators of post-stroke neurogenesis impairment. This
suggests that blocking the GITR-GITRL interaction may be a novel immune-based therapy
in stroke [115].

Microglia can also regulate post-stroke plasticity through other mediators such as
microglia-neuron interactions mediated by the neural factors CD200 and CX3CL1.

CD200 glycoprotein is expressed primarily by neurons and its receptor, CD200R, is
expressed on myeloid cells, including microglia. This interaction is involved in maintaining
microglial cells in a quiescent homeostatic state. CD200 expression has been shown to be
abundant in the healthy brain and in the contralesional hemisphere after ischemic injury.
After transient middle cerebral artery occlusion (tMCAO), there is a dramatic decrease in
CD200 levels that are re-increased at 7 and 14 days after reperfusion [116].

The acute role of CD200 has been studied in the first 48 h, in a mouse model of middle
cerebral artery occlusion (pMCAOQO). Loss of neuronal CD200 contributes to microglia
activation and associated neuronal death. Moreover, intracerebroventricular injections of
CD200, performed after induction of pMCAO, reduced microglia activation and expression
of cytokines TNF, IL-13, and IL-10 [117]. A recent study assessed changes in monocyte
infiltration, microglia proliferation, and behavioral deficits up to one week after injury in
CD200R knock-out (CD200R-KO) mice subjected to transient MCAO. Increased monocyte
and microglia infiltration was observed in CD200R-KO mice but no difference in lesion
volume at 72 h after ischemia was reported, compared to control mice. Moreover, an
increased mortality rate in the first week was observed in CD200R-KO mice, suggesting
a role of the aggravated and prolonged inflammatory response, found up to 7 days in
CD200R-KO but not in control mice, regardless of lesion volume. In addition to this,
motor and behavioral assessment 7 days after injury showed a worsened performance in
CD200R-KO mice compared to controls [118].

The role of CD200-DC200R interaction in post-stroke functional recovery has been
recently supported by Sun and colleagues [119], who confirmed that CD200/CD200R
signaling pathway contributes to spontaneous functional recovery in rats subjected to
MCAGO. Authors showed that post-stroke intracerebroventricular injection of CD200 (as an
agonist of CD200R) improved sensorimotor function in a battery of behavioral tests: Longa
test, adhesive removal test, limb-use asymmetry test and the modified grip-traction test.
Better performances correlated with an enhanced synaptic plasticity, i.e., recovered density
and morphology of dendritic spines, through inhibition of microglia activation and inflam-
matory factor release. In contrast, rats injected with a CD200R blocking antibody showed
an aggravated sensorimotorfunction, accompanied by enhancedmicroglia activation and
release of pro-inflammatory factors.

Thus, it appears that modulation of microglia function may be an effective tool for
treatment of stroke. Bone marrow mesenchymal cells (BM-MSCs) have immune modula-
tory properties in the brain and could play an important role in regulating microglial cell
activation during the acute phase of stroke. As demonstrated by Li et al., (2019), ischemic
rats that underwent BM-MSC transplantation, 12 h after MCAO, showed a reduction in
microglial activity 3 days after injury. Transplantation prevented apoptosis in peri-infarct
neurons, confirming that BM-MSC transplantation effectively protects from acute neural de-
generation [120]. Moreover, Kong et al. (2018) demonstrated that mesenchymal stem cells
derived from the amniotic membrane of the human placenta, transplanted into ischemic
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rats, reduced the level of microglia activation as well as the level of pro-inflammatory cy-
tokines and increased the expression of CD200. Post-stroke function was improved 1 week
after lesion, remaining stable up to 6 weeks post-stroke in treated animals. Moreover, at
this chronic time point the extent of injury was reduced in transplanted animals compared
with the control group [121].

In the central nervous system CX3CL1 is expressed primarily by neurons, and its
unique receptor CX3CR1 is expressed exclusively by microglia. The CX3CL1-CX3CR1
signaling pathway modulates microglia activation and regulates several microglial cell
functions in the adult brain, influencing synaptic transmission both under pathological
and physiological conditions [122]. Thus, CX3CL1-CX3CR1-mediated microglia-neuron in-
teraction in experimental ischemic models was investigated as a target for neuroprotection.

CX3CR1 knockout mice undergoing focal cerebral ischemia have reduced IL-13 and
TNF production, along with reduced ischemic volume, improved functional recovery,
and less neural cell death [123]. Further studies confirmed that CX3CR1 deficiency may
facilitate alternative microglial cell activation after stroke, suggesting that CX3CR1 abolition
attenuates microglia proliferation and inflammatory capacity, improving neurological
recovery [124]. There was also a reduction in the number of apoptotic neurons in CX3CR1-
deficient mice in the infarct region, indicating that this receptor mediates cell death in
ischemia [125]. Consistently, recovery of neurological function after ischemic injury can
be rapidly improved by inhibition of the CX3CL1-CX3CR1 pathway [126]. Moreover,
Tang and colleagues demonstrated that microglia are stationary within the lesion and that
the lack of the CX3CR1 receptor prevents CX3CL1 from maintaining a low ramification
number, i.e., a low level of microglia activity, indicating that CXRCL1 is a key factor in the
induction of microglia from their amoeboid to hypertrophic form [127]. Therefore, studies
with CX3CL1-deficient mice after transient MCAOQ, showed reduced ischemic area and
reduced mortality when CX3CL1-CX3CR1 signaling was absent [128]. However, other
studies support a protective effect of CX3CL1 in stroke. Indeed, CX3CL1 can also provide
a neurotrophic effect through microglia-derived protective factors, including adenosine,
with the activation of adenosine A1 receptors (A1Rs) which show an inhibitory effect on
microglia activation [129,130]. In fact, intracerebroventricular administration of exogenous
CX3CL1 to naive rats before pMCAO, reduces cerebral infarct size and neurological deficits,
in a A1R-dependent manner. Indeed, in the presence of A1R antagonist, the neuroprotective
effect of CX3CL1 pre-treatment on pMCAO was abolished. However, CX3CL1-induced
neuroprotection is ineffective in CX3CR1- or CX3CL1-deficient mice, confirming the duality
and complexity of microglia and inflammation in brain injuries [131].

In a clinical study, researchers hypothesized that patients with higher plasmatic levels
of CX3CL1 after stroke would have a more robust inflammatory response and would
have worse functional outcomes. Post-stroke immune responses through CX3CL1 levels
were assessed from day 1 to day 180 in a cohort of 85 patients. Contrary to the original
hypothesis, patients with better clinical outcome 6 months post-stroke had higher levels of
CX3CL1 in blood plasma [132].

Altogether, CD200-CD200R and CX3CL1-CX3CR1 signaling appear to play an impor-
tant dual and controversial role in neuroprotection and functional recovery; the ability
to understand and pharmaceutically manipulate these pathways in an appropriate time
window post-infarct could reduce neurological sequelae after stroke.

6. Pyramidal and GABA-Ergic Neural Interactions in Post-Stroke Plasticity

The ischemic event is known to trigger spontaneous and activity-dependent plastic
rearrangements of neural connections across a great variety of cell populations, including
pyramidal neurons and several subtypes of inhibitory interneurons.

Longitudinal in vivo two-photon imaging studies, targeting pyramidal neurons in
somatosensory cortex, have shown that apical dendrites in perilesional tissue, in the first
two weeks after stroke, display a spontaneous threefold increase in structural remod-
elling [133]. However, without any intervention, the shortening of tips detected closer to
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the infarct counterbalance the dendrite extension and the net length of dendritic arbour
remained stable. This demonstrates that cortical pyramidal neurons preserve a plastic
potential for important structural changes that could possibly be targeted, encouraged and
guided by neurorehabilitative treatments. Indeed, we found that a combination of motor
rehabilitation with neuroplastic intervention can decrease synaptic deletion and increase
spine density in perilesional tissue in a mouse model of cortical stroke [134].

Fast-spiking, parvalbumin-positive (PV+) GABAergic interneurons exert a powerful
control of cortical activity and evidence indicates a role of this neuronal population in
post-stroke recovery.

Electrophysiological and optogenetic investigations targeting these cells have shown a
clear deficit in synaptic transmission after brain ischemia [135]. Specifically, optogenetically
evoked PV+ excitability was suppressed in the forelimb somatosensory cortex after five
minutes common carotid arterial occlusion (CCAO), but recovered rapidly with reper-
fusion, while PV+ stimulation-evoked GABAergic synaptic network activity exhibited a
prolonged suppression even ~1 h after reperfusion. This suppression may be caused by
the downregulation of postsynaptic GABAergic receptors, by the depression of presynaptic
release or by the reversal of GABA transporter. These alterations were in line with the
evolution of the functional deficit and demonstrate how the alteration of the inhibitory
network after a stroke can influence the recovery of the perilesional tissue [136]. Moreover,
the susceptibility of the inhibitory and the excitatory networks to post-stroke metabolic
stress is not equal. Current-clamp recordings in prefrontal cortex slices exposed to oxygen-
glucose deprivation and reoxygenation showed that PV-positive interneurons were more
vulnerable to ischemic damage than pyramidal neurons, as indicated by the lower per-
centage of recovery of PV-positive interneurons. Specifically, large amplitude, presumably
action-potential dependent, spontaneous postsynaptic inhibitory currents recorded from
pyramidal neurons were less frequent after oxygen deprivation than in the control con-
dition, while disynaptic inhibitory postsynaptic currents (dIPSC, recorded on Pyramidal
Neurons after bipolar stimulation on the border of white matter and layer 6) in pyramidal
neurons produced predominantly by PV+ interneurons were reduced [137]. Moreover,
dendrites of PV-positive interneurons exhibited more pathological beading than those of
pyramidal neurons. In addition, short-term in vitro ischemia, in rat brain slices, was shown
to permanently impair the excitability of inhibitory neurons and synaptic transmission
mediated by y-aminobutyric acid (GABA), while principal neurons appear to be even more
excitable during the reperfusion [138].

Parvalbumin interneurons request high energy levels to preserve their fast spiking ac-
tion potentials [139]. This high energy demand leads to greater susceptibility to metabolic
and oxidative stress [140,141]. PV+-interneurons have critical roles in the generation
and maintenance of gamma oscillations, an additional energy requiring process [142].
Disruption of gamma oscillations have been linked to hypoxia and decrease of PV+ in-
terneurons [143,144].

These data suggest a differential vulnerability to ischemic conditions of excitatory
and inhibitory neurons, leading to the altered excitation-inhibition balance associated with
stroke pathophysiology. The restoration of this balance is therefore a promising target
for post-stroke neurorehabilitation as we recently demonstrated in mice [134,145] and
could inspire novel therapeutic strategies with non-invasive neuromodulation techniques
(Non-invasive brain stimulation, NIBS).

The evidence that GABAergic interneurons, despite being subject to functional al-
terations, survive the injury in several perilesional brain lesion, as demonstrated in a
photothrombotic stroke model [146], demonstrate that acting on inhibitory interneurons as
therapeutic strategy is a feasible solution.

Some studies exploited direct manipulation of interneurons activity to improve func-
tional recovery after ischemic injury using electrophysiological, optogenetic and chemo-
genetic strategies. A recent paper demonstrated beneficial effect of inhibitory neurons
stimulation in gamma (40 Hz) range in the acute phase after stroke in mice. The authors
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found reduced lesion volume and improved motor function, suggesting a neuroprotec-
tive effect of the treatment [147]. A different approach, targeting excitatory neurons was
recently followed by Wang et al. which used chemogenetic techniques to selectively inhibit
forebrain excitatory neurons in a transient MCAO ischemic model. Mice treated with
Clozapine-N-oxide (CNO) which activated inhibitory DREADD receptors expressed by ex-
citatory neurons, exhibited significantly improved neurologic function and smaller infarct
volumes [148].

In addition, the cortex is not the only target for the modulation of GABAergic neurons
to promote functional recovery after stroke. It was proved, in a murine tMCAo model,
that optogenetic inhibition of striatal GABAergic activity was able to improve functional
recovery, and reduced brain atrophy volume and cell death compared with the control,
while activation of striatal GABAergic neurons resulted in adverse effects [149]. The
positive effect is mediated by the upregulation of the basic fibroblast growth factor (bFGF)
in endothelial cells, possibly orchestrated by astrocytes. This demonstrates that a precise
instead of overall regulation of the excitatory/inhibitory system depending on the brain
area should be considered because of the fine regulation of this network.

Changes in firing and excitability of the inhibitory system initiate a cascade of inter-
cellular events with several electrical but also neurochemical consequences in the perile-
sional survived tissue. The alteration of GABA release after a stroke can strongly impact
the activity and the expression of GABA-A receptors that are the main mediators of the
GABAergic signalling. The consequence is an altered modulation of both tonic and phasic
inhibition that was shown to have different consequences on the functional outcomes.
Phasic inhibition is due to fast activation of postsynaptic GABA-A receptors in response to
release of GABA in the synaptic cleft. GABA-A receptors involved in phasic inhibition con-
tain «1, x2 or a3 subunits. On the other hand, GABA molecules which leave the synaptic
cleft are able to modulate membrane potential by activating other subtypes or GABA-A
receptors containing «4 or a5 subunits. These differences in receptors allow a specific
pharmacological modulation of phasic and tonic inhibition. An ischemic event leads to a
consistent reorganization of GABA-A receptors exposed by cell membranes [150] creating a
highly complex picture that is just starting to be decoded. A study from Hiu et al. reported
an increased phasic inhibition in the peri-lesional layer V during the critical window of
cortical plasticity in a mouse model of ischemic injury. Increasing this phasic inhibition with
Zolpidem improved motor outcomes in adhesive tape removal and rotating beam [151]. A
more recent paper found a selective increase in phasic inhibition following Continuous
theta burst stimulation (cTBS) in mice with a photothrombotic lesion in posterior parietal
cortex (PPC) and daily treatment with cTBS improved cognitive function in Morris water
maze. These finding suggest a positive role of an enhanced phasic inhibition in the post-
acute phase of ischemic injury; however, considering other clinical evidence where the
administration of Midazolam re-induced and worsened clinical deficits [152], this topic
is still debated. On the other hand, recent studies were focused on manipulation of tonic
inhibition. Clarkson et al. demonstrated that tonic GABAergic inhibition results increased
after stroke and that a negative modulation of this tonic inhibition with a benzodiazepine
inverse agonist improved functional outcomes in mice after ischemic injury [125,153]. Ac-
cordingly, we found that a downregulation of GABA presynaptic signaling in the first week
post-stroke in mice, significantly improved general motor function with a long term ef-
fect [154]. In the same line, in another study on tMCAo in mice showed that stroke-induced
glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and
down-regulating extrasynaptic GABA-A receptors. Functionally, this was associated with
improved motor performance on the RotaRod motor test. However, as an adverse side
effect, decreased tonic inhibition facilitates post-stroke epileptic seizures [155]. Moreover, a
recent international, randomized, double-blinded clinical study (phase 2) involving the
drug 544819, a selective GABAA «5 receptor antagonist which was demonstrated to have a
positive effect on stroke recovery in rodents, found no significant improvement on modified
Rankin Scale (mRS) and NIHSS and Montreal Cognitive Assessment (MoCA) scores [156].
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Regulation of GABAergic activity to improve functional outcomes after ischemic injury
requires highly controlled and specific knowledge and interventions, and well targeted
studies are needed to unveil the mechanism underlying its role in post-stroke recovery.

7. Conclusions

Ischemic stroke is a highly complex pathology and its consequences reverberate over
several cellular mechanisms, both aside and distant to the injury core. In this review, we
summarized the main categories of inter-cellular alterations induced by the ischemic event.
All this literature demonstrates that the ischemic damage alters cell-to-cell chemical and
structural signaling, affecting, in a specific manner, excitatory and inhibitory neurons as
well as the different types of glial cells (Figure 1). This knowledge represents the starting
point for the validation of highly-targeted therapeutic strategies for a more complete
recovery of functional outcome after ischemic damage. In this review we mentioned
several possible therapeutic approaches addressing cellular and molecular targets involved
in cell-to-cell interactions (NogoA, BM-MSC transplantation, modulation of the GABAergic
tone, Non-Invasive Brain Stimulation techniques). But many others are in the research
spotlight, based on highly innovative bioengineering and genetic techniques like neural
reprogramming of glial cells [157], humanized self-organized models [158], organoids as
promising tools for transplantation of stem cells or drugs [159], 3D cultures and human
microvessel-on-a-chip platforms [160] which represent a powerful tool for in-vitro studies
of the human Blood-Brain Barrier (BBB) and some of which can be subjected to high
resolution imaging techniques thus allowing real-time monitoring of BBB penetration [161],
endothelial activation and leukocyte adherence even in case of a stroke event. All of
these novel technologies will pave the way for novel and highly specific therapies to treat
stroke patients.
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